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Abstract. Let Q be a smooth bounded domain in R¥. Assume f € C![0,00) is a non-negative
function such that f(u)/u is increasing on (0,00). Let a be a real number and let b > 0, b #Z 0 be a
continuous function such that b = 0 on 0Q2. We study the logistic equation Au+ au = b(z) f(u) in Q. The
special feature of this work is the uniqueness of positive solutions blowing-up on 9f2, in a general setting
that arises in probability theory.

Unicité de la solution explosant au bord pour équations logistiques avec absorption

Résumé. Soit Q un domaine borné et régulier de RY. On suppose que f € C*[0,00) est une fonction
non-negative telle que f(u)/u soit strictement croissante sur (0,400). Soit a un réel et b >0, b Z 0, une
fonction continue sur Q telle que b = 0 sur 0Q. On étudie ’équation logistique Au + au = b(x) f(u) sur
Q. Le but de cette Note est de montrer l'unicité de la solution explosant au bord de  dans un contexte
général, qui apparait en théorie des probabilités.

Version frangaise abrégée. Soit Q) C RN (N > 3) un domaine borné et régulier, a un
parametre réel et b € C%#(Q), u € (0,1), b >0, b # 0 dans Q. On consideére 1’équation logistique

Au + au = b(z) f(u) dans Q, (1)
ot f € C'0,00) satisfait
(A1) f>0et f(u)/u est strictement croissante sur (0, +00).

Soit
Qo :=int{z € Q: b(z) =0}
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et on suppose que 0Qq est régulier (éventuellement vide), Qo C Q et b > 0 sur 2\ Q. On désigne
par Aeo1 la premiere valeur propre (avec conditions de Dirichlet) de 'opérateur (—A) dans Qo,
avec la convention \oo,1 = +00 si Qp = 0.

On dit que u est une solution large (explosive) de (1) si u > 0 dans Q et u(x) — oo si
d(x) := dist (z,002) — 0.

Soit D > 0 et R :[D,00) = (0,400) une fonction mesurable. On dit que R a une variation
réguliere d’indice p € R (notation: R € R,) si lim,_ oo R(§u)/R(u) = &P, pour chaque £ > 0
(voir [11]).

Soit K I’ensemble des fonctions & : (0,7) — (0,+00) (pour un certain v), de classe C!, crois-

f(f k(s)ds @
k(t)

On démontre le résultat suivant.

santes, telles que lim;_,q+ ( :=¥;, pour i =0, 1.

THEOREME 1. - Supposons que la fonction f satisfait la condition (A1) et que f' est une
fonction & variation réguliére d’indice p # 0. De plus, on suppose que le potentiel b vérifie

(B) b(z) = ck*(d(x)) + o(k*(d(x))) sid(z) = 0, avecc >0 et k € K.

Alors, pour chaque a € (—00, A1), ’équation (1) admet une unique solution explosive u,. On
a, de plus,

. ua ()
| =
B0 hd(z))
) 1/p
ot §o = (c (;_flpp)) et la fonction h est définie par
/wL—/tk(s)ds vt € (0,v)
we) V2F(s)  Jo ’ n

Let Q c RY (N > 3) be a smooth bounded domain. Consider the semilinear elliptic equation
Au+ au = b(z) f (u) in Q, (1)

where a is a real parameter and b € C%#(Q), for some p € (0,1), such that b > 0, b # 0 in Q.
Suppose that f € C[0, 00) satisfies
(A1) f>0and f(u)/u is increasing on (0, 00).

In the study of positive solutions for (1), subject to the homogeneous Dirichlet boundary
condition, an important role is played by the zero set (see [1])

Qo :=int{x € Q: b(x) =0}

We shall assume throughout that Qg is smooth (possibly empty), Qo C ©, and b > 0in Q\ Q.
By a large (explosive) solution of (1) we mean a solution u of (1) such that v > 0 in Q and
u(z) — oo as d(z) := dist (z,00) — 0. In [3, 4] we study the existence of large solutions for (1)
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and also deduce several existence and unicity results for a related problem. Note that any large
solution of (1) is positive and it can exists only if the Keller-Osserman condition holds (see [4])

e} dt t
(A2) /1 0 < o0, where F(t) =/0 f(s)ds.

Let Hy, define the Dirichlet Laplacian on the set g C 2 as the unique self-adjoint operator
associated to the quadratic form ¥ (u) = [, |[Vu|? dz with form domain

Hp(Qo) ={ue Hy(Q): u(x) =0 forae ze€Q\ N}

If 8Qy satisfies an exterior cone condition, then H} () coincides with Hj(Q) and H, is the
classical Laplace operator with Dirichlet condition on 9.

Let Aco,1 be the first Dirichlet eigenvalue of Hy, in Q. We understand Ao 1 = +00 if Q9 = 0.

The main result in [3] asserts that equation (1) has a large solution iff a € (—00, Aso,1).

The special feature of this paper is the uniqueness of large solutions of (1) in a general framework
for f and b, under the restriction b = 0 on 012, inherited from the logistic equation (see [6]).

We start with

DEFINITION 1 ([11]). - A positive measurable function R defined on [D, 00), for some D > 0,
is called regularly varying (at infinity) with index g € R, written R € Ry, if for all £ > 0

lim R(&u)/R(u) = &7.
uU—r 00
When the index of regular variation q is zero, we say that the function is slowly varying.
REMARK 1. - Any function R € R, can be written in terms of a slowly varying function.

Indeed, set R(u) = u?L(u). From Definition 1 we easily derive that L varies slowly.

The canonical g-varying function is u?. The functions In(1 + u), Inln(e + u), exp {(Inw)*},
a € (0,1) vary slowly, as well as any measurable function on [D, 0o) with positive limit at infinity.

In what follows L denotes an arbitrary slowly varying function and D > 0 a positive number.
For details on Properties 1-4 stated below, we refer to Seneta [11] (pp. 7, 18, 53 and 78).

PROPERTY 1. - For any m > 0, 4™ L(u) = oo, u ™L(u) = 0 as u — oc.

PROPERTY 2. - Any positive C'-function on [D, 0o) satisfying uL} (u)/L1(u) — 0 as u — oo is
slowly varying. Moreover, if the above limit is ¢ € R, then L; € R,.

PROPERTY 3. - Assume R : [D,00) — (0,00) is measurable and Lebesgue integrable on each
finite subinterval of [D, 0o0). Then R varies regularly iff there exists j € R such that

Jj+1
e (O @)
u—oo [ xI R(x) dx
exists and is a positive number, say a; + 1. In this case, R € R, with ¢ = a; — j.
PROPERTY 4 (Karamata Theorem, 1933). - If R € R, is Lebesgue integrable on each finite
subinterval of [D, 00), then the limit defined by (2) is ¢ + j + 1, for every j > —g — 1.

LEMMA 1. - Assume (A1) holds. Then we have the equivalence

Q) f € R, = b) lim uf'(u)/f(u) =9 < o0 = o) lim (F/) (w) :=7>0.

lim
U— 00
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REMARK 2. - Let a) of Lemma 1 be fulfilled. The following assertions hold
(i) p is non-negative. Indeed, if p < 0 then Property 1 and Remark 1 would contradict (Ay);
(1) y=1/(p+2) =1/(8 + 1) (see the proof of Lemma 1);
(791) If p # 0, then (Az) holds (use limy, o0 f(u)/uP = 00, Vp € (1,1+4p)). The converse implication
is not necessarily true (take f(u) = uln*(u + 1)). However, there are cases when p = 0 and (As)
fails so that (1) has no large solutions. This is illustrated by f(u) =wu or f(u) = uln(u + 1).

Inspired by the definition of , we denote by K the set of all positive, increasing C*-functions
¢ (@)
Jo k(s)ds
k(t)
It is easy to see that £ = 0 and ¢; € [0, 1], for every k € K. Our next result gives examples of
functions k € K with lim;_,o+ k(t) = 0, for every ¢; € [0,1].

k defined on (0, v), for some v > 0, which satisfy lim; o+ =4;, i=0,1.

LEMMA 2. - Let S € C'[D, 00) be such that S’ € R, with ¢ > —1. Hence the following hold:
a) Ifk(t)=exp{—-S(1/t)} Vt<1/D, then k € K with ¢, = 0.
b) Ifk(t)=1/S(1/t) Vt<1/D, thenk € K with ¢, =1/(qg+2) € (0,1).
¢) Ifk(t)=1/InS(1/t) Vt<1/D, then k € K with ¢, = 1.

REMARK 3. - If S € C'[D, ), then S’ € R, with ¢ > —1 iff for somem > 0,C > 0 and B > D
we have S(u) = Cu™exp {f; @ dt}, Vu > B, where y € C[B,o0) satisfies lim, oo y(u) = 0. In
this case, S’ € R, with ¢ =m — 1. This is a consequence of Properties 3 and 4.

Our main result is

THEOREM 1. - Let (A;) hold and f' € R, with p > 0. Assume b= 0 on 0N satisfies
(B) b(x) = ck?®(d(z)) + o(k?(d(z))) as d(x) — 0, for some constant ¢ >0 and k € K .

Then, for any a € (—00, Aoo,1), Eq. (1) admits a unique large solution u,. Moreover,

. o () _
B Rld(z)) & 3)
1/
where &y = (f(;f%) ’ and h is defined by
oo ds t

By Remark 3, the assumption f' € R, with p > 0 holds iff there exist p > 1 and B > 0 such
that f(u) = CuPexp {fg @ dt}, for all u > B (y as before and p = p+ 1). If B is large enough
(y > —pon [B,x)), then f(u)/u is increasing on [B, 00). Thus, to get the whole range of functions
f for which our Theorem 1 applies we have only to “paste” a suitable smooth function on [0, B]
in accordance with (4;). A simple way to do this is to define f(u) = uPexp{ fou zi—t) dt}, for all
u > 0, where z € C[0,00) is non-negative such that lim;_,o+ 2(t)/t € [0, 0) and lim, o z(u) = 0.
Clearly, f(u) = v?, f(u) = uPIln(u + 1), and f(u) = u? arctanu (p > 1) fall into this category.

Lemma 2 provides a practical method to find functions & which can be considered in the state-
ment of Theorem 1. Here are some examples: k(t) = exp {—1/t*}, k(t) = exp {—In(1 + 3)/t*},
k(t) = exp {— [arctan (})] /t*}, k(t) = —1/Int, k(t) = t*/In(1 + }), k(t) = ¢, for some a > 0.
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As we shall see, the uniqueness lies upon the crucial observation (3), which shows that all
explosive solutions have the same boundary behaviour. Note that the only case of Theorem 1
studied so far is f(u) = u? (p > 1) and k(t) = t® (o > 0) (see [6]). For related results on the
uniqueness of explosive solutions (mainly in the cases b =1 and a = 0) we refer to [2, 8, 9, 12].

Proof of Lemma 1. - From Property 4 and Remark 2 (i) we deduce a) => b) and ¥ = p + 1.
Conversely, b) = a) follows by Property 3 since ¢ > 1 cf. (A4;).

!
b) = c). Indeed, lim, 00 4414 = 1+ 9, which yields 25 = limy o0 [1 - (?) (u)] =1-17.

¢) = b). Choose s; > 0 such that (E)I (u) > 3, Yu > s;. So, (5) (u) > M + (?) (s1),

Yu > s1. Passing to the limit u — oo, we find lim,_, f((u)) = oo. Thus, lim,_, ﬁ = % Since
1—7v:=lim, 0o %, we obtain lim,_ o “Jf(g)‘) =1, [ ]

o

Proof of Lemma 2. - Since lim, o, uS'(u) = 0o (cf. Property 1), from Karamata Theorem we

deduce lim,,_, o, “521(;;) = ¢+ 1> 0. Therefore, in any of the cases a), b), ¢), lim;_,o+ k(t) = 0 and

k is an increasing C''-function on (0, v), for v > 0 sufficiently small.

a) It is clear that lim;_,q+ #}% = lim;_,o+ M = —(q + 1). By I'Hospital’s rule, £, =
k(s) ds) Ink(t) . k(s)ds)k'(t)
llmt_>0+ k'((t)) = 0 and llmt_>0+ % B _qﬁ SO7 1-— 61 = llmt_>0+ % 1
b) We see that lim;_,q+ T:(:)) = limy_,o+ tsgég = ¢ + 1. By I’Hospital’s rule, ¢y = 0 and
. [ k(s) ds INIOKE th' (£) 1
llmt_>0+ —OW = q+2 SO, 61 =1- hmt_>0+ JW W = q+—2
We have i LA SO _ 41, By PHospital’s rule, I LOL
¢) We have lim;_,o+ k2—(t) = lim;_,¢+ tS(l/t) = ¢+ 1. By PHospital’s rule, lim,_,o+ “zm— = 1.
. Ck(s)d
Thus, £o =0 and £; = 1 — lim,_,+ J 2k 9 =1 n

Proof of Theorem 1. - Fix a € (—00, Ax0,1)- By [3, Theorem 1], (1) has at least a large solution.

If we prove that (3) holds for an arbitrary large solution u, of (1), then the uniqueness is a
consequence of [3, Lemma 3]. Indeed, if u; and uy are two arbitrary large solutions of (1), then
(3) yields limg(z) 50+ 52 &3 = 1. Hence, for any ¢ € (0,1), there exists § = d(e) > 0 such that

(1 —-e)uz(z) <ui(z) < (1+e)ua(z), Vze N with 0<d(z) <. (5)

Choosing eventually a smaller § > 0, we can assume that Qg C Cs, where Cs := {z € Q : d(z) > §}.
It is clear that u; is a positive solution of the boundary value problem

A¢ + agp = b(z)f(¢) in Cs, ¢=wu; on 9Cs. (6)

By (A4;) and (5), we see that ¢~ = (1 — &)us (resp., ¢ = (1 + &)uz) is a positive sub-solution
(resp., super-solution) of (6). By the sub and super-solutions method, (6) has a positive solution
#1 satisfying ¢~ < ¢ < ¢t in Cs. Since b > 0 on Cs \ Qq, by [3, Lemma 3] we derive that (6) has
a unique positive solution, i.e., u3 = ¢ in Cy. This yields (1 — &)uz(z) < ur(x) < (1 4 €)uz(x) in
Cs, so that (5) holds in Q. Passing to the limit € — 0%, we conclude that u; = us.
In order to prove (3) we state some useful properties about h:
(h1) h € C*(0,v), lim;_,o+ h(t) = oo (straightforward from (4)).
hll(t)

1 2
(h2) limt_,0+ R0 F (DD = it 2++pﬁ1 , V€ > 0 (so, h" > 0 on (0,29), for § > 0 small enough).

)f
(hg) limg_o+ h(t)/h"(t) = limy_o+ h'(£)/h"(t) = 0.
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We check (hy) for £ =1 only, since f € R,41. Clearly, h'(t) = —k(t)\/2F (h(t)) and

() ([ k(s)ds
H(B) = O Bit) (1‘2 (kg(t) )f(h(t))f;g)([};“(g]—lﬂds) vee w0

We see that lim,,_,o v/ F(uw)/f(u) = 0. Thus, from "'Hospital’s rule and Lemma 1 we infer that

I F(u) 1 p ()
im =-—n= .
Using (7) and (8) we derive (h2) and also
' - Vk(s)d -
i MO _=204p) L ke)ds W b
t—0+ h''(t) 24bip o0t k(t)  wooo fu) [C[F(s)]"12ds 2+ lip

From (hy) and (hs), lim;_,g+ h'(t) = —oo. So, 'Hospital’s rule and (9) yield lim;_,o+ :,(—(tt)) =0.
This and (9) lead to lim; o+ % = 0 which proves (hs).

Proof of (3). Fix € € (0,¢/2). Since b = 0 on 9 and (B) holds, we take § > 0 so that
(i) d(z) is a C?-function on the set {z € RN : d(z) < 26};
(ii) k2 is increasing on (0,26);
(iii) (c — e)k?(d(z)) < b(z) < (c+¢€)k?(d(z)), Yz € Q with 0 < d(z) < 2;
(iv) R"(t) > 0Vt € (0,20) (from (h2)).

1/

Let o € (0,8) be arbitrary. We define £+ = [(C;Tt)?z%p)] * and vy (x) = h(d(z) + )¢, for
all z with d(z) + o < 24 resp., v] (z) = h(d(z) — )&, for all z with o < d(z) < 24.

Using (i)-(iv), when ¢ < d(z) < 26 we obtain (since |Vd(z)| = 1)

Ao+ ot~ M) <€) = o) ( ey~ M) + =T 41
(e 2~ (1) _o)é"))
WdE) - o)

Similarly, when d(z) + o < 26 we find

Avy +avy —b(@)f(v;) > € h"(d() + o) (%

—(c+¢)

h"'(d(z) + o)

Using (h2) and (h3) we see that, by diminishing §, we can assume
Avt (z) + avt(z) — b(z) f(v}(z)) <0 Vz with o < d(z) < 26;

Av, (z) + av, (z) — b(z) f(v, (z)) > 0 Vz with d(z) + o < 20.

Let ©; and Q5 be smooth bounded_ domains such that Q CC Oy CC! )5 and the first Dirichlet
eigenvalue of (—A) in the domain Q;\ ) is greater than a. Let p € C%#(Qy) satisfy 0 < p(z) < b(x)
forz € A\ Cas,p=00n 2 \ Qand p>0on N\ Q. Denote by w a positive large solution of

Aw + aw = p(z) f(w) in Q \ Cas.
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The existence of w is ensured by Theorem 1 in [3].
Suppose that u, is an arbitrary large solution of (1) and let v := u, + w. Then v satisfies

Av+av —b(@)f(v) <0 in Q\ Cos.

Since vjg = 00 >V, 5q and vjac,; = 00 >V, 50, , Lemma 1 in [3] implies

ug +w > v, on )\ Cas. (10)
Similarly, o
v +w>u, onC,\Cas. (11)
Letting o — 0in (10) and (11), we deduce h(d(z))¢+ +2w > u,+w > h(d(z))E, for all z € Q\Cas.
, o e Ua(T) . Uq ()
Since w is uniformly bounded on 99, we have ¢~ < liminf —% % < limsup ——~ < £T.
d(z)=0 h(d(z)) ~ 4a)~0 h(d(z))
Letting ¢ — 07 we obtain (3). This concludes the proof of Theorem 1. [ |
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