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Abstract

We study a symmetric nonlinear eigenvalue problem arising in earthquake
initiation and we establish the existence of infinitely many solutions. Under
the effect of an arbitrary perturbation, we prove that the number of solutions
becomes greater and greater if the perturbation tends to zero with respect to
a prescribed topology. Our approach is based on non-smooth critical point
theories in the sense of De Giorgi and Degiovanni.
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1 Introduction

The minimax method has been used intensively in constructing critical points for
functionals defined on Hilbert or Banach spaces as solutions of nonlinear partial dif-
ferential equations or boundary value problems for inequality problems. In particular,
when the problems possess symmetry, one can construct multiple critical points by
the minimax method. This is the general Lusternik-Schnirelmann type theory (see
(2,18, 19, 21, 23, 25]). When an order structure is present, one can also use fixed point
theory, topological degree arguments or variational methods to construct solutions of
differential equations or variational inequalities (see [1, 6, 7, 12, 14]). However, little
work has been done for invariant energy functionals under group actions when one
expects to obtain multiplicity of critical points.

The main purpose of this paper is to consider a concrete nonlinear eigenvalue
variational inequality arising in earthquake initiation and to establish, in the setting
of the non-smooth Lusternik-Schnirelmann theory, the existence of infinitely many
solutions. The main novelty in our framework is the presence of the convex cone of
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functions with non-negative jump across an internal boundary which is composed of
a finite number of bounded connected arcs.

Under some natural assumptions, we prove the existence of infinitely many so-
lutions, as well as further properties of eigensolutions and eigenvalues. Since the
associated energy functional is included neither in the theory of monotone operators,
nor in their Lipschitz perturbations, we employ the notion of lower subdifferential
which is originally due to De Giorgi.

Next, we are concerned with the study of the effect of a small non-symmetric
perturbation and we prove that the number of solutions of the perturbed problem
becomes greater and greater if the perturbation tends to zero with respect to an
appropriate topology. Our proof relies on powerful methods from algebraic topology
developed in Krasnoselski [18] combined with adequate tools in the sense of the
Degiovanni non-smooth critical point theory (see [8, 12, 13]).

2 Physical motivation

Consider, as in [3, 5, 10, 16, 27|, the anti-plane shearing on a system of finite faults
under a slip-dependent friction in an homogeneous linear elastic domain . Let  C R?
be a domain, not necessarily bounded, containing a finite number of cuts. Its bound-
ary 0f) is supposed to be smooth and divided into two disjoint parts: the exterior
boundary I'; = 02 and the internal one I' composed by N 7 bounded connected arcs

},z’ = 1,.., Ny, called cracks or faults. We suppose that the displacement field is
0 in directions Oz and Oy and that u, does not depend on z. The displacement is
therefore denoted simply by w = w(t, z, y). The elastic medium has the shear rigidity
G, the density p and the shear velocity ¢ = /G/p. The non-vanishing shear stress
components are 0., = 7,° + Goyw, 0,y = 7,° + GOyw, and 04y = 0y = =S5 (S>0
is the normal stress on the fault plane). We look for w : R, x £ — R solution of the
wave equation :

Opw(t) = FAw(t) in €, (1)
with the boundary condition :
w(t) =0 on [y, (2)

On T" we denote by [ | the jump across T, (i.e. [w] = w" —w™) and by 9, =V -n
the corresponding normal derivative with the unit normal n outwards the positive

side. On the contact zone I' we have [0,w] = 0 and a slip dependent friction law
(introduced in the geophysical context of earthquakes modelling) is assumed :

GOpw(t) = —pu(|[w(®)]])Ssign([Gw(t)]) — ¢, if [ (t)] #0, (3)

|GOw(t) +q| < p([lw®)]))S if Gfw(t)] =0, (4)

where ¢ = 7;°n; + 7,°n,. The initial conditions are

w(0) =wg, Ow(0)=w; in Q. (5)
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Any solution of the above problem let satisfies the following variational problem (VP):
find w : [0,T7] — V such that

/Q éaﬁt“’(t) (v = dw(t) dx + /Q Vu(t) - V(v — duw(t)) dz + (6)
S

[ @Bl - D] do > [ Zol@l - Do) do

for all v € V', where
V={ve H(Q)/v=0 on 'y} (7)

The main difficulty in the study of the above evolution variational inequality is the
non-monotone dependence of i with respect to the slip |[w]|. However, in modelling
unstable phenomena, as earthquakes, we have to expect “bad” mathematical prop-
erties of the operators involved in the abstract problem. The existence of a solution
w of the following regularity

w e WhH®(0,T, V)N W?>>(0,T, L*(Q)). (8)

in the two-dimensional case was recently proved by Ionescu et al. [17]. The uniqueness
was obtained only in the one-dimensional case.

Since our intention is to study the evolution of the elastic system near an unstable
equilibrium position, we shall suppose that ¢ = 1(0)S. We remark that w = 0 is an
equilibrium solution of (6), and wy, w; may be considered as small perturbations of
it.

For simplicity, let us assume in the following that the friction law is homogeneous
on the fault plane having the form of a piecewise linear function (see [24]) :

i MHs — Hd
2D,

where u is the relative slip, us and pg (s > pq) are the static and dynamic friction
coefficients, and D, is the critical slip. This piecewise linear function is a reasonable
approximation of the experimental observations reported by [22]. Since the initial
perturbation (wg,w;) of the equilibrium (w = 0) is small we have [w(¢,z))] < 2D,
for t € [0,T,] for all z € T', where T, is a critical time for which the slip on the fault
reaches the critical value 2D, at least at one point. Hence for a first period [0, 7],
called the initiation phase, we deal with a linear function .

pu(z,u) = ps w if u<2D,, p(zr,u) = pg if u>2D,, 9)

Our aim is to analyze the evolution of the perturbation during this initial phase.
That is why we are interested in the existence of solutions of the type

w(t, ) = sinh(|A|ct)u(x), w(t,z) = sin(|\|ct)u(z) (10)

during the initiation phase ¢ € [0,7,]. If we put the above expression in (6) and we
have in mind that from (9) we have u(s) = ps — (s — q)/(2D.)s then we deduce
that (u, A?) is the solution of the nonlinear eigenvalue problem

find v € K and A\? € R such that
/ Vu-V(v—u)dr— B/[u] [v — u]do + \° / u(v —u)dz >0, (11)
" T Q
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for all v € K, where K is the convex closed cone centered at the origin
K={veV; vJ>0onTl}

and 8 = (us — pa)S/(2D.G) > 0. The first type of solution from (10) has an
exponential growth in time and corresponds to A > 0. The second one has the same
amplitude during the initiation phase and corresponds to A\? < 0.

The nonlinear eigenvalue problem (11) can be written as classical eigenvalue for
the Laplace operator with Signorini-type boundary conditions :

find u: 2 — R and A\? € R such that
Au = Ny in ), u=0 on I, (12)
[Opu] =0, [u] >0, Opu>0, [u](Ou— Blu]) =0 on T. (13)

The linear case, that is equation (12) with the boundary condition
[Opu] =0, Oyu— Blul=0 on T, (14)

was analyzed in [9]. For bounded domains, they proved that the spectrum of (12),(14)
consists of a decreasing and unbounded sequence of eigenvalues. The greatest one,
A2, which may be positive, is showed to be an increasing function of the friction
parameter 3. Let us remark that if u is a solution of (12), (14) and [u] > 0 on I’
then u is a solution for (12), (13) too. For co-linear faults the first eigenfunction wuy,
corresponding to A} was found in numerical computations to be positive on I'; (see
[9, 10]), hence the linear case was sufficient to give a good model for the initiation of
instabilities. If the faults are not co-linear, then this condition is not anymore satis-
fied, that is the first eigenfunction of the linear problem has no physical significance.
Hence, in modelling initiation of friction instabilities only the non-linear eigenvalue
problem has to be considered. As it was reported in [28], where the case of two par-
allel faults was analyzed, there exits an important gap between the first eigenvalues
of the linear and nonlinear problems.

3 The main results

Let Q be a smooth, bounded open set in RY (N > 2) as in the preceding section,
that is, containing a finite number of cuts. The internal boundary is denoted by I"

and the exterior one by I'y. Denote by || - || the norm in the space V, as defined in
(7), and by Aq : L*(Q) — L*(Q)* and A; : V — V* the duality isomorphisms defined
by

Aou(v) = / uvdz, for any u,v € L*(Q)
0

and
Au(v) = / Vu - Vudz, for any u,v € V.
Q

In order to reformulate our problem, consider the Lipschitz map v = 1017 :
V — L*T), where n : V — H'Y2(T') is the trace operator, n(v) = [v] on T' and
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i: HY*(') — L*(I) is the embedding operator. Then the space L?(I') is compactly
embedded in V' through the operator y (see [15]).
Thus problem (11) can be written, equivalently,

find v € K and A\? € R such that
[vu-o-wds+ [ ow@)ineE) - @@)dr )

r
)\2/ u(v —u)dr >0, YveK,
Q
where
j:R—>R j(t):—§t2

and j'(- ; -) stands for the Gateaux directional derivative.

Due to the homogeneity of (15), we can reformulate this problem in terms of a
constrained inequality problem as follows. For any fixed » > 0, set

M:{UGV; /qua::r2}.
Q

Then M is a smooth manifold in the Hilbert space V. We shall study the problem
find w € K N M and \? € R such that
[ vue Vo —wds+ [ 7 G@@)aeE) - w@dr g
)\2/Qu(?) —u)dx >0, Yve K.

Our multiplicity result is

Theorem 3.1. Problem (16) has infinitely many solutions (u, \*) and the set of
eigenvalues {\?} is bounded from above and its infimum equals to —oo. Let \3 =
sup{A\?}. Then there exists uy such that (ug, \3) is a solution of (16). Moreover the
function 8 —— N(B) is convex and the following inequality holds

/ |Vo|? dz + N5 (B) / v? dx > ﬁ/[v]2 do, YveEK. (17)
0 0 r

Next, we study the effect of an arbitrary perturbation in problem (15). More
precisely, we consider the problem

find u. € K and A\? € R such that
[ Vo —udds+ [ (o) (el ele) — sule) dor g

r

/\3/ us(v —u.)dx >0, Vv € K,
"

where ¢ > 0 and ¢ : R — R is a continuous function with no symmetry hypothesis,
but satisfying the growth assumption

2(N -1
da>0,32<p< % such that |g(¢)| < a(1+[tP) , if N > 3;

— (19)
da >0, 32 < p < 400 such that [g(¢)| < a(l + [t[P) , if N =2.
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We prove that the number of solutions of problem (18) becomes greater and
greater if the perturbation “tends” to zero. This is a very natural phenomenon that
occurs often in concrete situations. We illustrate it with the following elementary
example: consider on the real axis the equation sinz = 1/2. This is a “symmetric”
problem (due to the periodicity) with infinitely many solutions. Let us now consider
an arbitrary non-symmetric “small” perturbation of the above equation, say sinz =
1/2 + ex®. This equation has finitely many solutions, for any € # 0. However, the
number of solutions of the perturbed equation tends to infinity is the perturbation
(that is, |¢|) becomes smaller and smaller.

More precisely, we have

Theorem 3.2. For every positive integer n, there exists €, > 0 such that problem
(18) has at least n distinct solutions (u.,\2) if € < €,. There exists and is finite
A2, = sup{A\?} and there exists ug. such that (uoe, \2.) is a solution of (18). Moreover,
A3, converges to A3 as € tends to 0, where A} was defined in Theorem 3.1.

4 Auxiliary results

Several times in this paper we shall apply the following basic embedding inequality:

Proposition 4.1. (Lemma 5.1 in [15]). Let 2 < a < 2(N —1)/(N—-2) if N > 3
and 2 < a < +00 if N =2. Then for B =[(a —2)N +2]/(2a) if N >3 or if N =2
and o =2 and for all (o —1)/a < B <1 if N =2 and a > 2, there exists C = C(B)
such that

l/a (1-B)/2 B2
(/ \[u]\”‘da) <C </ uzdx) (/ |Vu\2dx> , for any uwe V. (20)
r Q Q

An important role in our arguments in order to locate the solution of (16) will be
played by the indicator function of M, that is,

L ={0 o ifueM
M T 400, ifueV\ M.

Then I, is lower semicontinuous. However, since the natural energy functional as-
sociated to problem (16) is neither smooth nor convex, it is necessary to introduce
a more general concept of gradient. We shall emply the following notion of lower
subdifferential which is due to De Giorgi, Marino and Tosques [11]. The following
definition agrees with the corresponding notions of gradient and critical point in the
sense of Fréchet (for C' mappings), Clarke (for locally Lipschitz functionals) or in
the sense of the convex analysis.

Definition 4.2. Let X be a Banach space and let f : X — RU{+oc} be an arbitrary
proper functional. Let x € D(f). The gradient of f at x is the (possibly empty) set

v ly — |
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An element £ € 0~ f(x) is called a lower subdifferential of f at x.

Accordingly, we say that x € D(f) is a critical (lower stationary) point of f if
0€0 f(x).

Then 0~ f(z) is a convex set. If 97 f(z) # () we denote by grad™ f(z) the element
of minimal norm of 0~ f(z), that is,

grad™ f(z) = min{[|¢][x-; £ € 07 f(x)}.

This notion plays a central role in the statement of our basic compactness condition.

Definition 4.3. Let f : X — RU {+oc} be an arbitrary functional. We say that
(zn) C D(f) is a Palais-Smale sequence if

sup | f(zn)| < 400 and lim grad™ f(z,) = 0.

n—0o0

The functional f is said to satisfy the Palais-Smale condition provided that any Palais-
Smale sequence is relatively compact.

Remark 4.4. (i) Definition 4.2 implies that if g : X — R is Fréchet differentiable
and f: X = RU{+oc} is an arbitrary proper function then

T (f+9)(z)={+7d(z); €0 fla)},

for any x € D(f).
(i1) Similary, if f : X — RU{+o0} is an arbitrary proper functional and g : X —
R U {400} is proper, conver and lower semicontinuous then

O (f+9)@) ={¢+4(@); £ €0 fa)},
for any = € D(f) N D(g).
As established in [7],
0 Iny(u) = {\Apu; N € R} C L*(Q)* cV*,  forany ue M. (21)

In the proof of Theorems 3.1 and 3.2 we shall use several auxiliary notions and
properties. For the convenience of the reader we recall them in what follows. For
further details and proofs we refer to [12, 19, 21, 23, 26].

A topological space X is said to be contractible if the identity of X is homotopical
to a constant map, that is, there exists uy € X and a continuous map F : X x[0,1] —
X such that

F(-,0)=Idx and  F(-,1) = uy.

A subset M of X is said to be contractible in X if there exists ug € X and a continuous
map F': M x [0,1] — X such that

F(-,0)=1dy and F(-,1) = uy.
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If A is a subset of X, we define the category of A in X as follows:

Catx(A) =0, if A=40.

Catx(A) =n, if nis the smallest integer such that A can be covered by n closed
sets which are contractible in X.

Catx(A) = 400, otherwise.

Some basic properties of the notion of category are summarized in

Proposition 4.5. The following properties hold true:

(i) If AC B C X, then Catx(A) < Catx(B).

(it) Catx (AU B) < Catx(A) + Catx(B)

(11i) Let h : A x [0,1] — X be a continuous mapping such that h(z,0) = x for
every ¢ € A. If A is closed and B = h(A, 1), then Catx(A) < Catx(B)

Let (X, d) be a metric space. Consider h : X — RU{+00} an arbitrary functional
and set, as usually, D(h) := {u € X; h(u) < +00}. We recall the following definitions
which are due essentially to De Giorgi (see, e.g., De Giorgi, Marino and Tosques [11]).

Definition 4.6. (i) For u € D(h) and p > 0, let h,(p) = inf{h(v); d(v,u) < p}.
Then the number —D_ h,(0) is called the slope of h at u, where D, denotes the right
lower derivative.

(i1) Let I C R be an arbitrary non-trivial interval and consider a curve U : I — X.
We say that U is a curve of mazimal slope for h if the following properties hold true:
- U is continuous;

—hoU(t) < +oo, foranyt € I;
—d(U(t2), U(t1)) < ;12 (D hu (0)]2dt: for any t1, ta € I, 11 <ty;
~hoU(ts) —hoU(t) < — [ [Dihy(0)]” dt, for any ti, ts € I, ty < t,.

In what follows, X denotes a metric space, A is a subset of X and ¢ stands for
the inclusion map of A in X.

Definition 4.7. (i) A map r : X — A is said to be a retraction if it is continuous,
surjective and rio = Id.

(ii) A retraction r is called a strong deformation retraction provided that there
exists a homotopy ¢ : X x [0,1] = X of i or and Idx which satisfies the additional
condition ((z,t) = ((x,0), for any (z,t) € A x [0,1].

(15i) The metric space X is said to be weakly locally contractible, if for everyu € X
there exists a neighbourhood U of u contractible in X .

For every a € R, denote

f*={ue X: f(u) <a},

where f: X — R is a continuous function.
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Definition 4.8. (i) Let a,b € R with a < b. The pair (f°, f®) is said to be trivial
provided that, for every neighbourhood [a',a"] of a and [V, "] of b, there exists some
closed sets A and B such that f“' CAC f“”, fb' C B C fb" and such that A is a
strong deformation retraction of B.

(ii) A real number c is an essential value of f provided that, for every e > 0 there
ezists a,b € (c — &, ¢+ €) with a < b such that the pair (f°, f*) is not trivial.

The following property of essential values is due to Degiovanni and Lancelotti (see
[12], Theorem 2.6).

Proposition 4.9. Let ¢ be an essential value of f. Then for every e > 0 there exists
0 > 0 such that every continuous function g : X — R with

sup{lg(u) = f(u)| v € X} <4
admits an essential value in (¢ — €,c+ ¢€).
For every n > 1, define
I,={ScS; ScF~yS)>n},

where F is the class of closed symmetric subsets of the sphere S, of radius r in a
certain Banach space and v(S) represents the Krasnoselski genus of S € T',,, that is,
the smallest £ € NU {+o0} for which there exists a continuous and odd map from S
into R* \ {0}.

5 Proof of Theorem 3.1

Define
E=F+G:V = RU{+o0},

where .

- 2 if K

Flu) = Z/Q\Vu\ dz if ue

400 , ifug K

and
B 2
Glu) = -5 Fh(u(év))] do

Then E + I, is lower semicontinuous.
The following auxiliary result shows that E'+ I, is the canonical energy functional
associated to problem (16).

Proposition 5.1. If (u, \?) is a solution of problem (16) then 0 € 0~ (E + I1)(u).
Conversely, let u be a critical point of E + Ips and denote \> = —2E(u)r=2. Then
(u, A?) is a solution of problem (16).
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Proof. Let (u, A?) be a solution of problem (16). So, by the definition of the lower
subdifferential,
~Nu € 07 E(u). (22)

On the other hand,
0 (E+Iy)(u) =0 E(u)+ 0 Iy(u), for any uw e KN M. (23)

So, by (21) and (22), 0 € 0~ (E + Ip)(u).

Conversely, let 0 € O~ (E + I37)(u). Thus, by (21) and (23), there exists \? € R
such that (u, A\?) is a solution of problem (16). If we put v = 0 in (16) then we deduce
A?r? < —2E(u) and for v = 2u we get A?r? > —2E(u), that is \? = —2E(u)r 2. =

The above result reduces our study to finding the critical points of £ + I;. In
order to estimate the number of lower stationary points of this functional we shall
apply a non-smooth version of the Lusternik-Schnirelmann theorem. For this purpose
we need some preliminary results.

We first observe that a direct argument combined with Proposition 5.1 shows that
problem (16) has at least one solution. Indeed, the associated energy functional is
bounded from below. This follows directly by our basic inequality (20) since

1 1
(B + L) (u) > 5 lull® = 1B - M[ullfaqy > 5 lull® = C llull > Co, (24)

for any u € V. So, by standard minimization arguments based on the compactness
of the embedding i o : V — L?(T") we deduce that there exists a global minimum
point ug € KN M of E+ Ip;. Let A2 = —2F(ug)/r?. Hence 0 € 0~ (E + Is)(uo) and
(ug, A2) is a solution of problem (16). Since for any eigenvalue A\? there exists u € K
such that A2 = —2F(u)r~2 we deduce that A2 = sup{\?}.

The next step in our proof consists in showing that

Proposition 5.2. The functional E + I, satisfies the Palais-Smale condition.

Proof. Let (uy,) be an arbitrary Palais-Smale sequence of E + I;. So, by (24),
(uy) is bounded in V. Thus, by the Rellich-Kondratchov theorem (see for instance
[4]) and passing eventually at a subsequence,

U, = u  weakly in V (25)
u, —u  strongly in L*(Q) (26)
u, —u  strongly in L*(T). (27)

In particular, it follows that v € K N M.

Using now the second information contained in the statement of the Palais-Smale
condition and applying (21), we obtain a sequence (\,) of real numbers such that

lim || E'(un) + AaAotn|

n—0o0

- (28)
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On the other hand, by the compact embeddings V C L?*(Q2) and V C L?*(I') and using
(25)—(27), it follows that

E'(uy,) = E'(v) and Ayu, = Aju in V*.

So, by (28), the sequence (),) is bounded. Hence we can assume that, up to a
subsequence, A\, — A as n — oo. Therefore 0 € 0~ (E + Inr)(u).

From (25) we get ||u|| < liminf,_, ||un||, hence it follows that for concluding the
proof it is enough to show that

[[ul| > Tim sup [|un || - (29)

n—00

But, since F' is convex,
F(u) > F(uy) + F'(un) (u — uy,).
It follows that
E(u) = F(u)+ G(u) 2 limsup (F(ug) + F'(un) (v — up) + G(un)) =

i sup (F(ur) + (1) (1 = ) + Gua) + G (wa) = w) = (30)
li;n_)sogp (F(un) + E'(un)(u — uy)) + Jim G(uy,).

Using now A\, — A combined with (25)—(28), relation (30) yields

E(u) > limsup F(u,) + G(u).

n—roo
This inequality implies directly our claim (29), so the proof is completed. |

Due to the symmetry of our problem (16), we can extend our study to the sym-
metric cone (—K). More precisely, if (u, A\?) is a solution of (16) then uy := —u €
(—K) N M satisfies

/Q Vutp - V(v — ug)dz + / 7 (Vo (2)); 1(0(2)) — y(uo(x))) dor+

r

A2 / uo(v — up)dz > 0, for all v € (—K).
Q

This means that we can extend the energy functional associated to problem (16) to
the symmetric set K := K U (—K). We put, by definition,

N E(u) ifue K
E(u)=4 E(-u) , if u € (—K)
400 , otherwise.

We are interested from now in finding the lower stationary points of the extended
energy functional J := F + I;.
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We endow the set K N M with the graph metric of E defined by
d(u,v) = |Ju — v|| + |E(u) — E(v)], for any u,v € KN M.

Denote by X the metric space (K N M, d).

We are now in position to state the basic abstract result that we shall apply
for concluding the proof of Theorem 3.1. More precisely, we use the following non-
smooth variant of the Lusternik-Schnirelmann theory that we reformulate in terms
of our energy functional J.

Theorem 5.3. (Marino and Scolozzi [20]). Assume that J satisfies the following
properties:

(i) J is bounded from below;

(ii) J satisfies the Palais-Smale condition;

(iii) for any lower stationary point u of J there exists a neighbourhood of u in X
which is contractible in X,

(iv) there exists © : (K N M) x [0,00) = K N M such that O(-,0) = Id, O (u,-) is
a curve of mazimal slope for J (with respect to the usual metric in V') and, moreover,
the mapping © : X x [0,00) = X is continuous.

Then J has at least Caty(K N M) lower stationary points.

Moreover, if Cat,y(f? N M) = 400, then J does not have a mazimum and
sup{J(u); u€ KNM,0€ 9~ J(u)} =sup{J(u); ue KN M}

We have already proved (i) and (ii). Property (iii) is proved in a more general
framework in De Giorgi, Marino and Tosques [11], while (iv) is deduced in Chobanov,
Marino and Scolozzi [7]. So, using Theorem 5.3, it follows that for concluding the
proof of Theorem 3.1 it remains to prove

Proposition 5.4. We have
Caty(K N M) = +oc. (31)

Proof. Fix ¢ € K \ {0} such that ||¢|12@) > r and let (e;)p>1 C V be an
orthonormal basis of L?(Q2). Fix arbitrarily an integer n > 1 and denote

n

M®™ = {i Q;€;; Za? =r’}
i=1

=1

As usually, we denote at = max{a,0} and ¢~ = max{—a, 0}, for any real number a.
Define the mapping ¢; : M™ x [0,1] — V' \ {0} by

pr(u,t) = (1= 1) [(u—9)* = (u+ )] + Px (min{max(u, =), ¥}),
where Pk denotes the canonical projection onto K. Then

o1(u,1) € K and o1 (u, D)2z < ||ullze < 7.
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We also define ¢, : (K \ {0}) x [0,1) — K \ {0} by

2(u,t) = min [maX (1% u, —w) ,1/}} :

t
Fix arbitrarily u € ¢;(M™1). Then

lim [j2 (u, £)l|2 = [|¥l]z2 > 7-

The compactness of ¢, (M ™, 1) implies that there exists ty € (0, 1) such that
lpo(u, )|l >7r V€ [t, 1), Yu € o1 (M™ 1),

Let P be the canonical projection of V onto the closed ball of radius r in L?(Q)
centered at the origin. Define the map ® : M(™ x [0,1+ty] — V '\ {0} by

B 1(u, t) , if (u,t) € M™ x [0,1]
D(u,t) = { ?(@(@1(% 1),t—1)) , if (u,t) € M™ x [0,1+ t,]

Then ®(u,0) = 0 and ®(u,1 + ty) € M. Since ®(-,t) is odd and continuous from
L?(Q2) in the L?-topology, it follows by Proposition 4.5 that

n < Catga(M™) < Catp (®(M™, 1+ 19)) < Caty (®(M™,1+1)) .

Since the set ®(M ™, 1 +1,) is compact in V and the topology of X is stronger than
the H;-topology, we obtain

n < Catyy (®(M™, 1 +10)) < Catx (B(M™,1+1,)) < Caty(K N M).

This completes the proof of Proposition 5.4. ]

Proof of Theorem 3.1 completed. Until now, using Theorem 5.3, we have es-
tablished that problem (16) admits infinitely many solutions (u, \?). We first observe
that the set of eigenvalues is bounded from above. Indeed, if (u, A\?) is a solution of
our problem then choosing v = 0 in (16) and using (20), it follows that

B

Nr? < =2ull” + 5 lullza) < €
where C does not depend on u.
It remains to prove that
inf{\?; \? is an eigenvalue of (16)} = —oo.

For this purpose, it is sufficient to show that

sup{J(u); u € KN M} = +oo.
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But this follows directly from (20) and
sup /|Vu|2dx = 400.
weKnM JQ

In order to prove the last part of the theorem we remark that —\g, as a function of
[, is the upper bound of a family of affine functions

1
N2(A) — 2 2 g 2
356 = gt 5 { [1v0P o= [ as}, (52)
hence it is a concave function. Thus 8 — A3(3) is convex and (17) yields.
This concludes the proof of Theorem 3.1. [ |

6 Proof of Theorem 3.2

We shall establish the multiplicity result with respect to a prescribed level of energy.
More precisely, let us fix » > 0. Consider the manifold

N = {ue V; /F[u]pdazrp},

We reformulate problem (18) as follows:

where p is as in (19).

find u. € KN N and A\? € R such that
[V Voot [ 5+ ) G20 1) dort g
r
)\2/ ue(v — ug)dr >0, Yv € K.
Q

We start with the preliminary result

Lemma 6.1. There exists a sequence (b,) of essential values of E such that b, — 400
as n — 0o.

Proof. For any n > 1, set a,, = infger, sup,cg E(u), where I';, is the family of
compact subsets of K N N of the form ¢(S™ 1), with ¢ : S* ! — K N N continuous
and odd. The function F restricted to K N N is continuous, even and bounded from
below. So, by Theorem 2.12 in [12], it is sufficient to prove that a, — +00 as n — co.
But, by Proposition 5.2, the functional E restricted to K N N satisfies the Palais-
Smale condition. So, taking into account Theorem 3.5 in [8] and Theorem 3.9 in [12],
we deduce that the set E¢ has finite genus for any ¢ € R. Using now the definition of
the genus combined with the fact that K N N is a weakly locally contractible metric
space, we deduce that a, — +00. This completes our proof. [ ]
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The canonical energy associated to problem (33) is the functional J restricted to
K NN, where J = E+ ® and ® is defined by

B(u) = ¢ / 9(1(u(z)))do.

A straightforward computation with the same arguments as in the proof of Propo-
sition 5.1 shows that if u is a lower stationary point of J then there exists \> € R
such that (u, A\?) is a solution of problem (33). In virtue of this result, it is sufficient
for concluding the proof of Theorem 3.2 to show that the functional J has at least n
distinct critical values, provided that ¢ > 0 is sufficiently small. We first prove that
J is a small perturbation of F. More precisely, we have

Lemma 6.2. For every n > 0, there exists 6 = &, > 0 such that sup,cpny | (1) —
E(u)| <n, provided that € < 4.

Proof. We have

|J(u) — E(u)| = [®(u)| < 8/F (7 (u(=)))] do.
So, by (19) and Proposition 4.1,

T(w) — B(u)] < ca / (14 [u(@)P) do < Ce <,

r

if ¢ is sufficiently small. [ |

By Lemma 6.1, there exists a sequence (by) of essential values of E|xnn such that
b, — 4+o00. Without loss of generality we can assume that b; < b; if 7 < j. Fix an
integer n > 1 and choose €y > 0 such that g < 1/2ming<;<,(b; — b;—1). Applying
now Proposition 4.9, we obtain that for any 1 < j < n, there exists n; > 0 such that
if supgny [J(u) — E(u)| < n; then Jxny has an essential value ¢; € (b; — €9,b; +
€0)- So, by Lemma 6.2 applied for n = min{#y,...,n,}, there exists d, > 0 such
that supgnn |/ (u) — E(u)| < n, provided that ¢ < §,. This shows that the energy
functional J has at least n distinct essential values ¢y, ..., ¢, in (by — &g, b, + €9)-

The next step consists in showing that ci,...,c, are critical values of Jxnn.
Arguing by contradiction, let us suppose that c¢; is not a critical value of .Jjxny. We
show in what follows that
(A1) There exists > 0 such that J;xny has no critical value in (¢; — 6, ¢; + 6).
(Az) For every a,b € (¢; — 0, c¢; + 6) with a < b, the pair (Jf’[mN, Jfgnn) 1s trivial.

Suppose, by contradiction, that (A;) is no valid. Then there exists a sequence
(dy) of critical values of Jixny with dy — c¢; as k — oo. Since dy, is a critical value,
it follows that there exists u; € K N N such that

J(ug) =dr and 0€ 0 J(ug).

Using now the fact that J satisfies the Palais-Smale condition at the level ¢;, it follows
that, up to a subsequence, (uy) converges to some u € K NN as k — 00. So, by the
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continuity of J and the lower semicontinuity of grad J(-), we obtain J(u) = ¢; and
0 € 0 J(u), which contradicts the initial assumption on c;.

Let us now prove assertion (Ay). For this purpose we apply the Noncritical Point
Theorem (see [8], Theorem 2.15]). So, there exists a continuous map x : (K N N) x
[0,1] = K N N such that

x(u,0) = u, J(x(u,t)

) < J(w),
T} < b= J(x(w 1)) < o, (34)

J(u) <a= x(u,t) =u.

Define the map p : Jf’lmN — J%nn by p(u) = x(u,1). From (34) we obtain that p is
well defined and it is a retraction. Set

J: J|bKﬂN X [07 1] — J|bKﬂN7 j(u:t) = X(ua t)
The definition of J implies that, for every u € J|b1m N

J(u,0)=u  and J(u,1) = p(u) (35)

and, for any (u,t) € Jxnn X [0, 1],
I (u,t) = T (u,0). (36)

From (35) and (36) it follows that J is J%y-homotopic to the identity of J%y,
that is, J is a strong deformation retraction, so the pair (J\bKﬂN’ J\L}mN) is trivial.

Assertions (A1), (Az2) and Definition 4.8 (ii) show that ¢; is not an essential value of
J knn. This contradiction concludes our proof. ]
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