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Abstract In this paper, we study the existence of multiple ground state solutions for a class
of parametric fractional Schrodinger equations whose simplest prototype is

(=A)u+Vx)u=Arf(x,u) inR",

where n > 2, (—A)* stands for the fractional Laplace operator of order s € (0, 1), and A is
a positive real parameter. The nonlinear term f is assumed to have a superlinear behaviour
at the origin and a sublinear decay at infinity. By using variational methods, we establish the
existence of a suitable range of positive eigenvalues for which the problem admits at least
two nontrivial solutions in a suitable weighted fractional Sobolev space.

Mathematics Subject Classification 35A15 - 35515 - 49J35 - 45G05 - 47G20

1 Introduction

In this paper, we study ground state solutions for a nonlinear problem driven by the fractional
Laplace operator (—A)* of order s € (0, 1). Let S be the Schwartz space of rapidly decaying
C*°(R") functions. For every u € S, we recall that the fractional Laplace operator acting on
u is defined by
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(=AY u =FE1% Fu) (), (D
where

1 —i&-x n
Fu(€) ZZW/W'? EYu(x)dx, £eR 2)

denotes the Fourier transform of u.

From a probabilistic point of view, the fractional Laplace operator is the infinitesimal gen-
erator of a Lévy process, cf. [7]. This operator arises in the description of various phenomena
in the applied sciences, such as plasma physics [32], flame propagation [10], finance [16], free
boundary obstacle problems [11], Signorini problems [53], Hamilton-Jacobi equation with
critical fractional diffusion [54], or phase transitions in the Gamma convergence framework
[1].

We start focusing our attention on the fractional Schrodinger equation (briefly fractional
NLS) of the form

1 % — s p—1 . n

i =EAY V@Y = [Y7 Y inRY x (0, +00), 3)
where V : R"” — R is a suitable potential. Here ¥ = (x, t) represents the quantum
mechanical probability amplitude for a given unit-mass particle to have position x at time ¢
(the corresponding probability density is |1/|2, under a confinement due to the potential V.
Equation (3) comes from an expansion of the Feynman path integral from Brownian-like to
Lévy-like quantum mechanical paths and was considered for the first time in literature by
Laskin [34,35].

When s = 1, Eq. (3) gives back the classical Schrodinger equation. In this case, standing
wave solutions are of the form

Yx, 1) =e ux),
where w is a suitable constant and u solves the nonlinear elliptic equation
—Au~+V@u —ulPu=0. 4)

We do not intend to review the huge bibliography of equations like (4), we just emphasize
that the potential V : R” — R has a crucial role concerning the existence and behaviour
of solutions. For instance, when V' is a positive constant, or V is radially symmetric, it is
natural to look for radially symmetric solutions, see [55,58]. On the other hand, after the
seminal paper of Rabinowitz [43] where the potential V is assumed to be coercive, several
different assumptions are adopted in order to obtain existence and multiplicity results (see
[4-6,25,27]).

Contrary to the classical Laplacian case that is widely investigated, the situation seems
to be in a developing state when s € (0, 1) and of an increasing interest (see, for instance,
[19,21,24,26]).

In this spirit, in [48], the author looked for standing wave solutions of a more general
equation than (3). More precisely, in the cited paper it is studied the following nonlocal
fractional equation

(—AN)’u+V@xu= f(x,u), xeR" )

under certain hypotheses on the potential V and the nonlinearity f (see also [49,50]). More-
over, fractional Schrodinger-type problems have been considered in some interesting papers
[2,17,18]. In addition, nonlocal fractional equations appear in many fields and a lot of interest
has been devoted to this kind of problems and to their concrete applications; see, for instance
the seminal papers [12—-14] and [3,9,15,22,40,57], as well as the references therein. See also
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[42] where the open problem given in [3] was solved. We also mention here, for completeness,
some very interesting regularity results for fractional problems proved recently in [29,30].

Motivated by this large interest in the current literature, under suitable conditions on the
potential V and exploiting variational methods, we are concerned in the present paper with
the study of multiple solutions for the following fractional parametric problem

(=A)'u+V@u =r(f &, u) +pgx,uw), xeR" (n>3) (©)

where we suppose that V : R” — Rand f, g : R” x R — R are given functions verifying
suitable growth conditions, while A and p are real parameters.

1.1 Technical assumptions on V

We assume that the potential V satisfies the following hypotheses:
(p1) V € C(R") with inﬂ{ Vix)>0;
xeR"
(p2) for any M > O there exists ro > 0 such that:

lim |{x € B(y,rg) : V(x) < M}| =0,
[y|—>+o0

where B(y, r) denotes the open ball in R" with center y and radius r > 0, and where
| - | denotes the standard Lebesgue measure in R".

Note that conditions (p1) and (p2) are not new in the literature, see for instance, the paper
[18].
We also require that f, g : R” x R — R are two continuous functions for which:

(hy) there exist W € L' (R") N L (R"), W # 0, and q € (0, 1) such that
max{|f(x, )], |gCx, )]} < W(x)[e],
foreach (x,7) €e R" x R;
fx,0) g(x,1)
13

(hy) lil% = lin}) — = 0 uniformly for each x € R";
1— 1—

(h3) there exist sg € R such that

50
sup(min/ f(x,f)dr) > 0.
o>0 \IxI<o Jo

The above conditions are standard assumptions to be satisfied in presence of subcritical
terms. Consider the function space

ENV) = [u € B (R /R £ 15u®)1? d +/Rn VOl Pdx < oo] Lo

We endow this space with the norm

12
lull gy vy = (/R £ 13u (@) d& +/W V(x)|u<x>|2dx) ,

where H*(R") denotes the fractional Sobolev space of the functions u € L2(R") such that

u(x) —u(y)
n+2s

[x —y| 2

the map (x, y) —> isin L2(R*", dxdy).
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On H*(R"™) we consider the norm

_ 2 1/2
il sy = (/R ()| dx +/RZ" dedy) . ®

|X _ y|n+23

The nonlocal analysis that we perform here in order to use our abstract approach is quite
general and successfully exploited for other goals in recent contributions; see [18,19,23,56]
for an introduction to this topic and for a list of related references.

By a weak solution of problem (6) we mean a function u € EY (V') such that

L Psu@sueds + [ veuwomds

C))
=/\/ S, u(x))v(x) deth/ glx, u(x))v(x)dx,
R? R?

YveEN (V).

Let
t t
F(x,t) ::/ f(x,7)dt and G(x,t) ::/ g(x, v)dr,
0 0

for every (x, 1) € R" x R.
By direct computation we observe that problem (9) represents the Euler—Lagrange equa-
tion of the C'-functional Tnop t EF(V) — R defined as

1
) = 5 ( /R e @R ds + /R ,, V<x)|u(x>|2dx)
—A/ F(x,u(x))dx —A//,/ G(x,u(x))dx, (10)
R» R»

forevery u € E} (V).

1.2 The main results

The first result establishes that if the parameters lie in a certain range, then the problem has
at least two solutions.

Theorem 1 Let f, g : R" x R — R be two continuous functions and V : R" — R be a
potential which satisfy (h1)—(h3), and (p1)—(p2), respectively. Then there exists jto > 0 such
that to every . € [—o, (ol it corresponds a nonempty open interval X, C (0, +00) and
a number k,, > 0 for which problem (6) has at least two distinct, nontrivial weak solutions
U and wy,, with the property that

max{l|vallervys lwapllervy} < K

whenever A € X,,.

The above theorem will be proved by using variational techniques, in particular performing
a direct consequence of some general results given in [45,46], which assure the existence of
multiple critical points for a functional, under suitable regularity assumptions (see Theorem
5 below).

@ Springer



Ground state solutions of scalar field fractional... 2989

Furthermore, by using the notations adopted along the paper, we give additional informa-
tion for the values of

/ F(x,up(x))dx
Ro = : ,
/ G(x,ug(x))dx|+1
R}’l

where ug € EY (V) is from Lemma 2, and the localization of the interval X, . More precisely,

we show that
2|0l
g,co B0 (1+ ) ,
for suitable u € R; see Remark 2 in Sect. 3 for a detailed proof.
From the point of view of the eigenvalues, the counterpart of Theorem 1 is the following.

/ G(x,up(x))dx

’ / F(x,up(x))dx

Theorem 2 Ler f, g : R" x R — R be two continuous functions and V : R" — R be a
potential which satisfy (h1)—(hz), and (p1)—(p2), respectively. Then there exists Ao > 0 such
that to every A € (1g, +00) it corresponds a nonempty open interval A; C R and a number
ky > 0 for which (6) has at least two distinct, nontrivial weak solutions vy, and w;,, with

jk,u(v)\,u) <0< j)\,u(w)uu)
and
max{[|vyller vy, lwapllervy} < ka
whenever i € Aj.

Theorem 2 is based on the classical mountain pass theorem. In such a case

llueol|%
Ao = EfV) s
2/ F(x,up(x))dx
and, for every A > X, setting
1 A
Wy = (1 - 70)/ F(x, ug(x)) dx, (1)
1+ [ 166 w0 dx =

we also have that
Aj = (=, 13).

Although the two theorems above are completely independent, as a simple byproduct of
Theorem 2 we obtain the following result whose conclusion partially goes back to Theorem 1.

Theorem 3 Let f, g : R" x R — R be two continuous functions and V : R* — R be a
potential which satisfy (h1)—(h3), and (p1)—(p2), respectively. Then there exists [t > 0 such
that for every u € [—, 1] the set

Y :={A > 0: problem (6) has at least two distinct, nontrivial weak solutions}

contains an interval.
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We note that the above theorems do not work in general for every A € R. For instance,
consider

fx 0 (sin1)> Vix, 1) e R" xR

X, =, X, X
0+ )P

and

e 1) = (arctan £)2
BN O PO
with @, 8 > 0 such that ¢ > n > 3. In such a case, an easy computation shows that the
following problem

V(x,t) e R" x R

A _ # : 2 2 n
(=AYu+Vx)u = T+ )P ((sinu)” 4+ p(arctanu)“), x € R (12)

possesses only the trivial solution, whenever

(I +plm)S;
and p is arbitrary. Here Sy denotes the best Sobolev embedding constant of the injection
E"(V) <= L*(R").
More generally, the following non-existence result holds.

Proposition 1 Let f, g : R" x R — R be two continuous functions and V : R" — R be a
potential which satisfy (hy), and (p1)—(p2), respectively. Assume that

Fx, 1) = W)h(@),
and

g(x,s) = Wx)k(),

for every (x,1) € R" x R, where h and k are Lipschitz continuous functions with Lipschitz
constants Ly, > 0 and Ly > 0, respectively and W € L! (R™) N L*®(R") satisfying (hy).
Then, for every parameter i € R and every

1
0<A< o
W1l Loe@ny(Lp + || L) S5
the following problem
(=AY u+ VeOu = aWx)(h(u) + pk)), x eR" (13)

admits only the trivial solution.

The last part of the paper is dedicated to the existence of multiple weak solutions to the
following nonlocal Schrédinger equation

(=A)’u+Vxu=rWkx)f(u)+ ngx,u), xeR" (14)

where

(H) V :R" — Risa function satisfying (p1) and (p2);
W e LY(R") N L (R™), and

sup ( inf W(x)) >0;
o>0 \IxI<o

A and p are real parameters.
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Assuming that the nonlinear term f is superlinear at zero and sublinear at infinity, the
main result ensures that for A > 0 large enough, problem (14) admits at least two non-trivial
weak solutions, as well as the stability of this problem with respect to an arbitrary subcritical
perturbation g of the Schrédinger equation (see Sect. 4).

The paper is organized as follows. In Sect. 2 we give some notations and we recall some
properties of the functional space we work in. We also give some tools which will be useful
along the paper. In Sect. 3 we study problem (6) and we prove our existence and non-existence
results. Finally, in the last section we study the existence of multiple weak solutions to the
problem (14).

2 Some preliminaries

The Hilbert space H*(R") defined in the Introduction can be described by means of the
Fourier transform as follows:

H%W):|ueﬁ@w:/(1+m%WW@Wd5<+wL
]Rn
In this case, the inner product and the norm are given by

(u, v) s @y := /Rn (1+ &) Fu@)Fv(&) dE,

for every u, v € H*(R"), respectively

172
llullgs = (/Rn(l + 1P [Fu®))? dé) . (15)

In order to give the relationship between the two norms (8) and (15), we recall the definition
of the fractional Laplacian operator (— A)® acting on the rapidly decreasing C°° (R") functions
(i.e., the space of Schwartz functions S).

Precisely, let s € (0, 1) and define the operator (—A)* : S — L2(R™) given by

u(x) —u(y)

(~A’u(@) i= C(n,5) lim PR

e—0t R™\B(x,¢) |

)

where B(x, ¢) is the open ball centered at x € R” and radius ¢ and C(n, s) is the following
(positive) normalization constant

] 1 —cos(¢1) -
C(l’l,s) = (Anwdg) .

The operator (—A)* is a pseudo-differential operator with symbol |n|>, with s € (0, 1),
where 1 denotes the variable in the frequency space.
This nonlocal operator can also be defined by the formula

] u(x) —u(y)
(_A)YM(X) = C(n,S)PV/Rn m
= C(n,s) lim ) —uly)
e—0+ JrRn\B(x,e) |X — y|"TS

The proof of this formula, as well as the computation of the constant C(n, s), can be found
in the book of Landkof [33].
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In [23] it is proved that

(—A)'u = FLHEP (Fu)©)), 16)
Y (SO Rt 1)y __2 / 2 >
[ sy = /]R ey dxdy = goes | lEPiFu@ P A7)
and
[ Fgs ey = 2C (1, )~ (=) 2ul o g (18)

for every u € H*(R").
By (16)—(18) and using the classical Plancherel’s formula, the following norms

1/2
2 u(x) —u)I?
Llf-)(/Rn |M(X)| dx-i—/Rznmdxdy

12
u s (/Rn” + |s|2>“|5u(s>|2ds)

1/2
u > (/ |u(x)[? dx +/Rn |s|23‘|3u<5)|2ds)

1/2
u > (/R lu(x))* dx + ||(—A>S/2u||iz(w)) :

are equivalent. As a direct consequence of the above remarks, we obtain that the space E7 (V)
can be defined in other (equivalent) ways.

In order to prove the compactness embedding property given in Proposition 2, the follow-
ing preparatory results are necessary.

Theorem 4 Let s € (0, 1) such that n > 2s. Then, there exists a positive constant K =
K (n,s) such that

2 2
||M ” LQ* (R™) < K[M]Hs (R7)>
for any u € H*(R"), where the constant

2n
n—2s

2¥ =
is the so-called fractional critical exponent. Consequently, the space H® (R") is continuously
embedded in LP (R") for any p € [2, 2¥].
Moreover, the embedding H*(R") — L (R") is compact for every p € [2, 2%).

loc

See [23] for a detailed proof.
By using Theorem 4, the following fractional Gagliardo-Nirenberg inequality should be
proved.

Lemmal Lets € (0,1), p € [1,00) and n > 2s. Then for every u € H*(R™) we have

lll Ly < C (s, @) [ Ggs gy N4l 7 oy (19)
with
-2
el 21—l
P 2 r

wherer > 1, a € [0, 1] and C(n, s, &) is a positive constant.
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Proof The conclusion is trivial if p = 1. Indeed, in such a case, it suffices to take » = 1 and
o = 0. Hence, let us suppose that p > 1. Since

1 o l—«a

p 2 r’
by the Holder inequality and Theorem 4 it follows that
liallzo gy < 1l s o 1l Gieny < 1, @)Dl oy 1 7oy (20)
where we set
Cn,s,a) = K(n,s)*%
This concludes the proof. O

As a byproduct of Theorem 4 and Proposition 1 we obtain the following result that is
crucial in the sequel.

Proposition 2 Let V : R" — R be a potential that satisfies hypotheses (p1) and (p2). Then
the embedding

E'(V) — LP(R")
is compact for every p € [2,27).
Proof By [18], we know that the Hilbert space E7 (V) is compactly embedded into L2(R™M).
Therefore, we only consider the case p € (2, 2¥). In order to do this, we use the fractional
Gagliardo-Nirenberg inequality proved in Lemma 1. Hence, let {u;}jen C EJ(V) be a
sequence such that u; — ug in E(V), i.e. {u;};en weakly converges to ug in E7 (V). Then

{uj}jen is bounded in EY (V) and, by Lemma 1, for r = 2 and

_(p=2n
o= —

€ (0,1),
25p 0, 1)

there exists a constant C; (n, s, ) > 0 such that
lluj = uollr@ny < Cr(n, s, )lluj — uollgncy)llu; — uolllLZ(“Rn), 21
for every p € (2,2}). Thus, since {u} jen is bounded in E} (V), by (21) we find
luj —uollLr@ey < Ci(n, s, a)(M + ||M0||01§;(V))||Mj - M0||1L§EXR,1) -0,
i.e.uj — ugin LP(R"). This completes the proof.
Remark 1 By Proposition 2, for any p € [2, 25], there exists a positive constant S, such that
lullLr ey < Spllullgncvy, (22)

forany u € E7 (V).
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2.1 Some useful tools

The main tool used along this paper in order to prove our multiplicity result stated in Theo-
rem 1 is given by a direct consequence of some general theorems due to Ricceri [45,46] that
we recall in what follows.

Theorem 5 Let (E, | - ||) be a separable and reflexive real Banach space and let @, W :

E — R be two continuously Gateaux differentiable functionals. Assume that there exists

z0 € E such that @ (zg9) = ¥ (z9) = 0 and inle @(z) > 0 and that there exist 71 € E, 0 > 0
zZ€

such that
1) o < P(z1);

.. ¥(z1)
(ii) q)?zu);lgllf(z) < Q¢5(Z1)'

Set

. to
¥(z1) ’

— '
0% ok Y@

with ¢ > 1 and assume that the functional
(@) = P(x) — AW (2), VzeE
is sequentially weakly lower semicontinuous, satisfies the (PS) condition, and
i) | Jim (@) = +oo
forevery A € [0, al.

Then there is an open interval A C [0, a] and a number k > 0 such that for each ) € A,
the equation J){ (z) = 0 admits at least three solutions in E having norm less than k.

Some details and related topics on the above result can be found in the recent mono-
graphs [20,28].

For the sake of completeness, we also recall that the C !_functional J; 5 o E — R satisfies
the Palais-Smale condition at level ¢ € R when

(PS). Every sequence {zj}jen C E such that
L(zj) =, and || z)lEe — 0,
as j — 00, possesses a convergent subsequence in E.

Here E’ denotes the topological dual of E. Finally, we say that J;, satisfies the Palais-Smale
condition (in short (PS)) if (PS), holds for every ¢ € R.
At this point, let us fix o > 0 and 5 € R. For every & > 0, define u; € E?(V) as follows

0 if x € R*\B(0, 0)
ul(x) := g(cr — |x]) if x € B(0,0)\B(0,0 —¢) (23)
n if x € B(0,0 —¢),

where B(0, r) denotes the n-dimensional open ball centered at the origin and with radius
r > 0. Note that u, € E? (V) by [23, Proposition 2.2 and Lemma 5.1]. Further

ludlloo := max |u] (x)| < |nl.
xeR"?
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This function will be useful in the sequel in the proof of our theorem as well as the next
auxiliary results.

Lemma 2 There exists ug € E} (V) such that
/ F(x,ug(x))dx > 0. (24)
Rl’l
Proof By (h3) there are o9 > 0 and sg € R such that

S0

min / f(x,t)dt > 0.

IxI<o0 Jo

Fix ¢ € (0, 09/2) and denote wy := |n|1<in F(x,s9) > 0. Further, let ul’ € E?(V) be the
x| <o

function obtained by (23) replacing o with oy, as well as  with so. We have

/ F(x,u®(x))dx = / F(x,u(x))dx + / F(x,u(x))dx
R? [x|<op—¢

[x|=00
+/ F(x,u(x))dx.
op—e<|x|<op
Hence

/ F(x, u(x))dx > wo|Bsy)2| —/ |F(x, u?(x))|dx,
RH

op—e<|x|<op

and finally

/ F(x, u (x)) dx > wo| Boy 2| — [F(x, )|(I1Boy| — [Boy—e ),
R’l

max
lx|€lo0/2,001,1tI<Is0l
where | B, | denotes the Lebesgue measure of the ball B(0, r). Since

max [F(x, )|(|Boy| — |Boy—el) = 0,
\x|€lo0/2.00) 11150l % o0

as ¢ — 0T, there exists g9 > 0 such that

wol| B, > max F(x,t)|(|Boy| — | Bog—epl)-
0| Boy 2| lxle[ao/z,ao],lt\@xol' (s D(1Boy| — [Boy—eo )
Thus the function ug := uz € E"(V) verifies inequality (24). O
Setting
V2125 5o
2B = (B(0.00)) 25)

mn )
ueHg (BO.00\MO} 1411725 501

the following result holds.
Lemma 3 Let ug € EY (V) be the function defined in Lemma 2. Then

2 n n
n oy (09 — (00 — €0)
ol vy < 72 % (o ~ (o0 —e0)") o (26)

£ r(1+g)

1 1
So={14+— Jmax{{ 1+ — ,||V||oo]-
( kf) [( Af)

where
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2996 G. M. Bisci, V. D. Ridulescu

Proof Computing the standard seminorm of the function ug in H'(R"), we easily have

2
(o
A dx
R? &y J B(0,00)\B(0,00—¢0)
2
(o
= =2 (IBoy| = |Boy—eo|)
€y

v g (0§ — (90 — £0)")

£ r(1+g)

27

Hence, since s € (0, 1), bearing in mind that
0117 2y = 1880017 2

as well as

VU0l 72 gy = IEIFHONF2 g0y
we deduce that

ol vy = / |61 |§uo (&) d& + / V(%) |uo(x)|*dx
b R’l Rll
< / (1 + D) IFuo@)* dE +/ V (0 |ug(x)|*dx
R? R®

= Vol 3o gy + ol gy + / V() uo(x)[*dx. (28)
RYI

Thus since ug € HO1 (B(0, 09)), inequality (28) yields

1 1
||u0||%g(v) < max [(1 + )\B)’ ||V||oo] (1 + )\B) [uO]iII(Rn)' (29)
1 1

Substituting (27) in (29), the conclusion is achieved.

Finally, a standard computation ensures that our assumptions give a natural control on the
growth of the nonlinearities f and g, as well as of their potentials F and G, according to the
following proposition.

Lemmad4 Let p € (2,2)). For each ¢ > 0 one has

max{| f (x, )|, |g(x, D]} < elt| + c(@)|t|P~" forevery (x,1) € R" X R,
and

max{|F (x, )], |G(x, D)|} < et2 + c(&)|t|P forevery (x,1) € R" x R,
for some c(g) > 0.

2.2 The Palais-Smale condition

Our purpose in what follows is to show that the energy functional 7} ,, satisfies the Palais-
Smale condition.
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Lemma 5 Let A, u € R be arbitrary fixed. Then every bounded sequence {uj}jen C E} (V)
such that

15 @)l nvyy == sup {|(‘7{,M(Mj),<ﬂ)| s lellenyy = 1] -0, (30)
YeE!(V)

as j — 400, contains a strongly convergent subsequence.

Proof Let {uj}jen C E{(V) be a bounded sequence such that condition (30) holds. By
Proposition 2, due to the compact embedding E7 (V) — LP(R") for every p € (2,2),
we may assume, taking a subsequence if necessary, that {u;};en converges to u weakly in
E?(V) and strongly in L?(R"), for every p € (2,2¥). Therefore, fixing p € (2,2¥) and
bearing in mind the regularity assumptions on the function W, we have

ltj =l vy = Gt —u)gn vy + T3 )y — )

—A /R" SO uj(x)w —uj)(x)dx

i [ gty )= )00 d

< (u,u —up)grvy + 15 @pllen vy lluj — ulleney)

+|?»|(1+|M|)||W||L » (Rn)llujlqup(Rn)llu—Mjlle(Rn),

p—q—1

where ¢ is given in our hypothesis (h;). We deduce that |[u; — ul gr(v) — 0 as j — +o0.
The proof is complete. O

As a direct consequence of the above result, the following compactness property is valid.

Lemma 6 For every A, u € R, the functional J) ;, is coercive and bounded from below on
EY (V). Moreover, Jy., satisfies the (PS) condition.

Proof Since E} (V) — L2(RY), exploiting condition (h;) we obtain

1 1 1
T @) = Sy = A+ RDIWI 2 n)sg” el vy 31)

7 (R

foreveryu € E (V). Since g € (0, 1), the functional 7, is bounded from below in E7 (V).
Now, let us prove that the (PS) condition is verified. For this purpose, let {u;} jen C E{ (V)
be a sequence such that

{Jn,u(mj)}jen is bounded in E{(V) (32)
and for which condition (30) holds. Since the functional 75 ,, is coercive, we deduce by (32)
that the sequence {u} jeny C E7 (V) is bounded. In conclusion, on account of Lemma 5, the
functional 7 , satisfies the compactness (PS) condition. O

3 Proof of the main results

In order to prove Theorem 1 we start with some auxiliary results. For every u € R, let
L, : E}(V) — R be the functional defined as follows

ur—>/ F(x,u(x))dx—i—,u/ G(x,u(x))dx.
RVI Rll

With the above notation we exhibit the following asymptotic property.
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Lemma 7 For every u € R, setting

sup {L,(w) : lullgnvy < v/20}
Q 9

x(0) =
we have
o0—0t1

Proof Let us fix arbitrarily ¢ > 0 and p € (2,2}). Now, due to the growth conditions in
Lemma 4, since E7 (V) < LP(R"), we easily have

Ly < (1 + 1) (283Nl ) + @Sl )

for every u € E} (V).
Moreover,

0< x(@) < (I+[uD@eS? +c(e)28 55051,

for every o > 0. Thus, when the parameter ¢ — 0, since ¢ is arbitrary, the right-hand side
of the above inequality tends to zero. The proof is complete. O

Lemma 8 The functional 7)., is sequentially weakly lower semicontinuous in E{(V), for
every A, u € R.

Proof The functional
ur— / §17°18u@) ds + / V (0u(x)*dx
]RH ]RH

is sequentially weakly lower semicontinuous on E? (V). Thus it is enough to prove that the
map L, is sequentially weakly continuous on EY (V), for every n € R. On the contrary, let
us suppose that {u} jen is a sequence in E7 (V) which converges weakly to us, € E7 (V)
and such that the sequence {L(u j)}jEN does not converge to L(u) as j — +o00. Therefore
there exist a positive constant &y and a subsequence of {u} e, denoted again by {u;}en,
such that

0 < e0 < |Lu(u)) — Ly (o) (33)

forevery j € N,andu; — u strongly in L” (R") for every p € (2, 27). Since the functionals
Yi(u) == /]R" F(x,u(x))dx, and Y»(u) := /R" G(x,u(x))dx,
are smooth with derivatives given by
i (u)(v) = /Rn S, u()vx)dx, and ¥y(u)(v) = /Rn g(x, u(x))v(x)dx,

for every v € E?(V), the Mean Value Theorem, hypothesis (h;) and inequality (33) yield

0<eg< |L;(u +0iuj—u)uj—ul

< I+ IMI)/R" W) u(x) + 6 (uj — ) ()| |(uj — u)(x)| dx

n ;] n q i n
<A+ IRDIWI oy o lallony + ey = wllogn) g =l en
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for some 0; € (0, 1).
As j — +oo the right-hand side of the above inequality tends to zero, which is a contradic-
tion. O

Proof of Theorem 1 Let ug € EY (V) be the function defined in Lemma 2 and fix

/ F(x,uop(x))dx
Rn

o = .
+1

/ G(x,up(x))dx
R}’l

We apply Theorem 5 by choosing E := E!(V), ®(u) := %H . ||%S(V), and ¥ := L, for
every fixed u € [—puo, (ol It is clear that

Ty =@ — AL,

By direct computations one has
L (uo) =/ F(x,up(x))dx + M/ G(x,up(x))dx > uo > 0, (34)
R" R"

for every u € [—po, ol. Using (34) and Lemma 7, for every u € [—po, (ol one has

2
HMOHE:?(V) ]

O < min[l, > ; (35)

sup{L,(u) : ullgrvy < /20u} - L (up)

, (36)
Ou ”MOHZE?(V)
for some g;, > 0. Now, let us choose z| := ug, z0 :== 0, ¢ := 1 + g, and

I +ou
2L o) luoll oy = X (@)

a=a, =

where

sup {L,.(u) : lullerevy < 204}
Ou ’

x(op) ==

By Lemmas 6 and 8, all the assumptions of Theorem 5 are verified. Then there exists an open
interval of parameters X, C [0, a,,] and a positive constant «,, such that, forany A € X, the
functional 7, admits at least three distinct critical points u’)\ u € E? (V) (withi € {1, 2, 3}),
such that ||u|| gz (vy < k. This concludes the proof of Theorem 1. m]

Remark 2 Thanks to (35), (36) and (34), it follows that

- 2“u0”2E§?(V) 2””0”25;1(\/)
a, <
" L,(uo) o

2lluoll%,
- E ) (1+
/ F(x,up(x))dx
Rn

/ G(x,up(x))dx

).
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for every parameter i € [—uo, io]. Since the right-hand side does not depend on o € R,
we have a uniform estimation of A, that is,

2””0”%5'1 v
¥, Cl0.a,lc |0, ) (1+

/ F(x,up(x))dx
R}’l

/ G(x,up(x))dx

for every i € [—p0, pol-
Proof of Theorem 2 Define

2
”uO”ES”(V)

2/ F(x,up(x))dx

’

o ::/ |G(x,up(x))|ldx and Xrp:=
R?

where ug € E} (V) comes from Lemma 2. Further, for every A > A¢, we set

N 1 Ao
W= e (1 — 7) /R" F(x,uo(x))dx. 37

[m}

Remark 3 Note that an explicit estimate of the number 1y appearing in the main results can
be obtained by using relation (26). More precisely, a direct computation gives

1 Soogn? (af — (00 — £0)")

2 "\ wy|B — max F(x,)|(|Bsy| — |Bog—el)
2630 (14 5) ol Bawal = max | IF G0 DI Bl = [Ban—)

Ao <

Lemma 9 Assume that A > Lo and p € (—us, u3). Then

inf 7, ,(u) <O0.
ueE (V)

Proof We prove that 7, , (ug) < O whenever A > Ao and |11| < uj. Indeed, due to the
choice of Ao and 1}, we have

jk,p.(“O)

1
S0l — /R Fx, uo(x)) dx — At /]R Gx. uo()) dx

N

(2o —2) /Rn F(x, uo(x)) dx + Alplco

=21+ co)ps + Alpleo < 0.

Hence

inf jk,//,(“) < jk,/L(MO) <0.
ueEn(V)

The proof is complete. O

Lemma 10 For every A > Ao and € (—uj, uy), the functional Jy ,, has the mountain
pass geometry.
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Proof Let us fix p € (2,2}). By Lemma 4 we deduce that for every ¢ > 0 there exists a
positive constant c(e) such that

)

maxH/ F(x,u(x))dx /G(x,u(x))dx
Rn Rl‘l

2 2
< eS3ulidy vy + @ SHlul -

for every u € EY (V). Thus, it follows that

— Alu ’/ G(x,u(x))dx
Rll

1
Thou(u) = EllulleSn(v) —X ‘/ F(x,u(x))dx
Rn

1
> (5 — a1+ |u|)eS%) el vy = AL+ IDe@)Sp lull o

for every u € E} (V). Now, set

1
&= YN
AN A+ |u]) Sy

Then, by the above inequality, one has
1
Fouw) > (3 =41+ luheh ) Sfe"2)e? > 0

provided that

1
Il 2y = @ < min { 42(1 + |uheGe WSDHZ7 Nuollezny |+ (p > 2)

where, for simplicity, we set

1
c(A, ) = c(4)\(1 n |MDS%).

By construction ¢ < |luol|gr(v) and, as observed in the proof of Lemma 9, we also have
i, (ug) < 0. 1In conclusion, the functional 7;, ,, (1) verifies the mountain pass geometry.
m}

Proof of Theorem 2 Let us fix A > Ag and p € (—u}, ui) = Aj,. Due to the regularity
property of the functional 7;, ,,, Lemma 6 ensures that there exists an element vy, € E} (V)
such that

= inf .
jk,u(vku) uegs}'(\/) jl,u(u)

Clearly, the function vy, is nontrivial. Indeed, by using Lemma 9, we have 7, , (v;,,) < 0.
Moreover, arguing as in [44, Theorem 2.2], by Lemma 10 there exists an element w;,, €
E"(V) such that J,\/,M(wku) =0and

1 -
Fruwi) > (3 =20+ uheGh 05" 2)e? > 0.

i.e. wyy is also nontrivial. Now, we recall that the mountain pass level 7)., (wy,) has the
following characterization

TnopnWiy) = ;2? tQ}S‘.’i] T (g(@®)), (38)
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where, as usual, we set
I':={geC(0,1]; E{(V)): g(0) =0, g(1) = uo}.

Let go € I', defined by go(¢) := tuo, forevery ¢ € [0, 1]. By using the characterization given
in (38), we obtain

w < max tugp).
jk,u( )\;4) tE[O,l]J)\’u( 0)
Thus
1 2
jk,u(wku) < §||u0||E§(V) +AM,
for every u € A, where

*

M := max [ +

te[0,1]

/ F(x,tug(x))dx

/ G(x, tup(x)) dx
Rn

Moreover, inequality (31) yields
2 q+1 q+1
”w)»u”E;z(v) <221+ Ni)”W”Lé(R")SZ ||w)~,u||E;z(V)
Hlluolzn vy +24M,

forevery u € Ay.
Bearing in mind that ¢ + 1 < 2, there exists a positive constant K)l such that

1
lwillenvy < K,

forevery u € Ay.
Further, owing to J,, ,,(v;,) < O for every o € A;, arguing as above, there exists K}% >0
such that

2
lvapllEn vy < K5,
for every u € Ay. Thus, the proof is complete setting «), := max{/ckl, IC)%}. O

Remark 4 By using definition (37) clearly

/R F(x,up(x))dx
ny <

)

14 ¢o

for every A > X¢. On the other hand, since the right-hand side does not depend on the
parameter A € R, we have a uniform estimation of A}, that is

/F(x,uo(x))dx / F(x,up(x))dx

AvC |- , B :
~ 1+ co 1+co

for every A > Xg.
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Proof of Theorem 3 and Proposition 1.

Proof of Theorem 3 Fix A > A, ¥ € (0, A — Ao) and define the positive number

F(x,up(x))dx —
M-:/R" (x, up(x)) (1_ 2o )A—ko—y
' L+c¢o r+y) A—r+y
Let us consider u € (—, 1z). Thus, since & < u}, for every A € (A — y, A + ¥), one has
that u € (—uj, uy) = Ay, for every

re—y, A+ y).

Now, Theorem 2 ensures that, for each A € (A — v, A+ y), problem (6) has at least two
distinct, nontrivial, weak solutions. Consequently, it follows that

A=y, A+y)CX.

The proof is complete. O

Remark 5 The abstract approach adopted here is employed for nonlocal fractional
Schrodinger equations patterned after Problem (1.1) in [31]. Let us note that in our set-
ting the situation is much more delicate with respect to the one treated in the cited paper.
Indeed, the fractional framework produces several technical difficulties that we overcome by
using an appropriate variational formulation, as well as the embedding properties proved in
Lemma 1 and Proposition 2 (see also Lemma 3). Further, concerning the potential term V,
assumptions (pp) and (p2) are previously used, in the fractional case, in the recent paper [56].
Hence, our multiplicity results represent a nontrivial fractional counterpart of [31, Theorems
2.1-2.3]. We refer to the monograph [39] for more details.

Proof of Theorem 3 Arguing by contradiction, let us assume that there exists a weak solution
i € EY(V)\{0} of the problem (6), that is,

/R” |67 3 (§)Fv(&) dE +/Rn V(x)ux)v(x)dx

(39)
=?»/ W(X)h(ﬁ(X))v(X)dX+)»M/ W)k (u(x))v(x) dx,
Rn R}’l

Ve ENV).

In particular, testing (39) with v := i, we have

||1Z||ZESn(V) =A/}Rn W(x)h(ﬁ(x))ﬁ(x)dwrm/gW(x)k(zz(x))zz(x)dx. (40)

Hence, by (40), since / and k are Lipschitz continuous functions with £(0) = k(0) = 0, it
follows that

IIﬁII%;g(w < kIIWIILOO(R")(/Rn h(u(x))u(x) dx +//«/Rn ke (u(x )i (x) dX)

< )L||W||L°°(1R”)(/Rn |h () (x)dx + Iul/Rn Ik(ﬁ(X))llﬁ(X)ldX)

< MWl zoon (L + [ILO N2 gy -
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By the above computations, since E}' (V) — L2(RM), bearing in mind that
1

0<A< 5
Wl Loo@my(Ln + || L) Sy
we obtain
1@ Zn vy < MWz (Li + IILOSS il Gy < Nl vy,
which is a contradiction. In conclusion problem (6) admits only the trivial solution. O

4 A stability property for fractional NLS

In this section we prove a multiplicity result to the problem (14). We assume that the nonlinear
term f : R — R is a continuous function such that

| f@®)] < |t|? forsomeq € (0,1) and everyt € R, 41)
and
t
lim & =0. (42)
t—0 1

Further, we require that the perturbation term g belongs to the class C of the continuous
functions g : R” x R — R such that

there exist Z € LY (R") N L2 (R"), Z # 0,and r € (0, 1) such that
lg(x, ) < Z(x)[e]",
for each (x,r) € R" x R.

As pointed out in the Introduction, the main result in this section (Theorem 7) ensures
that for A > 0 large enough, problem (14) admits at least two non-trivial weak solutions, as
well as the stability of this problem with respect to an arbitrary subcritical perturbation of
the Schrodinger equation.

The key tool will be the following abstract critical point theorem for differentiable func-
tionals (cf. [47, Theorem 2] for a detailed proof).

Theorem 6 Let E be a separable and reflexive real Banach space, @ : E — R be a coercive,
sequentially weakly lower semicontinuous C' functional, belonging to Wg, bounded on each
bounded subset of E and whose derivative admits a continuous inverseon E'. Let J : E — R
be a C' functional with compact derivative and assume that ® has a strict local minimum
z0 with @ (zo) = J(zo) = 0. Finally, assume that

max 1 lim sup &,lim sup & <0 (43)
llz||—+o0 DP(2) >z P(2)

and

sup min{®(z), J(z)} > 0.

zeE

Set

. [45(2) . ]
0:=inf { ——:z€ E, min{®(z), J(z)} >0} . (44)
J(2)

Then for each compact interval [a, b] C (6, 400) there exists a number ¢ > 0 with the
following property:
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for every A € [a, b] and every C! functional ¥ : E — R with compact derivative, there
exists fi > O such that for all v € [0, ], the equation

D' (2)— A () —p¥'(z) =0 (45)
has at least three solutions whose norms are less than o.
Here WE denotes the class of all functionals / : E — R with the following property: if
u; —uin E and
liminf 7' (u;) < I(u),
Jj—>00

then uj — u up to a subsequence.
The main result of this section reads as follows.

Theorem 7 Let f : R — R be a continuous function satisfying (41) and (42). Assume that
condition (H) hold.
Set

% )

1
0 :=—
/W(x)F(u(x))dx R

Wx)F(u(x)dx >0¢, (46)
2 ueE”(V)

Then for each compact interval [a, b] C (6, +00), there exists a number 0 > 0 with the
following property: for every A € [a, b] and every g € C there exists fi > 0 such that, for
each p € [0, fi], problem (14) has at least three weak solutions whose norms in E? (V) are
less than o.

Sketch of the Proof of Theorem 7 We apply Theorem 5 by choosing E := E7(V) and the
functionals @ and J defined respectively by
1 2
Du) = Ellu”Ei(V)’
and

J(u) ::/ W(x)F(u(x))dx,
Rll

for every u € E7 (V).
Under our hypotheses direct computations ensure that

AC)NN A CORr (47)

m- s 2
lull g7 vy =0 ”””Eg’(V) llull g2 (v =00 ”””E;’(V)
By (47) it follows that (43) holds true.

Hence, since also all the regularity assumptions on @ and J are verified, our conclusions
are easily achieved.

Remark 6 Collecting the estimates of Lemmas 2 and 3 we obtain a concrete upper bound for
the parameter € in (46). More precisely we have 6 € (0, 6*), where

0* 1 S()O'OZN% (06’ — (09 — 50)”)
T g2 "\ wo|Boy/2| — W F(0)|(|Boy| — |Boy—el)’
2637 (14 5) @olBoo2l = mmax | W) max 1P ©1(1Bao] = 1By
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Indeed, recalling the definition of 0, in view of inequality (26) and Lemma 2 we obtain

2
ol v,

<
2/ W(x)F (ug(x))dx
Rn

Cfg (US — (09 — 80)”) S()?T%

9 < 6™,
2 i+ ) / W (x) F (o (x))dx
]Rn

Example 1 Fix r,q € (0, 1) and consider the following problem

AMul? sinu + 1] sinul|”
(14 |x|)?

Owing to Theorem 7, there exists & > 0 such that for each compactinterval [a, b] C (8, +00),
there is some o > 0 with the following property: for every A € [a, b] there exists 1 > 0
such that for all i € [0, i], problem (48) admits at least three weak solutions whose norms
in E7 (V) are less than o.

(=A)Y’u+Vxu = , x eR" (48)

Remark 7 For completeness we just mention here that, by using a variational approach similar
to the one adopted here, in [36-38] the authors proved the existence and the multiplicity of
weak solutions for nonlocal problems involving regional fractional Laplacian operators in a
suitable abstract setting previously introduced in [51,52].
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