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Abstract
Hemivariational inequalities containing both an area-type and a non-locally Lip-
schitz term are considered. Multiplicity results are obtained by means of techniques
of nonsmooth critical point theory.

1 Introduction

The theory of variational inequalities appeared in the middle 60’s in connection with the
notion of subdifferential in the sense of Convex Analysis (see e.g. [6, 22, 33] for the main
aspects of this theory). All the inequality problems treated to the beginning 80’s were
related to convex energy functionals and therefore strictly connected to monotonicity: for
instance, only monotone (possibly multivalued) boundary conditions and stress-strain laws
could be studied.

Nonconvex inequality problems first appeared in [35] in the setting of Global analysis
and were related to the subdifferential introduced in [17] (see A. MARINO [34] for a survey
of the developments in this direction).

*The research of the first two authors was partially supported by Ministero dell’Universita e della
Ricerca Scientifica e Tecnologica (40% — 1995).

tThe research of the third author was partially supported by G.N.A.F.A. - Consiglio Nazionale delle
Ricerche, Italy.
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In the setting of Continuum mechanics, P. D. PANAGIOTOPOULOS started the study
of nonconvex and nonsmooth potentials by using Clarke’s subdifferential for locally Lips-
chitz functionals. Due to the lack of convexity, new types of inequality problems, called
hemivariational inequalities, have been generated. Roughly speaking, mechanical problems
involving nonmonotone stress-strain laws or boundary conditions derived by nonconvex su-
perpotentials lead to hemivariational inequalities. We refer the reader to [41, 42] for the
main aspects of this theory.

A typical feature of nonconvex problems is that, while in the convex case the stationary
variational inequalities give rise to minimisation problems for the potential or for the energy,
in the nonconvex case the problem of the stationarity of the potential emerges and therefore
it becomes reasonable to expect results also in the line of critical point theory.

For hemivariational inequalities, several contributions have been recently obtained by
techniques of nonsmooth critical point theory (see [5, 23, 25, 26, 27, 28, 38, 39, 40, 43|
and references therein). The associated functional f is typically of the form f = fy + fi,
where f; is the principal part satisfying some standard coerciveness condition and f; is
locally Lipschitz. In such a setting, the main abstract tool is constituted by the nonsmooth
critical point theory developed in [12] for locally Lipschitz functionals.

The aim of our paper is to obtain existence and multiplicity results for hemivariational
inequalities associated with functionals which come from the relaxation of, say,

— [ i+ Du?d /G, dz | e WM (Q:RN), O nR"n>2.
f(u) /Q + |Du|?dz + A (z,u) dx u 0 ( ), © open in n >

The first feature is that the functional f does not satisfy the Palais-Smale condition in
BV (; RY), the natural domain of f, as it is already known in the case of equations (see
e.g. [36]). Therefore we extend f to L= (€;RY) with value +oo outside BV (Q;RN).
This larger space is better behaved for the compactness properties, but the nonsmoothness
of the functional increases. The second feature is that the assumptions we impose on G
imply the second term of f to be continuous on L#-1(Q; R"), but not locally Lipschitz.
More precisely, the function {s — G(z,s)} is supposed to be locally Lipschitz for a.e.
x € (), but the growth conditions we impose do not ensure the corresponding property
for the integral on L%(Q; R”). Because of these facts, we will take advantage of the
nonsmooth techniques developed in [7, 16, 19], which have been already applied in the
setting of equations (see [8, 9, 10, 15, 18, 20, 21, 23, 36, 37] and references therein) and
turn out to be suitable also for our setting.

In section 2 we recall the main tools we will need, while in section 3 we prove some
general results for a class of lower semicontinuous functionals f : L?(Q; RY) — RU{+oc0}.
In section 4 we show that the area-type integrals fall into the class considered in section 3.
By the way, we also prove a relation between the convergence in the so-called intermediate
topologies of BV (Q; RY) and the convergence in L1 (€; R") (see Theorem 4.10), which
seems to be new. Finally, in sections 5 and 6 we apply the general setting of section 3 to
obtain multiplicity results of Clark and Ambrosetti-Rabinowitz type. Of course, we believe
that our approach could be equally applied to other situations with different geometries.
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2 Recalls of nonsmooth analysis

Let X be a metric space endowed with the metric d and let f : X — R be a function. We
denote by B, (u) the open ball of centre u and radius r and we set

epi (f) ={(u,A) € X xR: f(u) <A}.
In the following, X x R will be endowed with the metric
d ((u, ), (v, 1)) = (d(u,0)" + (A = p)°)

and epi (f) with the induced metric.

N

Definition 2.1 For every u € X with f(u) € R, we denote by |df|(u) the supremum of
the o’s in [0, +00[ such that there exist 6 > 0 and a continuous map

H: (Bs (u, f(u)) Nepi(f)) x [0,6] = X
satisfying

d(,H((w::U‘)at)vw) Sta f(’H((w,,u),t)) SM_Jtv

whenever (w, 1) € By (u, f(u)) Nepi(f) and t € [0,4].
The extended real number |df| (u) is called the weak slope of f at u.

The above notion has been introduced in [19], following an equivalent approach. When f
is continuous, it has been independently introduced also in [32], while a variant has been
considered in [30, 31]. The version we have recalled here is taken from [7].

Now, according to [17], we define a function G; : epi(f) — R by Gs(u,\) = A. Of
course, Gy is Lipschitz continuous of constant 1.

Proposition 2.2 For every u € X with f(u) € R, we have f(u) = G(u, f(u)) and
|dGy| (u, f(u))
df| () = { /1= 1dGy| (u, f(u))?
oo i |dg; | (u. f(u)) = 1.
Proof. See [7, Proposition 2.3]. m

if [dG;| (u, f(u) <1,

The previous proposition allows us to reduce, at some extent, the study of the general
function f to that of the continuous function Gy.
Definition 2.1 can be simplified, when f is continuous.

Proposition 2.3 Let f: X — R be continuous. Then |df|(u) is the supremum of the o’s
in [0, +oo] such that there exist 6 > 0 and a continuous map

H:Bs(u) x [0,6] > X

satisfying
(2.4) dH(w, 1), w) <t,  f(H(w,?) < f(w)—ot,

whenever w € Bs (u) and t € [0, ].
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Proof. See [7, Proposition 2.2]. m

We need also, in a particular case, the notion of equivariant weak slope (see e.g. [10]
for the general definition).

Definition 2.5 Let X be a normed space and f : X — R an even function with f(0) <
+o00. For every (0,\) € epi(f) we denote by |dz,Gs|(0,) the supremum of the o’s in
[0, +00[ such that there exist 6 > 0 and a continuous map

H = (M1, M) : (Bs (0,A) Nepi(f)) x [0,8] — epi (f)

satisfying
d(H((w,p), 1), (w,m)) <t,  Ho((w,p),t) < p—ot,

Hl((_w’y’)’t) = _Hl((wa N)’t) )
whenever (w, 1) € Bs (0,\) Nepi (f) and t € [0,4].

Remark 2.6 In Proposition 2.3, if there exist 0 > 0 and a continuous map H satisfying
d(H(w,t),w) <ot,  f(H(w,1)) < f(w)—ot,

instead of (2.4), we can deduce that |df| (u) > o/p.
A similar remark applies to Definition 2.5.

By means of the weak slope, we can now introduce the two main notions of critical point
theory.

Definition 2.7 We say that u € X is a (lower) critical point of f, if f(u) € R and
|df| (u) = 0. We say that ¢ € R is a (lower) critical value of f, if there exists a (lower)
critical point u € X of f with f(u) = c.

Definition 2.8 Let c € R. A sequence (up,) in X is said to be a Palais-Smale sequence at
level ¢ ((PS).—sequence, for short) for f, if f(un) — ¢ and |df| (up) — 0.

We say that f satisfies the Palais-Smale condition at level ¢ ((PS),, for short), if every
(PS).—sequence (up) for f admits a convergent subsequence (up,) in X.

The main feature of the weak slope is that it allows to prove natural extensions of the
classical critical point theory for general continuous functions defined on complete metric
spaces. Moreover, one can try to reduce the study of a lower semicontinuous function
[ to that of the continuous function G;. Actually, Proposition 2.2 suggests to exploit
the bijective correspondence between the set where f is finite and the graph of f. This
approach can be successful, if we can ensure that the remaining part of epi(f) does not
carry much information. The next notion turns out to be useful for this purpose.

Definition 2.9 Let c € R. We say that f satisfies condition (epi)., if there exists € > 0
such that
inf {|dGs| (u, A) : f(u) <A, [A—¢c|<e}>0.

The next two results may help in dealing with condition (epi)..
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Proposition 2.10 Let (u,\) € epi(f). Assume that there exist 9,0,0,& > 0 and a con-
tinuous map
H:{w e Bs(u): f(w) <A+d} x[0,0] > X

satisfying
d(H(w,t),w) < ot,  f(H(w,t)) <max{f(w)—ot,\—e}

whenever w € Bs (u), f(w) <A+ 9 andt € [0,4].
Then we have

o
d A) > —— .
| gf‘ (u: ) = \/m
If moreover X is a normed space, [ is even, u = 0 and H(—w,t) = —H(w,t), then we
have o
d 0,)) > ———.
| Z2gf|( ) ) = \/m

Proof. Let §' €]0,6] be such that §' + 06’ < € and let
K : (By (u, A) Nepi(f)) x [0,6] — epi (f)

be defined by K((w, ), t) = (H(w,t), u— ot). If (w, u) € By (u, \) Nepi(f) and ¢ € [0, 4],
we have
A—e<A=0¢ -0 <p—ot, f(w) —ot < p—ot,

hence
f(%(wat)) < maX{f(’bU) - Otv A— 8} < H—= ot.

Therefore I actually takes its values in epi (f). Furthermore, it is

d(K((w, 1), 1), (w, p)) < \/@* +0?t,

gf(lC((w,,u),t)) =p—ol= gf(w,,ll) —ot.

Taking into account Proposition 2.3 and Remark 2.6, the first assertion follows.
In the symmetric case, K automatically satisfies the further condition required in Def-
inition 2.5. m

Corollary 2.11 Let (u,\) € epi(f) with f(u) < X\. Assume that for every o > 0 there
exist 6 > 0 and a continuous map

H:{w € Bs(u): f(w) <A+d} x[0,§] > X
satisfying
d(H(w,t),w) < ot,  f(H(w,t)) < f(w)+1(f(u) - f(w)+0)

whenever w € By (u), f(w) <A+ 4§ and t € [0,4].
Then we have |dG¢| (u, \) = 1. If moreover X is a normed space, f is even, u =0 and
H(—w,t) = —H(w,t), then we have |dz,Gs| (0,\) = 1.
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Proof. Let ¢ > 0 with A — 2 > f(u), let 0 < 9 < A — f(u) — 2¢ and let 6 and H be as in
the hypothesis. By reducing ¢, we may also assume that

§<1,  6(A=2e|+|f(u)+o]) <e.
Now consider w € By (u) with f(w) < A+4d and ¢t € [0,6]. If f(w) < A — 2¢, we have

flw)+t(f(u) = f(w)+0) = A —=1)f(w)+t(f(u)+0) <
< (@ = = 2¢) +1(f(u) +0) <
< A=2e+tA =2+t f(u)+o < A—¢,

while, if f(w) > A — 2¢, we have
Fw) +t(f(u) = f(w) + 0) < f(w) — (A= f(u) — 26 - 0)t.
In any case it follows
f(H(w,t)) < max{f(w) — (A= f(u) — 26 — o)t, A — ¢} .

From Proposition 2.10 we get

A—flu) —2e—p
dG:| (u, ) >
rll ) Vo + (A= f(u) — 26 — 0)?2

and the first assertion follows by the arbitrariness of p.
The same proof works also in the symmetric case. m

Now we recall two critical point theorems we will apply later. The first one is an
adaptation of a result of D. C. Clark (see [13] and [44, Theorem 9.1]) to our setting.

Theorem 2.12 Let X be a Banach space and f : X — R U {400} an even lower semi-
continuous function. Assume that

(a) f is bounded from below;
(b) for every c < f(0), the function f satisfies (PS). and (epi),;

(c) there exist k > 1 and an odd continuous map 1 : S¥=1 — X such that
sup {f(1(2) : = € S*71} < £(0),

where S*~1 denotes the unit sphere in RF.

Then f admits at least k pairs (u1, —u1),. .., (ug, —ug) of critical points with f(u;) <

f(0).
Proof. See 20, Theorem 2.5]. m

The next result is an adaptation of the classical Theorem of Ambrosetti-Rabinowitz
[1, 44, 48].
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Theorem 2.13 Let X be a Banach space and f : X — R U {400} an even lower semi-
continuous function. Assume that there exists a strictly increasing sequence (V3,) of finite-
dimensional subspaces of X with the following properties:

(a) there exist a closed subspace Z of X, o > 0 and a > f(0) such that X = Vo & Z and

Vue Z: ||ul| =0 = f(u) > a;

(b) there ezists a sequence (Ry) in |o, +0oo[ such that

Vu € Vi@ |lul| > Ry = f(u) < f(0);

(c) for every ¢ > «, the function f satisfies (PS). and (epi).;
(d) we have |dz,Gy| (0, ) # 0 whenever A > .
Then there ezists a sequence (uyp,) of critical points of f with f(up) — +o0.

Proof. Because of assumption (c), the function Gy satisfies (PS), for any ¢ > a. Then the
assertion follows from [36, Theorem (2.7)]. m

Now assume that X is a normed space over R and f : X — R a function.

Definition 2.14 For every u € X with f(u) € R, v € X and e > 0, let f7 (u;v) be the
infimum of r’s in R such that there exist § > 0 and a continuous map

V: (Bs (u, f(u)) Nepi(f)) x]0,6] — B (v)

satisfying
fz+tV((z,p),t) <p+rt

whenever (z, u) € Bs (u, f(u)) Nepi(f) and t €]0,0]. Then let

fo(usv) = Selig 2 (uyv) .

Let us recall that the function f°(u;-) is convex, lower semicontinuous and positively
homogeneous of degree 1 (see [7, Corollary 4.6]).

Definition 2.15 For every u € X with f(u) € R, we set
Of (u) ={u" € X*: (u*,v) < f°(u;v) Yve X}.

It turns out that f° (u;v) is greater than or equal to the generalized directional derivative
in the sense of Rockafellar (see [14, 47]). Consequently, df(u) contains the subdifferential
of f at u in the sense of Clarke. These modified notions of f° (u;v) and df(u) have been
introduced in [7, 18], because they are better related with the notion of weak slope and
hence more suitable for critical point theory, as the next result shows.
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Theorem 2.16 Ifu € X and f(u) € R, the following facts hold:
(@) |df|(u) < 400 <= Of(u) #0;
(b) ldf|(u) <400 = [df| (u) > min {Jlu*|| : u* € 9f(u)}.
Proof. See [7, Theorem 4.13]. m

However, if f : X — R is locally Lipschitz, these notions agree with those of Clarke
(see [7, Corollary 4.10]). Thus, in such a case, f° (u;-) is also Lipschitz continuous and we

have that t

(2.17) Vu,v € X : f°(u;v) = limsup fle+ u;) ~ f(2) ,
ot

(2.18) {(u,v) — f°(u;v)} is upper semicontinuous on X x X .

3 The general framework

Let n > 1, N > 1, Q be an open subset of R” and 1 < p < oo. In the following, we wil
denote by || - || the usual norm in L9 (1 < ¢ < 00). We now define the functional setting
we are interested in.

Let £ : LP(; RY) — R U {+00} be a functional such that:

(&1) € is convex, lower semicontinuous and 0 € D (£), where

D)= {u € LP(;RN): E(u) < +oo} ;

(&) there exists 9 € C.(RY) with 0 <9 <1 and 9(0) = 1 such that
(£.1)  YueD(E),YweD(E)NL®(QRY),Ve>0:

Jim {P e ((3) U)] = £(0);

£(z)<c

(£:2)  VueD(E): Jim £ (19 (%) u) — ().

Moreover, let G : © x RY — R be a function such that
(G1) G(-, s) is measurable for every s € R";
(Gs) for every t > 0 there exists oy € L'(Q) such that
G(z,51) — G(z, 82)| < au(z)]s1 — 82
for a.e. z € 2 and every s, s, € RY with |s;| < ¢; for a.e. z € Q we set
G°(z,58) =" (55),  0,G(z,5) = 0v(s),
where v(s) = G(z, s);
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(Gs) there exist ag € L*(2) and by € R such that

G(z,8) > —ag(z) — bo|s|P  for a.e. z € Q and every s € RV;

(G4) there exist a; € L'(Q) and b; € R such that

G°(z,s;—s) < ai(z) + by|s|P for a.e. z € Q and every s € RV .

Because of (£1) and (G3), we can define a lower semicontinuous functional f : LP(Q; RY) —
R U {+00} by

f(u) :5(u)+/QG(:E,u(:U))dx.

Remark 3.1 According to (£1), the functional € is lower semicontinuous. Condition (Es)
ensures that € is continuous at least on some particular restrictions.

Remark 3.2 If {s — G(x,5)} is of class C for a.e x € Q, the estimates in (Gs) and in
(G4) are respectively equivalent to

Is| <t = |D;G(z,s)| < ay(z),

D,G(z,s)-s > —ai(x) — by|sP.
Because of (Gs), for a.e. z € Q and any ¢t > 0 and s € RY with |s| < ¢t we have
(3.3) Vs e RV 1 |G°(x,5;8)| < ay(7)]8];

(3.4) Vs* € 0,G(x,s) : |s*] < ay(x).

In the following, we set J;(s) = 9(s/h), where 9 is a function as in (£;), and we fix M > 0
such that ¥ = 0 outside By (0). Therefore

(3.5) Vs e RN : |s| > hM = 9,(s) = 0.

Our first result concerns the connection between the notions of generalized directional
derivative and subdifferential in the functional space L?(£2; RY) and the more concrete set-
ting of hemivariational inequalities, which also involves the notion of generalized directional
derivative, but in RV,

If u,v € LP(Q; RY), we can define [, G°(z, u;v) dz if we agree, as in [46], that

o . _ o . + _ o . - —
/QG (x,u;v)dx = 400 whenever /Q[G (x,u;v)]" dz —/Q[G (x,u;v)]” de = +00.

With this convention, {v — [, G°(z,u;v)dx} is a convex functional from L?(Q; RY) into
R.
Theorem 3.6 Let u € D (f). Then the following facts hold:

(a) for every v € D () there erists a sequence (vy) in D (€) N L®(uRYN) satisfying
[G°(z, u;vp, — )T € LYQ), [Jvn —v]l, = 0 and E(vy) — E(v);
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(b) for every v € D (E) we have

(3.7) fe(u;v —u) Sg(v)—5(u)—|—/ﬂG°(m,u;v—u)dm;

(¢) if Of (u) # 0, we have G°(x,u; —u) € L'(Q) and
(3.8) S(U)—S(u)—i-/Qch(:r,u;v—u)dx2/Qu*-(v—u)dx

for every u* € df(u) and v € D (€) (the dual space of LP(Q;RY) is identified with
LY (; RYN) in the usual way);

(d) if N =1, we have [G°(x,u;v —u)]t € L(Q) for every v € L*(Q; RY).

Proof.

(a) Given ¢ > 0, by (£2.2) we have ||J,(v)v—v]|, < € and |E(Iy(v)v) —E(v)| < € for h large
enough. Then, by (&.1) we get |9 (uw)Ip(v)v —v||, < € and |E (D (u)Ip(v)v) — E(v)] < €
for k large enough. Of course 9y (u)d;(v)v € L®(Q; RY) and by (3.3) we have

G°(z,u; 9 (u)Op(v)v —u) < Fg(u)In(v)G°(z,u;v —u) +
+(1 — I (u)94(0)G° (2, u; —u) <
< (h+k)Magy () + [G°(z, u; —u)] T .

From (G4) we infer that [G°(z,u; —u)]" € L*(Q) and assertion (a) follows.
(b) Without loss of generality, we may assume that [G°(z,u;v — u)]* € L'(Q). Suppose
first that v € D (£) N L*(Q; RY) and take £ > 0.

We claim that for every z € LP(Q;RY), ¢t €]0,1/2] and h > 1 with hM > ||v]|s, We
have

(39) Gzt —2) - Glz,2)

t

In fact, for a.e. x € Q, by Lebourg’s Theorem (see e.g. [14]) there exist ¢ €]0,¢[ and
u* € 0;G(z,z + t(In(2)v — 2)) such that

G(z,z + t(In(2)v — 2)) — G(=, 2)
t

< 2([[vlloo annr + a1 + bu(|2] + [0])P) -

= u" - (Dh(2)v —2) =

By (3.4) and (3.5), it easily follows that

[Un(2)u” - v|

2 < 2o

On the other hand, from (G4) we deduce that for a.e. z € Q2

ut- (2 + i(’ih;z)v —2)) >~ izG"(x, 2+ U (On(2)v — 2); = (2 + {(In(2)v — 2)) >
> 1 %(al + b1z + t(In(2)v — 2)[P) > =2 (a1 + b1 (|2] + [v])P) .
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Then (3.9) easily follows.
For a.e. x € Q2 we have

G°(z,u; Op(u)v — u) In(u)G°(z,u;v —u) + (1 — Ip(u)G° (2, u; —u) <

<
< [G(m,u;v — uw)]" + [G°(, u; —u)]T.

Furthermore, for a.e. x €  and every s € RY, (G;) implies G°(z, s;-) to be Lipschitz
continuous, so in particular

li}lln G°(z,u; O (u)v — u) = G°(z,u;v — u) a.e. in Q.
Then, given
A > / G°(z,u;v —u)dx,
Q
by Fatou’s Lemma there exists A > 1 such that
(3.10) VYh>h: / G°(z,u;9p(u)v —u)de < A and ||Jx(u)v — ||, < €.
0
By the lower semicontinuity of G, there exists § €]0,1/2] such that for every z € B (u)
it is G(z) > G(u) — £. Then for every (z, u) € By (u, f(u)) Nepi(f) it follows

E(2) S p—G(:) S pt 5 —G(w) < f(u) +5— G(w) + 5 < E(u) +1

Let now o > 0. By assumptions (£;) and (&,.1) there exist h > h and § < § such that
|v]|co < KM,

E(z) > &) —o, EWn(z)v)<&W)+o, |[((z)v—2)—(v—u)|,<e,

for any z € Bs (u) with £(2) < E(u) + 1
Taking into account (2.17), (3.9) and (3.10), we deduce by Fatou’s Lemma that, possibly
reducing §, for any ¢ €]0, 6] and for any z € By (u) we have

/ G(z,z + t(On(2)v — 2)) — G(z, 2) dr <\
Q t

Now let V : (Bs (u, f(u)) Nepi(f)) x]0,d] = B. (v —u) be defined setting

V((z, 1), t) = I(z)v — 2.

Since V is evidently continuous and

f(z+tV((2, p),t)) z+ t(ﬁh(z)v z)) <
+t(EWh(2)v) —E(2)) + Gz + t(In(2)v — 2) <
(E(w) = &) +20)t+G(2) + X\t =
) —

( (
(E(w) —E(u)+ A+ 20)t,

I
S

VANV
n
\N/

N
+ o

(
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(
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we have
fPusv—u) <EW)—E(u)+ A+ 20.

By the arbitrariness of o > 0 and A\ > / G°(z,u;v — u) dz, it follows
Q

lusv—u) < E(v) —E(u)+/ﬂG°(m,u;v—u)dm.

Passing to the limit as ¢ — 0%, we get (3.7) when v € D () N L®(Q; RY).
Let us now treat the general case. If we set v, = J,(v)v, we have v, € L®(Q;RY).
Arguing as before, it is easy to see that

G°(z,u;vp, — u) < [G°(x,u;v — u)|t + [G° (2, u; —u)] T,

so that
lim sup/ G°(z,u;vp —u)dx < / G°(z,u;v —u)dz.
h Q Q

On the other hand, by the previous step it holds
fo(usvp —u) < E(vp) — E(u) +/ G°(z,u;vp, — u) dz .
Q
Passing to the lower limit as A~ — oo and taking into account the lower semicontinuity of

f°(u,-) and (&3.2), we get (3.7).
(c) We already know that [G°(z,u; —u)]T € L'(Q). If we choose v = 0 in (3.7), we obtain

f(u;—u) < E(0) — E(u) +/ G°(z,u;—u)dx.
Q
Since 9f (u) # 0, it is f°(u; —u) > —oo, hence
/[Go(x,u; —u)]” dz < 400.
o
Finally, if u* € 0f(u) we have by definition that
fo(usv—u) > / u* - (v—u)dr

Q

and (3.8) follows from (3.7).

(d) From (3.3) it readily follows that G°(z, u; v —u) is summable where |u(z)| < ||v]|c. On
the other hand, where |u(z)| > ||v||« We have

G°(z,u;v —u) = (1 - E) G°(z,u; —u)

u

and the assertion follows from (G4). m

Since f is only lower semicontinuous, we are interested in the verification of the con-
dition (epi).. For this purpose, we consider an assumption (G%) on G stronger than (Gj).

Theorem 3.11 Assume that
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(G%) there exist a € L'(Q) and b € R such that

|G(x,5)| < a(zx)+0bls|]P  forae x€Q and every s € RV .

Then for every (u, A) € epi (f) with A > f(u) it is |dGy| (u, A) = 1. Moreover, if £ and
G(z,-) are even, for every A > f(0) we have |dz,Gf| (0, A) = 1.

Proof. Tet o> 0. Since
vre[0,1]: G°(z,u;7u —u) = (1 — 7)G°(z,u; —u) < [G°(x, u; —u)]*,
by (£2.2) and (G,) there exists h > 1 such that
[Op(u)u—ul, <o,  EWp(u)u) < E(u) + e,
Vh>h: /QGC’ (2, u; O (u)d5(w)u —u)de < p.

Set v = V5 (u)u. B
By (&;.1) there exist A > h and 0 €]0, 1] such that

19n(2)v — 2||, < o, EWn(2)v) < E(u) + o,

whenever ||z —ul|, < d and £(2) <A+ 1—G(u) + o.
By decreasing ¢, from (G%), (3.9) and (2.17) we deduce that

G(2) = G(u)| <o,

/ Gz, 2 +t(In(2)v — 2)) — G(z,2) dr < p

t

whenever ||z —ul|, < ¢ and 0 <t < 4.
Define a continuous map

H:{z€Bsu): f(z2) <A+d}x[0,0] = X

by H(z,t) = z + t(In(z)v — z). It is readily seen that ||H(z,t) — 2|, < ot.
If z€ Bs(u), f(2) <A+6and 0 <t <6, we have

E(z2) =f(2) —G(2) <A+6—-Gu)+ o< A+1—-G(u)+ o,
hence, taking into account the convexity of &,
E(z+t(Wh(z)v—2)) < E(z) + LEWn(z)v) — E(2)) < E(2) +t(E(u) — E(2) + 0) -
Moreover, we also have
Gz +t(Wn(2)v—2)) < G(2) +to < G(2) + t(G(u) — G(z) + 20) .

Therefore
[z +t(Wn(2)v — 2)) < f(2) +t(f(u) — f(2) + 30) -
and the first assertion follows by Corollary 2.11.
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Now assume that £ and G(z,-) are even and that u = 0. Then, in the previous
argument, we have v = 0, so that H(—z,t) = —H(z,t) and the second assertion also
follows. m

Now we want to provide a criterion which helps in the verification of the Palais-Smale
condition. For this purpose, we consider further assumptions on £, which ensure a suitable
coerciveness, and a new condition (GY) on G, stronger than (G4), which is a kind of one-
sided subcritical growth condition.

Theorem 3.12 Let c € R. Assume that

(&3) for every (up) bounded in LP(S2; RN) with (€ (up)) bounded, there exists a subsequence
(un,) and a function u € LP(Q; RY) such that

lim up, (z) = u(z) for a.e. x €2
k—o00

(E4) if (up) is a sequence in LP(S; RY) weakly convergent tou € D (€) and & (up) converges
to E(u), then (up) converges to u strongly in LP(;RYN);

(G') for every € > 0 there exists a. € L'(Q) such that

G°(x,5;—38) < a.(x) +¢ls|P  fora.e. z € Q and every s € RV .

Then any (PS).-sequence (uy) for f bounded in LP($; R™N) admits a subsequence strong-
ly convergent in LP(; RY).

Proof. From (G3) we deduce that (G(up)) is bounded from below. Taking into account
(&1), it follows that (€(up)) is bounded. By (£3) there exists a subsequence, still denoted
by (up), converging weakly in LP(2; RY) and a.e. to some u € D (£).

Given £ > 0, by (&2.2) and (G4) we may find kg > 1 such that

E(Vgy(w)u) < E(u) +¢,
/Q(l — Vg (1)) G (z,u; —u)dr < €.
Since Iy, (u)u € D (E) N L>®(;RYN), by (E,.1) there exists k; > ko such that
(3.13) Vh e N:  E(Ok, (up)Vk, (u)u) < E(u) + ¢,
/Q(l — Dgy () 0k (1)) G (2, u; —u) dzx < €.
It follows that ¥, (up)g, (u)u € D (£). Moreover, from (3.3) and (G))) we get

G°(z, up; Ok, (up) Vg (u)u — up) <
< gy (up) G° (@, up; Vg (w)u — up) + (1 — O, (un))G°(x, up; —up) <
< oy m(x) (koM 4+ ki M) + a.(x) + e|ug|? .
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From (2.18) and Fatou’s Lemma we deduce that

limsup [ [G®(z, un; Tg, (un) ko (u)u — up) — elunl’] dz <
h—oo JQ

< [ 16 @, s 9, () O (w)s = ) = eful’] do <
< /9(1 Dy () Oy (0))G° (, 05 —u) d < €,

hence
(3.14) limsup [ G°(z, up; Uk, (un)Oro (u)u — up) do < esup |lualh + €.
o h

h—o00
Since (up) is a (PS).sequence, by Theorem 2.16 there exists uj, € 0f (uy) with ||u} ||,y <
|df| (up), so that hlim lluplly = 0. Applying (c) of Theorem 3.6, we get
—00

E (O, (un)Ong (w)u) > € (un) — /QGO(x, Up; Vg, (Uun) Do (w)u — up) do +
—i—/Qu}kL - (9k, (un) Ok (W) u — up) da .

Taking into account (3.13), (3.14) and passing to the upper limit, we obtain
limsup & (up) < E(u) + 2 + esup [Juglfp .
h

h—o0

By the arbitrariness of € > 0, we finally have
limsup &(up) < E(u)

h—o0

and the strong convergence of (u) to u follows from (€4). m

4 Area type functionals

Let n > 2, N > 1, Q be a bounded open subset of R® with Lipschitz boundary and let
¥:R"™W >R

be a convex function satisfying

{ U(0) =0, ¥(&£) > 0 for any £ # 0 and

v
) there exists ¢ > 0 such that ¥(¢) < c[¢] for any £ € R™.

We want to study the functional £ : L#1(Q; RY) — R U {+o0} defined by

( a o Dus S
/\I!(Du )dx—i—/\ll (wus') d|Dw’| (z)+
Q Q
E(u) = +/\If°°(u ®v) dH" (z) if u € BV(; RN),
o0
| +oo if w € La-1(Q; RV)\ BV (Q; RY),
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where Du = Du® dx+ Du® is the Lebesgue decomposition of Du, | Du?| is the total variation
of Du®, Du®/|Du?®| is the Radon-Nikodym derivative of Du® with respect to |Du®|, ¥ is
the recession functional associated with ¥, v is the outer normal to €2 and the trace of u
on 0N is still denoted by u (see e.g. [4, 29]).

Theorem 4.1 The functional £ satisfies conditions (€1), (&), (&) and (&4).

The section will be devoted to the proof of this result. We begin establishing some technical
lemmas. For notions concerning the space BV, such as those of @, S,, u* and u~, we refer
the reader to [2, 3.

In BV (€; R") we will consider the norm

||u||BV:/Q|Du“|dx+ |Du5|(Q)+/m\u|d7{"’1(x),

which is equivalent to the standard norm of BV (; RY).

Lemma 4.2 For every u € BV (Q;RY) and every € > 0 there exists v € C°(Q; RY) such
that

[ 1Dvl dz = |lull v
Q

[ —ull = <e, <e, [EW)-E()l<e, vl < esssuplul.

Proof. Let § > 0, let R > 0 with Q C Bg (0) and let
1
Ip(z) =1 — min {max{h%[l — hd(z,R™\ Q)],O} , 1} .

Define 4 € BV (Bg (0); RY) by

. u(r) ifx e,
“('”):{ 0  ifzeBr(0)\Q.

According to [11, Lemma 7.4 and formula (7.2)], if A is sufficiently large, we have that
Opu € BV (G RY), |[9pu — ul| = < & and

[T+ D) e + D@y’ () <
al?2 n S n—1 —
</Q,/1+\Du| dc +|Du\(Q)+/m|u|d”H +0
=/ J1+|Das2dL® + |Daf| (B (0) + 6.
Br(0)

Moreover, ¥,u has compact support in © and esssup |9,u| < esssup |ul.
Q Q

If we regularize J,u by convolution, we easily get v € C%°(Q; RY) with

|7 00 Sessgup\u\, ||v—u||ﬁ )
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and

1+ [Do[2dL" 1+ |Dae|?dL" + |Da’|(B .
o iiDepact < [ /i [Das dct + |Di| (B (0)) + 6

lullsy = [ |Da?|dz + | Di|(Br (0)).
Br(0)

Since

D
5u=/ U(Da%) da + o (22 ) gipas)
(w) Br(0) (D) BR(0) (IDus\) D

by the results of [45] the assertion follows (see also [4, Fact 3.1]). m

Lemma 4.3 The following facts hold:
(@) ¥ :R™ — R is Lipschitz continuous of some constant Lip(¥) > 0;
(b) for any & € R™ and s € [0, 1] we have ¥ (s€) < s¥(§);

(c) for every o > 0 there exists d, > 0 such that

VEER™ 1 T(E) > dy(€] — 0);

(d) €: BV(;RY) = R is Lipschitz continuous of constant Lip(¥);

(e) if o and d, are as in (c), we have

Yue BV(QRY):  Eu) > do(|ullpy — 0L(Q)) .

Proof. Properties (a) and (b) easily follow from the convexity of ¥ and assumption ().
To prove (c), assume by contradiction that o > 0 and (&) is a sequence with ¥(&,) <
= (|&n| — 0). If 4] — 400, we have eventually

w(g—") < 2&) <1<1—i> .
€l &l A |l
Up to a subsequence, (&,/|&x|) is convergent to some 7 # 0 with ¥(n) < 0, which is
impossible. Since [£,| is bounded, up to a subsequence we have &, — £ with || > o and
U(€) < 0, which is again impossible.

Finally, (d) easily follows from (a) and the definition of || - || gy, while (e) follows from
(c) (see e.g. [37, Lemma 4.1]). m

Let now 9 € CHRY) with 0 <9 < 1, |[|[VY|oo <2, 9(s) =1 for |s] <1 and J(s) =0
for |s| > 2. Define 9;, : RY — R and T}, Ry, : R — RN by

In(s) = 0 (%) L Ta(s) = On(s)s, Ra(s) = (1 — 0a(s))s.
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Lemma 4.4 There exists a constant cy > 0 such that

u

e(v(7)v) < €@+ SFlolaliulay

E(Thou) < E(u)+ cy l|Du\({x € Q\ S, : |u(z)| > h}) +

/ ut — [ dH (o) + uldH (@) |
{z€Sy:lut(z)|>h or [u=(z)|>h} {zxed:|u(z)|>h}
S(Thow)+E(Rhow)§5(w)+Cq,/ |Dw| dx
{ze:h<|w(x)|<2h}

whenever h > 1, u € BV (Q;RY), v € BV(Q;RY) N L>®(Q; RY) and w € C(Q; RY).

Proof. Suppose first that u,v € C°(2; RY). Then, since

oo (3] =0 () 2+ v [oo(2) o]

by (¥) and Lemma 4.3 it follows that

(4.5) £ (19 (%) v) < &)+ Lip(@)%”v”w /Q \Du| da .

In the general case, let us consider two sequences (ug), (vg) in C2°(Q; RY) converging to
u,v in L'(Q;RY) with [, |Dug|dz — |Jullsyv, €(vk) — €(v) and ||vg]lec < ||v]]eo- Passing

to the lower limit in (4.5), we obtain the first inequality in the assertion.
To prove the second inequality, we first observe that by Lemma 4.3 we have

(4.6) E(Ty ou) < E(u) + Lip(V)|| Ry, o ul| gy -

In order to estimate the last term in (4.6), we apply the chain rule of [2, 49]. Since
Rp(s) =0if |s| < h and ||DRp|| < kg for some ky > 0, we have

| \D(En@)de < [ \DRA(@)][Du?| do < ko [ Duf| dx,
Q Q\Sy {z€Q\Sy:|a(z)|>h}

DRy ()"

@) < [, IPEA@|dIDwl(r) + [ [Ra*) = Bau)] aH™ (@) <

< ko(|Du?| ({z € Q\ S, : |i(z)| > h}) +/

{z€Su:|ut(2)|>h or [u~(z)|>h}

ut —u [ dH™ ()

and

/a | Ra(u)| dH(z) < ko u| dH™ 1 (z) .

{zed:|u(z)|>h}

Combining these three estimates, we get

4.7) ||Rp o u <k / Du®|dx + |Du’|({x € Q\ S, : |u(x)| > h})+
A Rl < bo([ D] (D € QS i) > 1)
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lut —u [ dH™ (z) + lul d%”l(x)> :

! J
{zx€Sy:lut(z)|>h or |u—(z)|>h} {zxed:|u(z)|>h}

Then the second inequality follows from (4.6) and (4.7).
Again, since W is Lipschitz continuous, we have

< ——= [ 1Dd{—|D <
< h /Q 9 ) Dw lw|dzx <

D(T}, o w)) dz — /Q U (9, (w) Dw) dz

< 2Lip(®)|| V9 oo/ Duw|dz .
< 2LVl [, [Dulds
In a similar way, it is also
[ 9(DEow)dz — [ B((1 = 9,(w))Dw) dx‘ < 2Lip(W) [Vl [ \Dw|dz .
Q Q {h<|w|<2h}

Hence, combining the last two estimates and taking into account (b) of Lemma 4.3, we get
/ U(D(T} o w)) dz + / U(D(Ry o w)) dz <
Q Q

< / U(Dw) dz + 4Lip(\Il)||V19||oo/ \Duw)| dz
Q {h<|w|<2h}

and the proof is complete. m

Lemma 4.8 Let (uy) be a sequence in C°(Q;RY) and assume that (uy) is bounded in
BV (; RY). B B
Then for every € > 0 and every k € N there ezists k > k such that

lim inf / |Duyp|dx < €.
h—00
{k<|up|<2k}

Proof. Let m > 1 be such that

sup/ | Duy,| dx < me

and let 4y € N with 2% > k. Then, since

io+m—1

> / |Duh|dm</ \Duh\daj<
{2i<|up|<2it1}

=10

there exists 75, between 73 and 79 +m — 1 such that

£
Duy|dx < —.
/{Zih <Jup|<2int1} | h| =9

Passing to a subsequence (ihj), we can suppose iy, =1 > ig, and setting k = 2! we get
. €
vieN: [ |Duyldv<:.
{k< \uh]. |<2k}

Then the assertion follows. m
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Lemma 4.9 Let (uy) be a sequence in CP(;RY) and let v € BV (Q;RY) with ||uy, —
ully = 0 and E(up) — £(u). B B
Then for every € > 0 and every k € N there exists k > k such that

lim inf || Ry o us||py < €.
h—o0

Proof. Given € > 0, let d > 0 be such that

veer™: w(© 24~ 5 )

according to Lemma 4.3. Let also cg > 0 be as in Lemma 4.4. By (4.7) and Lemma 4.8,
there exists k > k such that

de
R -
|| k o u”BV < 3L1p(\11) ?
lim inf / Duy| dz < E
1m in Uu X - .
h—o0 h 36\1,

{k<|up| <2k}

From Lemma 4.4 we deduce that
E(Tyou)+ 1i}fr_l)io£1fg(Rk oup) < li’{g(i)glfg(Tk ouy) + li’{r_l)iolgfg(Rk ouy) <

< liminf(€(Ty 0 un) + E(Ry o un)) <

IN

E(u) + cy liffn inf / | Duy| dx <
—00
{k<|un|<2k}

d d
E(u) + 5 < E(Tou) + Lip(W) | R o ullsy + 5 <

A\

2
< g(Tk ou) + gdé‘,
whence 9
h}{I_l)g}lfS(Rk ouyp) < gds :
On the other hand, by Lemma 4.3 we have

3

E(Reoup) > d (||Rk o upl[ gy — 5)

and the assertion follows. m

Now we can prove the main auxiliary result we need for the proof of Theorem 4.1. It
is a property of the space BV which could be interesting also in itself.

Theorem 4.10 Let (uy) be a sequence in BV (Q; RY) and let w € BV (Q; RYN) with ||up, —
ully = 0 and E(up) — E(u).
Then (uy,) is strongly convergent to u in L»—1(Q; RY).
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Proof. By Lemma 4.2 we may find v, € C>°(; RY) with

1 1 1
lon —unlly <55 llon = unll 2 <5 1€(n) = E(un)| < 7.

Therefore it is sufficent to treat the case in which u, € C®(Q; RY).
By contradiction, up to a subsequence we may assume that there exists € > 0 such that
|lun —ul|_=. > . Let ¢ be a constant such that ||w||_»_ < é||w||py for any w € BV (Q;RY)

(see [24, Theorem 1.28]). According to Lemma 4.9, let £ € N be such that

€ - I €
| By 0 uf| = < 3 h’{r_l)ér.}fHRk oup||.= < é 11}{13)(1)101f||Rk oup|lpv < 3"
Then we have
(4.11) lun — ull o <||[Rgoup|l o+ ||Thoup — Ty oull o+ ||Rpoull = .

Since Ty o up — Ty o in La-1(; RN) as h — oo, passing to the lower limit in (4.11) we
get
liminf ||up — ul| = <e,
h—00 n—1

whence a contradiction. m

Proof of Theorem 4.1. It is well known that £ satisfies condition (&;). Conditions (&) are
an immediate consequence of Lemma 4.4. From (e) of Lemma 4.3 and Rellich’s Theorem
(see [24, Theorem 1.19]) it follows that & satisfies condition (£3). To prove (&), let (uy) be
a sequence in L#-1 (2; R") weakly convergent to . € BV (Q; R") such that & (uy) converges
to £(u). Again by (e) of Lemma 4.3 and Rellich’s Theorem we deduce that (uy) is strongly
convergent to u in L'(Q; RY). Then the assertion follows from Theorem 4.10. m

5 A result of Clark type

Let n > 2 and € be a bounded open subset of R with Lipschitz boundary, let ¥ : R*™Y —
R be an even convex function satisfying (¥) and let G : Q@ x RY¥ — R be a function
satisfying (G1), (G2), (G3), (G}) with p = -2+ and the following conditions:

(5.1 there exist @ € L'(Q) and b € L"() such that
' G(z,s) > —a(z) —b(z)|s|  for a.e. z € Q and every s € RV;
(5.2) lim Gz, s) = 400 for a.e. z € Q;
|s]—o00 |S|
(5.3) {s —> G(z,s)} is even for a.e. z € ().

Finally, define £ as in Section 4. The main result of this section is:
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Theorem 5.4 For every k € N there exists Ay such that for any A > Ay the problem
u € BV(; RY)

S(U)—S(u)-l-/QGO(x,u;v—u)dx2)\/ (v—u)dx Vv € BV(Q;RYN)

,/1—i—|u|2

admits at least k pairs (u, —u) of distinct solutions.
For the proof we need the following

Lemma 5.5 Let (up,) be a bounded sequence in L7 (Q; RYN), which is convergent a.e. to
u, and let (og) be a positively divergent sequence of real numbers.
Then we have

lim/ Mdm=+oo ifu##0,
hJa On

liminf/ G(@:entin) 405 ifu—0.
h Q On

Proof. If u = 0, the assertion follows directly from (5.1). If u # 0, we have

1 ~
/dez de__/ &dx_/ blun| da
Q On {u#0} Oh {u=0} {u=0}

From (5.1), (5.2) and Fatou’s Lemma, we deduce that

lim G($, Qhuh)

dxr = +o00,
h J{uz0} On

whence the assertion. m

Proof of Theorem 5.4. First of all, set

G(z,s) = G(z,s) — AM(y/1+|s]2—1).

It is easy to see that also G satisfies (G1), (G2), (G%), (GY), (5.1), (5.2), (5.3) and that

S N

Now define a lower semicontinuous functional f : L#-1(€; RY) — R U {400} by

G°(z,5;8) = G°(z,5;8) — A

f(u) =E(u) +/ G(x,u)dz.
Q
Then f is even by (5.3) and satisfies condition (epi). by Theorem 3.11. We claim that

(5.6) lim  f(u) = +o0.

l[ull _np —o0
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To prove it, let (us) be a sequence in BV (Q; RY) with [[up|| o =1 and let g, — +o0. By
(e) of Lemma 4.3 there exist ¢ > 0 and d > 0 such that

Yue BV(QRY) . E(u) > d(|lullsy — EL7(Q)) .

If ||upl|py — +o0, it readily follows from (5.1) that f(gpup) — +00. Otherwise, up to a
subsequence, uy, is convergent a.e. and the assertion follows from the previous Lemma and
the inequality

(lallav = Seri@)) + [ CE0) q0]

f(onun) > on
On

Since f is bounded below on bounded subsets of L#=1(Q;RY), it follows from (5.6)
that f is bounded below on all L#1 (€; R"); furthermore, it also turns out from (5.6) that
any (PS). sequence is bounded, hence f satisfies (PS). by Theorem 3.12.

Finally, let £ > 1, let wy, ..., wy be linearly independent elements of BV (Q; RY) and
let ¢ : S¥=1 — L7 1(Q; RYN) be the odd continuous map defined by

k
Y(E) = Z §w; -

Because of (G%), it is easily seen that
3

sup {g(u) + [ Gl ue w(sk—l)} < 400

inf{/ﬂ(,/u a2 —1)dz:ue w(s’“)} >0,

Therefore there exists Ay > 0 such that sup f(¥(§)) < 0 whenever A > Aj.
gesk—l
Applying Theorem 2.12, it follows that f admits at least k pairs (uy, —ug) of critical
points. Therefore, by Theorem 2.16, for any wuy it is possible to apply Theorem 3.6 (with

G instead of @), whence the assertion. m

and

6 A superlinear potential

Let n > 2 and € be a bounded open subset of R with Lipschitz boundary, let ¥ : R*™Y —
R be an even convex function satisfying (¥) and let G : Q2 x R¥ — R be a function
satisfying (G1), (G2), (G%), (GY), (5.3) with p = - and the following condition:
(6.1 there exist ¢ > 1 and R > 0 such that

' G°(z,s;8) < qG(x,s) <0 for a.e. z € Q and every s € RY with [s| > R.
Define £ as in section 4 and an even lower semicontinuous functional f : L#-1(Q;R") —
R U {+00} by

f(u) :5(u)+/QG(x,u) dz .
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Theorem 6.2 There ezists a sequence (uy) of solutions of the problem
u € BV (Q;RM)
E(w) — E(u) +/QG°(x,u;v —u)dz >0 VYoe BV(Q;RY)

with f(up) — +oo.

Proof. According to (3.3), we have

Is|] <R = |G°(z,s;9)| < ag(z)|s|.
Combining this fact with (6.1) and (G%), we deduce that there exists ap € L'(€2) such that
(6.3) G°(z, s;s) < qG(z, s) + ag(x) for a.e. z € Q and every s € RV .

Moreover, from (6.1) and Lebourg’s Theorem [14] it follows that for every s € RY with
|s| = 1 the function {t — t7?G(x,ts)} is nonincreasing on [R,+oo[. Taking into account
(G%) and possibly substituting ag with another function in L!(Q), we deduce that

(6.4) G(z,s) < ag(x) — bo(z)|s|?  for a.e. z € Q and every s € RV,

where

bo(z) = inf (~R 'G(z,Rs)) >0  forae. z€Q.

js]=1

Finally, since {§ — G°(z,s;8)} is a convex function vanishing at the origin, we have
G°(z,s;s) > —G°(z, s;—s). Combining (6.3) with (G’), we deduce that for every € > 0
there exists a. € L'(Q) such that

(6.5) G(z,s) > —a.(z) —els|n 1 for a.e. z € Q and every s € RV.

By Theorem 3.11 we have that f satisfies (epi). for any ¢ € R and that |dz,Gs| (0,A) =1
for any A > f(0).
We also recall that, since ¥ is Lipschitz continuous, there exists M € R such that

(66) (a+1)%(e) ~ w(26) > L2 w(e) - M,

(6.7) (0 + 1)W() — w2(26) > T Lu(e)

(see also [36]).

We claim that f satifies the condition (PS). for every ¢ € R. Let (up) be a (PS),.-
sequence for f. By Theorem 2.16 there exists a sequence (u}) in L™(Q;RY) with u} €
Of (up) and ||u}||, — 0. According to Theorem 3.6 and (6.3), we have

E(2uy) > S(uh)—/QG"(a:,uh;uh)da:—i-/QuZ-uhdx2

> S(Uh)—q/gG(a:,u,de%—/gu}:-uhda:—/ﬂao(x)d:r.
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By the definition of f, it follows

qf (un) + [[wpllnllunll 25 + /an(fﬂ) dz 2 (¢ + 1)€ (un) — E(2un) -
Finally, applying (6.6) and (6.7) we get

qf (un) + ([ lInlfunll 27 +/ ag(r) dz > ng(uh) ML Q).

By (e) of Lemma 4.3 we deduce that (us) is bounded in BV (Q; R"), hence in L7 (Q; RY).
Applying Theorem 3.12 we get that (u;) admits a strongly convergent subsequence and
(PS), follows.

By [36, Lemma 3.8], there exist a strictly increasing sequence (W},) of finite-dimensional
subspaces of BV (; RY) N L>®(Q;RY) and a strictly decreasing sequence (Z3,) of closed

subspaces of L#-1(€; R") such that La-1(Q;RY) = W), ® Z, and N Z, = {0}. By (e) of
h=0
Lemma 4.3 there exists o > 0 such that

Yu € L+1(Q;RY) : Jul| 2. =0 = €&E(u)>1.

We claim that
liin(inf{f(u) tu € Zn, |ull 2, = o}) > £(0).

Actually, assume by contradiction that (u) is a sequence with up € Zp, |lup||_=. = 0 and
limsup f(un) < f(0).
h

Taking into account (G%) and Lemma 4.3, we deduce that (€(up)) is bounded, so that (up)
is bounded in BV (Q; RY). Therefore, up to a subsequence, (u) is convergent a.e. to 0.
From (6.5) it follows that

l1m1nf/ (2, up) + e|up| 71 1 da:>/G:c 0) dz

hence
liminf/ G(z,up) dxz/G(a:,O) dx
h Q Q

by the boundedness of (uy) in L7 (Q; RY) and the arbitrariness of e. Therefore

limsup&(up) < £(0) =
h

which contradicts the choice of p.
Now, fix h with

inf{f(u) : u € Zg, [[ull =, = o}) > f(0)

and set Z = Z; and V;, = W5,,. Then Z satisfies assumption (a) of Theorem 2.13 for
some « > f(0).
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Finally, since V}, is finite-dimensional,

lull == (/Q bo\u|qu)q

is a norm on V}, equivalent to the norm of BV (Q; R"). Then, combining (6.4) with (d) of
Lemma 4.3, we see that also assumption (b) of Theorem 2.13 is satisfied.

Therefore there exists a sequence (uy) of critical points for f with f(uy) — 400 and,
by Theorems 2.16 and 3.6, the result follows. m
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