Critical singular problems on infinite cones
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Abstract

We prove existence results for non autonomous perturbations of singular critical
elliptic boundary value problems. The non singular case was treated by Tarantello [11]
for bounded domains; here the singular weight allows for unbounded domains as cones
and give rise to a different non compactness picture (as was first remarked by Caldiroli
and Musina [5]).

Keywords : Singular weights, critical exponent, unbounded domains, Caffarelli-Kohn-
Nirenberg inequalities.

1 Introduction

Let © be an open set in RN, N > 2 and let « € (0,2). For any ¢ € C°(2), define

1/2
1¢lla = </Q |x|a|VC|2dm> .

Let H}(;|7|*) be the closure of C°(Q2) with respect to the || - ||o-norm. It turns out that
H}(;]z]®) is a Hilbert space with respect to the inner product

(U, v)o = / |z|*Vu - Vudz, Vu,v € Hy(Q;|z|*).
Q

If Q = RY we set HY(RY; |z|*) = H}(RY; |z|*). We remark that if Q; and Q5 are arbitrary
open sets in RV such that Q1 C Qo then H{(Q1;]z|®) < Hi(Q0;|z|%), with continuous
embedding. We also point out that since we allow the cases 0 € Q or Q unbounded then there
is no inclusion relationship between H}(f;|z|%) and the standard Sobolev space H(€2).
However, the Caffarelli-Kohn-Nirenberg inequality asserts that H(Q;|z|®) is continuously
embedded in L2 (Q), where 2, = 2N/(N — 2+ «). More precisely, there exists C, > 0 such

that
12z 1/2
(/ |u|2adx> <c, (/ |:B|O‘|Vu|2dz) ,
Q Q

for any u € H}(Q;|z|%).
Consider the problem
—div (|z|*Vu) = [u|%2 2y in Q,
u>0, uz0 in Q, (1)
u=0 on 0N).
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We observe that degeneracy occurs in (1) if 0 € Q or if Q is unbounded. We also point
out that if 27, in problem (1) is replaced by a subcritical exponent p € [2,2}) then the
corresponding equation is characterized by local compactness, and existence results are
carried out in an easier way.

Consider the quotient

|V u|2d
Sa(’U/; Q) = fQ ‘:L-| | U|2/;C* ’
(Jo lul?sdz)™"
and denote
Sa(Q) = inf S (u; ). (2)

u€ Hg (%]z]*)\{0}

It is obvious that if u € H} (S |z|*) satisfies
[lalVuPds = 5o@)  and [ juPido =1
Q Q

then the function U(z) = [Sa(Q)]l/(ZZ —2) u(z) is a solution of (1).

Caldiroli and Musina [5] studied the critical case and they showed that some concentra-
tion phenomena may occur in (1), due to the action of the non compact group of dilations
in RY. They proved in [5] that if « € (0,2) then, in certain cases, S,(f2) is attained in
H{(9;|z|*) by a positive function, so problem (1) has a solution. We point out (see Struwe
[10, Theorem I11.1.2]) that S, () is never attained in H}(£2) in the limiting case o = 0 and
it £RN.

Let H=1(Q;|z|%) be the dual space of H}(;|z|*) and denote by || - ||—1 the norm in
H=Y(Q; |z|%). For any f € H~(Q;|z|%), consider the perturbed problem

—div (|#|°Vu) = [u|>2u+ f inQ, (3)
u=20 on 0N.

We say that a function u € H}(€2;]x|%) is a solution of problem (3) if  is a critical point
of the energy functional

1 1 .
J(u) = §/Q|x|a|Vu|2dJ;—2—*/Q|u|2adx—/9fudx.
87

We observe that the Caffarelli-Kohn-Nirenberg inequality ensures that J is well defined on
the space H}(€;|z|*). Moreover, by the continuity of the embedding H}(Q) — L2 (1),
the functional J is Fréchet differentiable on H{(Q;|z|®).

Perturbations of critical semilinear boundary value problems on bounded domains were
initially studied by Tarantello in [11]. Our purpose is to prove a corresponding multiplicity
result for the degenerate problem (3). Notice that in our case, 2 will be unbounded . We
first need some preliminaries. Set
s2(Q) = lim S, (2N B,)

r—0

a

and

a

s2(Q) = rll)lgo Sa(Q\ By).

These limits are well defined because the mappings 7 — S, (2N B;) and r — S, (2 \ B;)
are easily seen to be respectively non increasing and non decreasing.
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CONDITION C. We say that Q C RY (N > 2) satisfies Condition C provided that € is
acone in RN, or Q =RY, or

Sa(€) < min{s3,(Q), 53°(V)} - (4)

We recall that Q C RY is a cone if  has Lipschitz boundary and if Az € € for every
A>0and z € Q. If Q is a cone then

Sa(92) = $2() = s2(Q),

so equality holds in (4) (see [5, Lemma 3.9]). We also point out (see Caldiroli-Musina [5])
the following situations in which property (4) is fulfilled:

(i) Q = Qg U Qy, where Q is a cone and €; is an open bounded set such that 0 & Q;
(i) @ =TI x RN=1 where I = R, or I = (0,+00), or I = (—00,0), or I is bounded and
0¢1.

Denote by E the positive cone of E = H~1(£);|z|%). This means that f € E, if and

only if f # 0 and
/ fudz > 0,
Q

for any u € H}(Q;|z|*) such that v > 0 a.e. in €.
Our main result is the following

Theorem 1.1. Assume that a € (0,2) and Q satisfies Condition C. Then, for each g € E,
there exists eg > 0 such that for all 0 < € < €, problem (3) with f = eg has at least two
positive solutions.

Remark 1.2. a) In the previous theorem, €y can be chosen uniformly for g in a compact
subset of E.

b) The existence of at least two solutions (not necessarily positive) when g belongs to E
instead of E is less clear. The sign condition can easily be weakened, but we think the
general case should require some additional assumption.

2 The first solution

We first recall that if ¢ is a real number, X is a Banach space and F : X — R is a C'-
functional then F' satisfies condition (PS). if any sequence (uy) in X such that F'(u,) — ¢
and ||F'(up)||x» — 0 as n — oo, is relatively compact. It is obvious that if a Palais-Smale
sequence converges strongly, then its limit is a critical point. Our first result shows that if
a (PS). sequence of J is weakly convergent then its limit is a solution of problem (3).

Lemma 2.1. Let (u,) C H}(Q;|z|%) be a (PS). sequence of J, for some ¢ € R. Assume
that (uy) converges weakly to some ug. Then ug is a solution of problem (3).

Proof. Consider an arbitrary function ¢ € C§°(2) and set w = supp({). Obviously
J' (up) — 0 in H}(Q; |z|*) implies (J'(uy,),¢) — 0 as n — oo, that is

nlgrolo </ |z|*Vuy, - V(dz — / |un|?e~2u, ¢ do — / f¢ da:) = 0. (5)
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Since up — ug in H} (4 |z|*) it follows that

lim / |z|*Vuy, - V{dz = / |z|*Vug - V( dx. (6)
w w

n—oo

The boundedness of (u,) in H{ (Q; |z|*) and the Caffarelli-Kohn-Nirenberg inequality imply
that |uy,|?>~2u, is bounded in L?/?a=1(Q; |z|*). Combining this with the convergence (up
to a subsequence)

|t | %o ~2up — |ug|? 2ug a.e. in

we deduce that |ug|?>~2ug is the weak limit of the sequence |u,|?>~2u, in the space
L2/Ca (9 |2]7). So

lim/|un|232unde:/|u0|2‘*¥QUOCdx. (7)
w w

n—oo

From (5), (6) and (7) we deduce that
/|x|aVu0-VCdx—/ |u0|22—2u0gdm—/fgda;:o.
w w w

By density, this equality holds for any ¢ € H}(Q;|z|*) which means that J'(ug) =0. O

Lemma 2.2. There exists 1 > 0 such that problem (3) has at least one solution ugy provided
that f #0 and ||f||-1 < e1. Moreover, ug is positive if f € E.

Proof. The idea is to show that there exist ¢y < 0 and R > 0 such that J has the (PS),,
property, where
co = inf{J(u);u € H}(Q;|z|*) and ||u|| < R}. (8)
Then we prove that cg is achieved by some ug € H{(Q;|z|*) and, furthermore, J'(ug) = 0.
Applying the Caffarelli-Kohn-Nirenberg inequality we have

1 1 .
JMZ—MW——/WWM—/MMZ
2 220 Q

1, 5, 1 o
Lo L e
Sl Qﬂéw dz — ||fl|-1 - [lul| >

a

1 g2 9 o 9
5= 5 ) llull? = Ol — CLIfI2,

Fixing € € (0,1) we find R > 0, e > 0 and > 0 such that J(u) > § if ||u|| = R and
IFll1 <er
Let ¢y be defined in (8). Since f # 0, ¢o < J(0) = 0. The set

B = {u € Hy(Q;|2[*);||ull < R}
becomes a complete metric space with respect to the distance
dist (u,v) = ||lu —v|| for any u,v € Bp.

On the other hand, J is lower semi-continuous and bounded from below on Bg. So, by
Ekeland’s variational principle [8, Theorem 1.1], for any positive integer n there exists uy,

such that )
co < J(up) Sco—}-g, (9)
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and 1
J(w) > J(up) — EHun —aw|| for all w € Bpg. (10)

We claim that ||luy| < R for n large enough. Indeed, if ||u,| = R for infinitely many
n, we may assume, without loss of generality, that ||u,| = R for all n > 1. It follows that
J(up) > 8 > 0. Combining this with (9) and letting n — oo, we have 0 > ¢y > § > 0 which
is a contradiction.

We now prove that ||J'(u,)||—1 — 0. Indeed, for any u € H}(;|z|*) with ||u|| = 1, let
Wy, = Uy, + tu. For a fixed n, we have ||wy|| < ||uyl| +t < R, where ¢t > 0 is small enough.
Using (10) we obtain

i
T (un + ) > T (un) = —|Ju]

that is
J(up +tu) — J(up)

t

1 1
>l =~
n n

1
Letting t \, 0, we deduce that (J'(u,),u) > —— and a similar argument for ¢ /0 produces
n
1
(I (un),u)| < — for any u € H(Q; |z|%) with |jul| = 1. So,
n
! ! 1
| (un)||=1 = sup [(J'(un),u)) < ——0 asn— oo.
lJull=1 "
We have obtained the existence of a (PS),, sequence, i.e. a sequence (u,) C H}(;|z|%)

with
J(up) = co and || (un)]| -1 — O. (11)

But |lun|| < R shows that (u,) converges weakly in H}(f;|z|%), up to a subsequence.
Therefore, by (11) and Lemma 2.1 we find that for some ug € H}(€; |z|%),

Uy = up in HY(Q;]2]%), up — up ae. in RY (12)

and
J'(ug) = 0. (13)

We now prove that J(up) = ¢o. By (11) and (12) we have

o(l)z(J'(un),un):/ |m|a|Vun|2dx—/ a2 dx—/fundm.
Q Q Q

J(up) = (% - 2%) /Q |t | %o da — (1 — 2%) /qun dz + o(1).

By (11), (12), (13) and Fatou’s lemma we have

T I 1 a2t o (1 _
co—llnn_1>£fJ(un)2 (§_£>/lel |ug|“e dx <1 22>/qu0dw—J(u0).

Since ug € Bp, it follows that J(ug) = co. If f € E,, ug can be replaced by |ug|, and the
proof is complete. U

Therefore
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3 A priori estimates for the second solution
Set

1 1 «
I(u) = §/Q|x|a|Vu|2dw—2—*/Q|u|2adx
o

S = {u € Hy(]x]*) \ {0}; (I'(u),u) = 0}.
We first justify that S # (). Indeed, fix ug € Hg(Q;|z|%) \ {0} and set, for any A > 0,

and denote

T(A) = (I'(Mug), Aug) = /\2/ ||| Vug|? d — )\23/ luo|% dz .
2 Q

Since 2}, > 2, it follows that ¥(A) < 0 for A large enough and ¥(X) > 0 for A sufficiently
close to zero.
Hence there exists A\g € (0, 00) such that ¥()\g) = 0. This means that Aug € S.

Lemma 3.1. Let I, = inf {I(u); u € S}. Then there exists i € H}(Q;|z|*) such that

I = I(a) = supI(tu). (14)
>0
Proof. We first claim that
I (u) = sup I(tu) YuesS. (15)
>0

Indeed, for some fixed ¢ € H(Q;|z|*) \ {0}, denote

2 t2a .
() = I(tp) = = / 2oV dz — £ / o[ da.
2 Q 2a Q

We have
£t =1 / 2| Vaf? dr — 1% / p[% da,
Q Q

which vanishes for

_1
2% 2
/ 12| Vul? da
to=to(p) = & -
[ 1o da
Q
Hence
N
2—a
. / 12[*|Vul? do
f(tO) = I(tO(P) = sup I(t(P) = & N—2te
N N *
( [ lof dw)
Q
It follows that
inf sup I(ty) = 2_—a[S (Q)]% (16)
pEHL([21*)\ {0} £>0 2N '

We now easily observe that for every u € S we have ty(u) = 1. So, by (16), we find (15).
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By Caldiroli-Musina [5], Theorems 2.2 and 3.1, the minimum is achieved in (2) by some
function U € H}(Q; |x|®). We prove in what follows that the function @ := [S,(Q)]"/@a=2U
satisfies (14). We first observe that @ € S and

2 -« N
1(8) = =2 [Sa()] 75 . (17
So, by (15) and (17),
— N
I, = inf I(u) = inf sup I(tu) > inf sup I (tu) = ——[S.(Q)]2-= = I(u),
oo = nf I{u) = inf 120 (i) = weHy (%2l (0} 50 () = 3 15a () (u)
which concludes our proof. O

Lemma 3.2. Assume (uy,) is a (PS), sequence of J that converges weakly to ug in Hy (9 |z|%).
Then either (uy) converges strongly in H} (2 |x|%), or ¢ > J(uo) + Ino-

Proof. Since (uy,) is a (PS). sequence and u, — ug in H(Q; |z|*) we have
J(up) =c+o(1) and (J'(uyp),u,) =o(1). (18)

Set vy, = up — ug. Then v, — 0 in H}(;|z|*) which implies
/ |z|*Vup, - Vugdz -0 asn — oo,
Q

fop,dr —0 asn— o0.
Q

We rewrite the above relations as

lunll® = lluoll® + llvall* + o(1)

J(vn) = I(vn) +o(1). (19)

The Brezis-Lieb Lemma, combined with the Caffarelli-Kohn-Nirenberg Inequality yield

/ (Tt — [0
Q

%) dg = / luo|%dz + o(1) . (20)
Q

From (18), (19), (20) and Lemma 2.1 we find
o(1) + ¢ = J(up) = J(uo) + J(vn) + 0o(1) = J(uo) + I(vn) + 0(1), (21)
o(1) = (J'(un), un) = (J'(uo), uo) + (J'(vn), v} + 0(1) = (I'(vn), vn) + o(1) .

If v, — 0 in H(Q;|z]|%), then u, — up in HE(Q; |z|%) and J(ug) = limy 00 J (un) = c.
If v, 4 0 in H}(Q;|z|®), then combining this with the fact that v, — 0 in Hg(Q;|z|?)
we may assume that ||v,| — [ > 0. Then, by (21),

¢ = J(uw) + I(vy) + 0(1) (22)

i = (T (0), ) = /Q 2] Vo ? d — /Q N (23)

where limy, o0 ptn = 0, ay = [ [7|%|Von|? dz > |lvn|? and B, = [, |va|?> dz > 0. In virtue
of (22), it remains to show that I(v,) > I + o(1). For ¢t > 0, we have

(1o ton) = [ 1t 9enl? do — % [ o’ do
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If we prove the existence of a sequence (t,) with ¢, — 1 and (I'(t,v,), tnv,) = 0 then

1-2  1—te o
aTL Un = nIUn o [e's) o
[[on I(tnvn) +0(1) > Io + 0(1)

- * 2% -
2% L%

I(vn) = I(tpvn) +

and the conclusion follows. To do this, let t = 1 4+ ¢ with § > 0 small enough and using
(23) we obtain

(I'(tvp), ton) = (1 + 5)20% -1+ 5)2;6n =(1+ 5)20% -1+ 5)2‘*"(0% — fin) =
(26 — 256 + 0(8)) + (1 + 6)% fiy, = (2 — 25)6 + 0(8) + (1 4 8)%a puyy.

Since a, = 1 > 12 > 0, lim,, 00 ftn, = 0 and 27, > 2 then, for n large enough, we can define

the sequence 6,, = an2(|2’£"_‘2) > 0 and 6,, — 0. Then
(I'((1+dn)on), (1L +0n)vn) <O (I'((1 = dn)vn), (1 — dn)vn) > 0. (24)

From (24) we deduce the existence of t, € (1 — dp,1 + d5,) such that
tn, =1 and (I'(tyvn),tnvn) = 0.

This concludes our proof. U

Fix @ € H}(Q;|z|%) such that (14) holds. Since 2 < 2%, there exists o > 0 such that

I(ta) <0 if t >t
J(ta) <0 if t>tq.

Set
P ={y € C([0,1], Hy (2 ]z|*)); 7(0) = 0,7(1) = tou} (25)
¢1 = inf sup J(u). (26)
YEP uey

In the next result ¢y, resp. ¢1, are those defined in (8), resp. (26).

Lemma 3.3. Given g € Ey, ||g||-1 = 1, there exist R > 0 and 3 = eo(R) > 0 such that
c1 < ¢y~ I, for all f =eg with € < eq.

Proof. We first remark that
IOO + co > 0 ) (27)

provided that ¢; and R given in the proof of Lemma 2.2 are sufficiently small. Indeed, let
1o be the solution obtained in Lemma 2.2. Then, by Cauchy-Schwarz,

1 1 N ) 1
= - — 1__
0 (2 23)/9'“”‘ [Vuol"de ( 2z>/ng“°d‘””’
1 1 1
>|z—-= @ 2de — (1 - = 1- :
> (2 2,&>/QI:E| |Vuo|“dx ( 2Z)Ilfll 1 |luol|

Applying the inequality

(28)

2 2
8<%+ vap>0



we find . . . ~ )
(1= 5 ) 1l bl < (5 - 5 ) ool + o202, oo

So, by (28) and (29),
(N —a+2)?

>~ NG —a) IFI1%y - (30)

€0

It follows that the negative number ¢y is close enough to 0 if ||f||—1 is small. But, by
Lemma 3.1,

2 -«

IN [SQ(Q)]N/(Z_(I) > 07

Io =

o (27) follows obviously.

In order to conclude the proof we observe, by the definition of ¢q, that it suffices to
show that
sup J(ta) < co + Ioo (31)
>0
if || f||-1 is sufficiently small.

Next, using (27), the continuity of J and J(0) = 0, we obtain some 7y > 0 which is
uniform with respect to all f satisfying 0 < ||f||-1 < &1 such that, for some &’ < 1,

co+ I > sup J(tu),
tE[O,T()]

if || f]|=1 < €'. So, in order to prove (31), it suffices to show that if || f||_1 is small then

co + Ioo > sup J(ta). (32)
t>To

_? t2a
T(ta) / |||V 2de — % / a2 da — t / fade

/\x| |Val dw——/ |al adx—To/fudx

for any ¢ > Ty. But, by Lemma 3.1,

But

I(®) = S35 [Sal@)) V).

Hence, using an argument similar to that used for proving (28), we find

2 24
sup J(ta) < sup ( / |z|%| Va|*dz — —/ || % da:) —To/ fudz
t>Tp >Tp \ 2 2y Ja Q

SIOO—TO/fudm<IOO+co,
Q

if f =eg with e < ¢”. Indeed, it follows from (30) that ¢y is quadratic in & while [ fu is
linear. Letting €2 = min{¢’, "}, we conclude the proof. O
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4 Proof of Theorem 1.1 concluded

Let €9 = min{e1,e2}. Hence, by Lemma 2.2, we obtain the existence of a positive solution
ug € H} (9 |7|*) of (3) such that J(up) = cp.

On the other hand, since J(|u|) < J(u) when f € E., it follows from the Mountain Pass
Theorem without the Palais-Smale condition [3, Theorem 2.2] that there exists a positive
(PS)., sequence (uy) of J, that is

J(un) =c1+o(1) and || J'(uy)||-1 = 0.

This implies

1 1
cr 4 o [ (wn) -1 - flunll +0(1) > I (un) = (I (un), un)

2
a (33)
S (2= Il = (1= 2 ) 10
e 2 22 n 22 —1 nl|-

Hence {u,,} is a bounded sequence in H¢(Q; |z|%). So, up to a subsequence, we may assume
that u, — uy > 0 in H}(Q; |z|*). Lemma 2.1 implies that u; is a solution of (3).

We prove in what follows that uy # wi. For this aim we shall prove that J(ug) # J(u1).
Indeed, by Lemma 3.2, either u,, — u1 in H{(Q;|z|*) which gives

J(ur) = lim J(up) =c1 >0 > ¢y = J(up)

n—oo

and the conclusion follows, or

c1 = lim J(up) > J(u1) + Inc.

n—oo

If we suppose that J(u1) = J(ug) = cp, then ¢; > ¢y + I which contradicts Lemma 3.3.
This concludes our proof. ]
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