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ABSTRACT

By using variational methods, in this paper we study a nonlinear elliptic

problem defined in a bounded domain Ω ⊂ RN , with smooth boundary

∂Ω, involving fractional powers of the Laplacian operator together with

a suitable nonlinear term f . More precisely, we prove a characterization

theorem on the existence of one weak solution for the elliptic problem
⎧⎪⎪⎨
⎪⎪⎩

(−Δ)α/2u = λf(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where α ∈ (0, 2), N > α, λ > 0 and (−Δ)α/2 denotes the nonlocal

fractional Laplacian operator. Our result extends to the nonlocal setting

recent theorems for ordinary and classical elliptic equations, as well as a

characterization for elliptic problems on certain non-smooth domains. To

make the nonlinear methods work, some careful analysis of the fractional

spaces involved is necessary.
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1. Introduction

Recently, a lot of interest has been devoted to elliptic equations involving the

fractional Laplace operator proving several interesting mathematical results

(see, among others, the works of Caffarelli and Silvestre [12, 13, 14]). Further-

more, this operator is of nonlocal diffusion type and arises in several physical

phenomena like frames propagation, American options in finance, population

dynamics and Lévy processes (see, for instance, [2, 6, 17]).

Motivated by this large interest in the current literature, the aim of this paper

is to prove a characterization result on the existence of one positive solution for

fractional nonlocal equations. Our result reads as follows:

Theorem 1: Let f : [0,+∞[→ [0,+∞[ be a continuous function with f(0) = 0

and such that, for some a > 0, the map h :]0,+∞[→ [0,+∞[ defined by

h(ξ) :=
F (ξ)

ξ2

is nonincreasing in the real interval ]0, a], where

F (ξ) :=

∫ ξ

0

f(t)dt,

for each ξ ∈ [0,+∞[. Then, the following assertions are equivalent:
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(h1) h is not constant in ]0, ζ] for each ζ > 0;

(h�2) f is subcritical with limξ→0+ h(ξ) > 0 and for each r > 0 there exists

an open interval Jr ⊆]0,+∞[ such that, for every λ ∈ Jr, the nonlocal

problem given by

(Sλ)

⎧⎪⎪⎨
⎪⎪⎩
(−Δ)α/2u = λf(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω

has a weak solution in H
α/2
0 (Ω), whose norm is less than r.

Here Ω ⊂ R
N is a smooth bounded domain, (−Δ)α/2u denotes the fractional

Laplacian acting on u, λ is a positive parameter and f : R → R is a suitable

continuous function.

For a smooth function u : RN → R the fractional Laplacian can be defined

either by using the Riesz potential

(−Δ)α/2u(x) := CN,α lim
�→0+

∫
RN\B�

u(x)− u(y)

|x− y|N+α
dy,

where CN,α is a suitable normalization constant depending on N and α, or by

(−Δ)α/2u(x) := F−1[|y|αF [u](y)](x),

where F [·] denote respectively the classical Fourier transform and and F−1[·]
its inverse.

Alternatively, following the work of Caffarelli and Silvestre [12], the fractional

Laplacian operator in R
N can be defined as a Dirichlet to a Neumann map:

(−Δ)α/2u(x) := −κα lim
y→0+

y1−α ∂w

∂y
(x, y),

where κα is a suitable constant and w is the α-harmonic extension of u. In other

words, w is the function defined on the upper half-space RN+1
+ := R

N×]0,+∞[

which is solution to the local elliptic problem⎧⎨
⎩− div(y1−α∇w) = 0 in R

N+1
+ ,

w(x, 0) = u(x) in R
N .

In order to define the fractional Laplacian operator in bounded domains, the

above procedure has been adapted in [7] and [11] (see Section 2 for details).

Successively, several authors have considered this definition for the operator

(−Δ)α/2 in a bounded domain with zero Dirichlet boundary data (see [10, 11,

16]).



334 G. MOLICA BISCI AND V. D. RĂDULESCU Isr. J. Math.

For completeness, we point out that two notions of fractional operators on

bounded domains were considered in the literature, namely the previous one

(called also the spectral Laplacian operator) and the integral one (in this

setting, see, among others, the papers [32, 33, 36, 37, 38, 41] and [22, 23, 24,

25, 28, 29, 30]). Servadei and Valdinoci in [39, Theorem 1] compare these two

operators, studying their spectral properties and obtaining, as a consequence of

this careful analysis, that these two operators are different. See also the recent

paper [31] of Musina and Nazarov for an exhaustive study of this comparison.

In the sequel we use the spectral definition, having some technical advantages

to overcome certain mathematical difficulties in proving our result. For instance,

one of the main tools is the validity of the Maximum Principle for the augmented

nonlocal problem proved by Cabré and Sire (see [10]) as well as a regularity

result and a priori estimates for solutions of nonlocal equations in terms of the

data due to Di Blasio and Volzone (see [18]), which extend the well known ones

for the standard Laplacian case. For completeness, see also the recent papers of

Barrios, Colorado, Servadei and Soria [4] and Kuusi, Mingione and Sire [20, 21]

where interesting regularity results for nonlocal problems have been studied.

We also point out that elliptic equations in R
N , driven by a nonlocal integro-

differential operator, whose standard prototype is the fractional Laplace oper-

ator, have been studied very recently by Autuori and Pucci in [3].

Theorem 1 can be regarded as an elliptic version, for nonlocal fractional

equations, of a very recent result obtained by Ricceri in [35, Theorem 1] for

a two-point boundary value problem. In this paper the author first proves

an original critical point theorem on Hilbert spaces and successively uses this

abstract tool in order to obtain the cited characterization result (see also [34]

for related topics on the abstract variational setting).

In the mentioned result the author uses the compact embedding

W 1,2
0 (]0, 1[) ↪→ C0([0, 1]),

as well as the estimation

sup
u∈W 1,2

0 (]0,1[)\{0}

maxx∈[0,1] |u(x)|
(
∫ 1

0
|u′(t)|2 dt)1/2

<
1

2
,

in a crucial way. In [26], a similar technical approach was adopted studying

elliptic equations defined on the Sierpiński gasket or, more generally, on self-

similar fractal domains whose spectral dimension ν ∈]0, 2[.
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Contrary to the above cases, in the standard higher-dimensional setting the

same strategy cannot be directly used treating elliptic equations involving the

classical Laplacian operator. In such a case a different proof, again based on

variational methods, was developed by Anello in [1].

The extension of the cited results to (Sλ) is not trivial and requires overcoming

some technical difficulties which arise in this new analytic nonlocal setting. In

particular, for our goal, it is necessary to exploit some basic properties of the

space H
α/2
0 (Ω) and to use the distribution of the spectrum of the corresponding

linear fractional problem.

Further, the regularity result obtained in [18, Theorem 4.1] is an essential

argument proving that assumption (h1) implies condition (h2) defined at the

end of Section 2.

At the end of the following preliminary section, we point out that this paper

is inspired by the pioneering work on sublinear elliptic equations by Brezis

and Oswald [9]. Indeed, our hypothesis that h is nonincreasing in some right-

neighborhood of the origin implies a sublinear decay of the nonlinear term f .

For instance, in the case of power-type nonlinearities f(u) = up, this assumption

is fulfilled if and only if p ∈ (0, 1]. Next, property (h1) excludes the linear case

that corresponds to p = 1. In [9], the semilinear case described by the Laplace

operator under the basic assumption that f(u)/u is decreasing on (0,∞) is

studied. The differences between our main result and Theorem 1 in [9] are the

following:

(i) In [9], the global assumption that f(u)/u is decreasing on the whole posi-

tive semi-axis is used, while in our case a local monotonicity hypothesis is used,

namely F (ξ)/ξ2 is nondecreasing in some interval ]0, a[. The global assumption

on f(u)/u is used in [9] to show that the problem has at most one solution,

hence to establish a uniqueness property.

(ii) The existence of solutions is deduced in [9] in accordance with the sign

of the principal eigenvalues of some linear operators that depend on the growth

rate of f(u)/u near the origin and infinity. In our case, we do not necessarily

have a unique solution and the existence of solutions depends on the location

of the parameter λ in a certain interval. Such a parameter does not exist in the

problem studied by Brezis and Oswald [9]. Moreover, in the present paper, we

provide an estimate of the norm of solutions in a suitable Sobolev space and in

a relationship with a prescribed positive real number. Finally, it is striking to

point out that the main result in this paper establishes an existence property by
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assuming a local behavior of the nonlinear term (as described by the mapping

h) and without assuming any growth for large values of the argument. The key

role here is played by the parameter λ. We argue that this type of argument

can be extended in order to obtain existence results for large classes of elliptic

equations under local information on the nonlinear term.

The paper is organized as follows. In the next section we collect some proper-

ties of the fractional Laplacian operator in a bounded domain defined by using

the notion of α-harmonic extension, as well as providing some basic notions on

the Sobolev spaces Xα
0 (CΩ) and H

α/2
0 (Ω). Finally, Section 3 is devoted to the

proof of Theorem 1.

We refer to the recent book [27] for the basic variational methods used in the

present paper.

2. Some preliminaries

2.1. The Sobolev space H
α/2
0 (Ω). The powers (−Δ)α/2 of the Laplace op-

erator −Δ in a bounded domain Ω with zero boundary conditions are defined

through the spectral decomposition using the powers of the eigenvalues of the

original operator.

Hence, according to classical results on positive operators in Ω, if {ϕj , λj}j∈N

are the eigenfunctions and eigenvalues of the usual linear Dirichlet problem

(2.1)

⎧⎨
⎩−Δu = λu in Ω,

u = 0 on ∂Ω,

then {ϕj , λ
α/2
j }j∈N are the eigenfunctions and eigenvalues of the corresponding

fractional one:

(2.2)

⎧⎨
⎩(−Δ)α/2u = λu in Ω,

u = 0 on ∂Ω.

Indeed, the operator (−Δ)α/2 is well defined on the Sobolev space

H
α/2
0 (Ω) :=

{
u =

∞∑
j=1

ajϕj ∈ L2(Ω) :

∞∑
j=1

a2jλ
α/2
j < +∞

}
,
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endowed by the norm

‖u‖
H

α/2
0 (Ω)

:=

( ∞∑
j=1

a2jλ
α/2
j

)1/2

,

and has the following form:

(−Δ)α/2u =

∞∑
j=1

ajλ
α/2
j ϕj .

2.2. The extension problem. Associated to the bounded domain Ω, let us

consider the cylinder

CΩ := {(x, y) : x ∈ Ω, y ∈ R+} ⊂ R
N+1
+ ,

and denote by ∂LCΩ := ∂Ω× R+ its lateral boundary.

For a function u ∈ H
α/2
0 (Ω), define the α-harmonic extension Eα(u) to the

cylinder CΩ as the solution of the problem⎧⎪⎪⎨
⎪⎪⎩
− div(y1−α∇Eα(u)) = 0 in CΩ,
Eα(u) = 0 on ∂LCΩ,
Tr(Eα(u)) = u on Ω,

(2.3)

where the trace operator Tr : Xα
0 (CΩ) → L2(Ω) is given by

Tr(Eα(u)) := Eα(u)(·, 0).
The extension function Eα(u) belongs to the Hilbert space

Xα
0 (CΩ) :=

{
w ∈ L2(CΩ) : w = 0 on ∂LCΩ,

∫
CΩ

y1−α|∇w(x, y)|2 dxdy < +∞
}
,

with the standard norm

‖w‖Xα
0 (CΩ) :=

(
κα

∫
CΩ

y1−α|∇w(x, y)|2 dxdy
)1/2

,

where the normalization constant κα is given by

κα :=
Γ(α2 )

21−αΓ(1− α
2 )

.

Introducing this constant we have that the extension operator

Eα : H
α/2
0 (Ω) → Xα

0 (CΩ)
is an isometry, i.e.,

‖Eα(u)‖Xα
0 (CΩ) = ‖u‖

H
α/2
0 (Ω)

,

for every u ∈ H
α/2
0 (Ω).
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Further, we have the following trace inequality:

‖Tr(w)‖
H

α/2
0 (Ω)

≤ ‖w‖Xα
0 (CΩ),

for every w ∈ Xα
0 (CΩ).

By using the α-extension Eα(u) ∈ Xα
0 (CΩ) of the function u ∈ H

α/2
0 (Ω), we

can define the fractional operator (−Δ)α/2 in Ω, acting on u, as follows;

(−Δ)α/2u(x) := −κα lim
y→0+

y1−α ∂Eα(u)

∂y
(x, y).

2.3. Weak solutions. Let f : [0,+∞[→ [0,+∞[ be a continuous function

with f(0) = 0 and such that, for some a > 0, the map h :]0,+∞[→ [0,+∞[

defined by

h(ξ) :=
F (ξ)

ξ2

is nonincreasing in the real interval ]0, a], where

F (ξ) :=

∫ ξ

0

f(t)dt,

for each ξ ∈ [0,+∞[. Put

ā := sup{η > 0 : h is nonincreasing in ]0, η]} ∈]0,+∞].

Assume that ā = +∞. In such a case, we say that a positive function

u = Tr(w) ∈ H
α/2
0 (Ω) is a weak solution of (Sλ) if w ∈ Xα

0 (CΩ) weakly

solves

(Ŝλ)

⎧⎪⎪⎨
⎪⎪⎩
− div(y1−α∇w) = 0 in CΩ,
w = 0 on ∂LCΩ,
−κα limy→0+ y1−α ∂w

∂y (x, y) = λf(u) on Ω,

i.e.,

κα

∫
CΩ

y1−α〈∇w,∇ϕ〉dxdy = λ

∫
Ω

f(Tr(w)(x))Tr(ϕ)(x)dx,

for every ϕ ∈ Xα
0 (CΩ).

On the contrary, if ā < ∞, a positive function u = Tr(w) ∈ H
α/2
0 (Ω) is a

weak solution of (Sλ) if u ≤ ā and w ∈ Xα
0 (CΩ) weakly solves (Ŝλ).

Finally, set

λ1,α := κα inf
w∈Xα

0 (CΩ)\{0}

∫
CΩ

y1−α|∇w(x, y)|2 dxdy∫
Ω
(Tr(w)(x))2dx

,
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the first positive eigenvalue of the linear problem

(Lλ)

⎧⎪⎪⎨
⎪⎪⎩
− div(y1−α∇w) = 0 in CΩ,
w = 0 on ∂LCΩ,
−κα limy→0+ y1−α ∂w

∂y (x, y) = λw on Ω,

and ϕα ∈ Xα
0 (CΩ) the corresponding eigenfunction. It should be stated that

λ1,α is none other than the first eigenvalue of the Dirichlet Laplacian on Ω,

raised to the power α/2.

Finally, we point out that, by using the above notation, more precise infor-

mation on the interval Jr that appears in assumption (h�2) can be achieved.

Precisely, in the sequel we will prove that condition (h1) is equivalent to the

following:

(h2) f is subcritical with limξ→0+ h(ξ) > 0 and for each r > 0, there exists

εr > 0 such that, for every

λ ∈
]

λ1,α

2 limξ→0+ h(ξ)
,

λ1,α

2 limξ→0+ h(ξ)
+ εr

[
,

the problem (Sλ) has a weak solution uλ ∈ H
α/2
0 (Ω), satisfying

‖uλ‖Hα/2
0 (Ω)

< r.

Of course if limξ→0+ h(ξ) = +∞, the above condition assumes the simple

form

(h′2) for each r>0, there exists εr>0 such that, for every λ ∈]0, εr[, the prob-
lem (Sλ) has a weak solution uλ ∈ H

α/2
0 (Ω), satisfying ‖uλ‖Hα/2

0 (Ω)
< r.

3. Proof of the Main Result

3.1. Part I: (h1) ⇒ (h2). We divide the proof into two steps:

(1) ā = +∞;

(2) ā < +∞.

Step (1). We assume that h is nonincreasing in the half-line ]0,+∞[. Set

lim
ξ→0+

h(ξ) = σ1 ∈ (0,+∞],

and

lim
ξ→+∞

h(ξ) = σ2.
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Clearly σ2 ≥ 0 and, since condition (h1) holds, it follows that σ1 > σ2.

Therefore, one has

I :=
]λ1,α

2σ1
,
λ1,α

2σ2

[
�= ∅.

Now consider the nonlocal extended problem (Ŝλ) and let us show that, for

every λ ∈ I, the problem (Ŝλ) has a nontrivial weak solution in the Hilbert

space Xα
0 (CΩ).

To this end, we first extend f to the whole real axis by putting f(t) = 0 for

each t ∈]−∞, 0[. After that, fix λ ∈ I and define the functional

(3.1) Jλ(w) :=
κα

2

∫
CΩ

y1−α|∇w(x, y)|2 dxdy − λ

∫
Ω

F (Tr(w)(x))dx,

for every w ∈ Xα
0 (CΩ).

The nontrivial critical points of Jλ are exactly the nontrivial weak solutions of

the problem (Ŝλ). Further, by using the Maximum Principle [10], if w ∈ Xα
0 (CΩ)

is a weak solution of (Ŝλ), then Tr(w) ∈ H
α/2
0 (Ω) is strictly positive in Ω and

solves problem (Sλ).

Now, since h is nonincreasing in ]0,+∞[, it is easy to infer that f has sublinear

growth at +∞. Indeed, from the definition of σ2, we can find two constants

� > σ2 and σ > 0 such that

(3.2) F (ξ) ≤ �ξ2 + σ,

for every ξ ∈ R.

By using the growth condition (3.2) and since ξf(ξ) ≤ 2F (ξ) for all ξ ∈ R

(bearing in mind that h is nonincreasing in ]0,+∞[ and f ≡ 0 in ]−∞, 0[), we

have

ξf(ξ) ≤ 2F (ξ) ≤ 2�ξ2 + 2σ, ∀ ξ ≥ 0.

Thus

f(ξ) ≤ 2�|ξ|+ 2σ

|ξ| , ∀ ξ ∈ R \ {0}.

Hence, fixing ξ0 > 0, by using the above inequality it follows that

f(ξ) ≤ 2�|ξ|+ 2σ

ξ0
, ∀ |ξ| ≥ ξ0.

In conclusion, one has

(3.3) f(ξ) ≤ 2�|ξ|+ γ, ∀ ξ ∈ R
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where

γ := max
|ξ|≤ξ0

f(ξ) +
2σ

ξ0
.

Since λ ∈ I, we clearly have

λ <
λ1,α

2σ2
.

Therefore, we can fix � ∈]σ1, σ2[ such that

(3.4)
λ1,α

2σ1
< λ <

λ1,α

2�
.

Hence Jλ is well defined and of class C1 in Xα
0 (CΩ). Moreover, the functional

Jλ is weakly lower semicontinuous on Xα
0 (CΩ). Indeed, the application

w �→
∫
Ω

F (Tr(w)(x))dx

is continuous in the weak topology of Xα
0 (CΩ).

We prove this regularity result as follows. Let {wj}j∈N be a sequence in

Xα
0 (CΩ) such that wj ⇀ w weakly in Xα

0 (CΩ). Then, by using Sobolev embed-

ding results and [8, Theorem IV.9], up to a subsequence, {wj}j∈N converges to

w strongly in Lν(Ω) and almost everywhere (a.e.) in Ω as j → +∞, and it is

dominated by some function hν ∈ Lν(Ω), i.e.,

(3.5) |Tr(wj)(x))| ≤ hν(x) a.e. x ∈ Ω for any j ∈ N

for any ν ∈ [1, 2∗α), where

2∗α :=
2n

n− α

denotes the critical (fractional) Sobolev exponent.

Then, by the continuity of F and (3.2) it follows that

F (Tr(wj)(x)) → F (Tr(w)(x)) a.e. x ∈ Ω

as j → ∞ and

|F (Tr(wj)(x))| ≤ (�Tr(wj)(x)
2 + σ) ≤ (�h2(x)

2 + σ) ∈ L1(Ω)

a.e. x ∈ Ω and for any j ∈ N.

Hence, by applying the Lebesgue Dominated Convergence Theorem in L1(Ω),

we have that ∫
Ω

F (Tr(wj)(x)) dx →
∫
Ω

F (Tr(w)(x)) dx
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as j → ∞, that is the map

w �→
∫
Ω

F (Tr(w)(x))dx

is continuous from Xα
0 (CΩ) with the weak topology to R.

On the other hand, the map

w �→ ‖w‖2Xα
0 (CΩ) := κα

∫
CΩ

y1−α|∇w(x, y)|2 dxdy

is lower semicontinuous in the weak topology of Xα
0 (CΩ). Hence the functional

Jλ is lower semicontinuous in the weak topology of Xα
0 (CΩ).

Now, by (3.2), for some positive constant β independent of λ, for instance

β := σλ1,α/2�, we have

λ

∫
Ω

F (Tr(w)(x))dx ≤ λ�

∫
Ω

Tr(w)(x)2dx+ β ≤ λ�

λ1,α
‖w‖2Xα

0 (CΩ) + β

and

(3.6) Jλ(w) ≥
(1
2
− λ�

λ1,α

)
‖w‖2Xα

0 (CΩ) − β

for every w ∈ Xα
0 (CΩ).

In view of (3.4), by using (3.6) it follows that

(3.7) Jλ(w) → +∞,

as ‖w‖Xα
0 (CΩ) → +∞.

Now observe that Tr(ϕ1,α) ∈ H
α/2
0 (Ω) and is positive in Ω. Moreover, one

has Tr(ϕα) ∈ C1(Ω̄). Let us put

ϕ̄α = max
x∈Ω̄

Tr(ϕα)(x).

Observe that, thanks to (h1), for every t > 0 we have

h(tTr(ϕα)(x)) > h(tϕ̄α), ∀x ∈ Ω0

where Ω0 ⊆ Ω is a set of positive Lebesgue measure.

Thus we have

(3.8)

Jλ(tϕα) =
t2

2
‖ϕα‖2Xα

0 (CΩ) − λ

∫
Ω

h(tTr(ϕα)(x))(tTr(ϕα)(x))
2dx

<
t2

2
‖ϕα‖2Xα

0 (CΩ) − λt2h(tϕ̄α)

∫
Ω

(Tr(ϕα)(x))
2dx

=t2‖ϕα‖2Xα
0 (CΩ)

(1
2
− λ

λ1,α
h(tϕ̄α)

)
.
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Now

lim
ζ→0+

h(ζ) = lim
ζ→0+

F (ζ)

ζ2
= σ1,

where ζ := t2ϕ̄α. If σ1 < +∞, for every ε > 0 there exists a positive constant

δε such that, for every ζ ∈ (0, δε], one has

F (ζ)

ζ2
< σ1 + ε.

On the other hand, since

λ1,α

2λ
< σ1,

there exist ε̄ > 0 and a positive δε̄ such that

λ1,α

2λ
< σ1 − ε̄ < σ1,

and
F (ζ)

ζ2
> σ1 − ε̄ >

λ1,α

2λ

for every ζ ∈ (0, δε̄]. On the other hand, if σ1 = +∞, one has

F (ζ)

ζ2
>

λ1,α

2λ

for ζ sufficiently small. Hence there exists t̄ > 0 such that

h(t̄ϕ̄α) :=
F (t̄2ϕ̄α)

t̄2ϕ̄α
>

λ1,α

2λ
.

Consequently

inf
w∈Xα

0 (CΩ)
Jλ(w) < 0

which, together with the weak continuity of Jλ and the coercivity (3.7), yields

the existence of a nontrivial global minimum wλ ∈ Xα
0 (CΩ) for the functional

Jλ.

As noted above, wλ is a solution of the problem (Ŝλ). We claim that

(3.9) lim
λ→μ+

0

‖wλ‖Xα
0 (CΩ) = 0

where, from now on, for simplicity, we set

μ0 :=
λ1,α

2σ1
(μ0 := 0 if σ1 = +∞).



344 G. MOLICA BISCI AND V. D. RĂDULESCU Isr. J. Math.

This, of course, completes the proof of (h2) in the case in which h is nonin-

creasing in ]0,+∞[. To prove (3.9), let us take

{λj}j∈N ⊂
]λ1,α

2σ1
,
λ1,α

2�

[
,

where � is as above, and {λj}j∈N is a real sequence such that

lim
j→∞

λj =
λ1,α

2σ1
.

For each j ∈ N we have Jλj (wλj ) < 0. Hence, in view of (3.6), we can write

‖wλj‖2Xα
0 (CΩ) <

β

(12 − λj�
λ1,α

)
.

Observing that

lim
λj→μ+

0

β

(12 − λj�
λ1,α

)
=

β

(12 − �
2σ1

)
∈]0,+∞[,

we infer that the sequence {wλj}j∈N is bounded in Xα
0 (CΩ).

Thus, up to a subsequence, wj ⇀ w∞ weakly in Xα
0 (CΩ) and

Tr(wλj ) → w∞

strongly in Lν(Ω) for every ν ∈ [1, 2∗α[.
We claim that w∞ = 0. Indeed, arguing by contradiction, assume that w∞ �=

0 in Xα
0 (CΩ).

Now note that, for each ϕ ∈ Xα
0 (CΩ) and j ∈ N, one has

(3.10)

0 =J ′
λj
(wλj )(ϕ)

=κα

∫
CΩ

y1−α〈∇wλj ,∇ϕ〉dxdy − λj

∫
Ω

f(Tr(wλj )(x))Tr(ϕ)(x)dx.

Assume that σ1 is finite (the case σ1 = +∞ is similar). Taking into account

inequality (3.3), and since wj ⇀ w∞ weakly in Xα
0 (CΩ) and Tr(wλj ) → w∞

strongly in L1(Ω), passing to the limit in (3.10) we have

(3.11)

0 =J ′
μ0
(w∞)(ϕ)

:=κα

∫
CΩ

y1−α〈∇w∞,∇ϕ〉dxdy −λ1,α

2σ1

∫
Ω

f(Tr(w∞)(x))Tr(ϕ)(x)dx,

for every ϕ ∈ Xα
0 (CΩ).
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Therefore, w∞ is a nontrivial critical point of Jμ0 , that is w∞ is a weak

solution of the nonlocal problem (Ŝμ0) and again by the Maximum Principle,

Tr(w∞) > 0 in Ω.

Testing equation (3.11) with ϕ = w∞, by using inequality ξf(ξ) ≤ 2F (ξ) we

obtain

(3.12)

0 =‖w∞‖2Xα
0 (CΩ) −

λ1,α

2σ1

∫
Ω

f(Tr(w∞)(x))Tr(w∞)(x)dx

≥‖w∞‖2Xα
0 (CΩ) −

λ1,α

σ1

∫
Ω

F (Tr(w∞)(x))dx

=‖w∞‖2Xα
0 (CΩ) −

λ1,α

σ1

∫
Ω

h(Tr(w∞)(x))(Tr(w∞)(x))2dx.

Taking into account (h1), relation (3.12) yields

0 =‖w∞‖2Xα
0 (CΩ) −

λ1,α

σ1

∫
Ω

h(Tr(w∞)(x))(Tr(w∞)(x))2dx

>‖w∞‖2Xα
0 (CΩ) − λ1,α

∫
Ω

(Tr(w∞)(x))2dx,

that is

λ1,α > κα

∫
CΩ

y1−α|∇w∞(x, y)|2 dxdy∫
Ω
(Tr(w∞)(x))2dx

,

in contradiction to the definition of λ1,α. Therefore, we must have w∞ = 0.

Choosing ϕ = wλj in (3.11), we have

‖wλj‖2 = λj

∫
Ω

f(Tr(wλj )(x))Tr(wλj )(x)dx

for each j ∈ N.

Now, note that, by (3.3) and Tr(wλj ) → 0 strongly in L2(Ω), the right-hand

side in the previous equality converges to 0 as j → +∞.

Thus

lim
j→∞

‖wλj‖Xα
0 (CΩ) = 0,

and the limit (3.9) is proved.

Finally, uλ := Tr(wλ) ∈ H
α/2
0 (Ω) solves (Sλ) and, by the following trace

inequality

‖uλ‖Hα/2
0 (Ω)

≤ ‖wλ‖Xα
0 (CΩ),

relation (3.9) yields

(3.13) lim
λ→μ+

0

‖uλ‖Hα/2
0 (Ω)

= 0.
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Step (2). Let us assume that ā < +∞ and observe that h′(ā) = 0. Thus

the function h0 :]0,+∞[→ R given by

h0(ξ) :=

⎧⎨
⎩h(ξ) if ξ ∈]0, ā],=
h(ā) if ξ ∈]ā,+∞[

is of class C1 in ]0,+∞[.

Denote

F0(ξ) :=

⎧⎨
⎩0 if ξ ∈]−∞, 0],

h0(ξ)ξ
2 if ξ ∈]0,+∞[.

Then F0 is a C1 function and F0(ξ) = F (ξ) for every ξ ∈]−∞, ā]. Of course

F0 satisfies condition (h1) and the function

ξ �→ F0(ξ)

ξ2

is nonincreasing in ]0,+∞[.

Now consider the problem

(S0
λ)

⎧⎪⎪⎨
⎪⎪⎩
(−Δ)α/2u = λf0(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where

f0(t) := F ′
0(t) =

⎧⎪⎪⎨
⎪⎪⎩
0 if t ∈]−∞, 0],

f(t) if t ∈]0, ā],
2h0(ā)t if t ∈]ā,+∞[.

By using Step (1), for any r > 0, we can find an open interval

J :=]μ0, μ0 + ε0[ (ε0 > 0)

such that, for every λ ∈ J , there exists a weak solution uλ ∈ H
α/2
0 (Ω) of (S0

λ)

satisfying ‖uλ‖Hα/2
0 (Ω)

< r. Moreover, condition (3.13) holds.

Fix q > N
α . We note that, by [18, Theorem 4.1 and Remark 4.1], there

exists a positive constant Mq such that for every g ∈ Lq(Ω) and every solution

u ∈ H
α/2
0 (Ω) of the problem

(Sg
λ)

⎧⎨
⎩(−Δ)α/2u = g(x) in Ω,

u = 0 on ∂Ω,
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one has u ∈ L∞(Ω) and

(3.14) ‖u‖∞ ≤ Mq‖g‖q.
Now the function f0 has sublinear growth at ∞ and, since f0(0) = 0, we can

find a positive constant ϑ such that

(3.15) f0(t) ≤ ϑ|t|+ (μ0 + ε0)
−1ā

2Mq|Ω|1/q ,

for every t ∈ R.

Therefore, let wλ ∈ Xα
0 (CΩ) such that Tr(wλ) = uλ ∈ H

α/2
0 (Ω). Since

(3.16) κα

∫
CΩ

y1−α〈∇wλ,∇ϕ〉dxdy = λ

∫
Ω

f0(uλ(x))Tr(ϕ)(x)dx,

for every ϕ ∈ Xα
0 (CΩ), one has that uλ ∈ H

α/2
0 (Ω) is a weak solution of the

problem ⎧⎨
⎩(−Δ)α/2u = λf0(uλ(x)) in Ω,

u = 0 on ∂Ω.

By (3.14) and (3.15) we have

(3.17) ‖uλ‖∞ ≤ λϑMq‖uλ‖q + λλ−1
0

ā

2
≤ λ0ϑMq‖uλ‖q + ā

2
,

for every λ ∈ J .

Fix μ ∈]0, 1[ such that qμ < 2∗α and let us prove that

(3.18) ‖uλ‖q ≤ ‖uλ‖1−μ
∞ ‖uλ‖μμq.

Indeed

‖uλ‖q :=
(∫

Ω

|uλ(x)|qdx
)1/q

=

(∫
Ω

|uλ(x)|q(1−μ)|uλ(x)|qμdx
)μ/(qμ)

≤
(∫

Ω

‖uλ‖q(1−μ)
∞ |uλ(x)|qμdx

)μ/(qμ)

=‖uλ‖1−μ
∞ ‖uλ‖μμq.

By (3.18) and using the Sobolev embedding H
α/2
0 (Ω) ↪→ Lqμ(Ω), one has

‖uλ‖q ≤ ‖uλ‖1−μ
∞ ‖uλ‖μμq ≤ cqμ‖uλ‖1−μ

∞ ‖uλ‖μ
H

α/2
0 (Ω)

,

for some positive constant cqμ.
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Using this inequality in (3.17), we obtain

(3.19) ‖uλ‖∞ ≤ k‖uλ‖1−μ
∞ ‖uλ‖μ

H
α/2
0 (Ω)

+
ā

2

for some positive constant k.

From (3.13) and (3.19), we infer that

lim
λ→μ+

0

‖uλ‖∞ ≤ ā

2
.

This means that there exists some ε1 ∈]0, ε0[ such that uλ(x) ≤ ā for a.e. x ∈ Ω

and every

λ ∈ J ′ := ]μ0, μ0 + ε1[ .

In conclusion, for every λ ∈ J ′, uλ ∈ H
α/2
0 (Ω) is a weak solution of the

problem (Sλ) and satisfies

‖uλ‖Hα/2
0 (Ω)

< r

observing that J ′ ⊂ J . The proof is complete.

3.2. Part II: (h1) ⇐ (h2). In order to prove our result we argue by contra-

diction. Hence, assume that there exist two positive constant b and c such

that

F (ξ) = cξ2

for every ξ ∈ [0, b]. Consequently

f(ξ) = 2cξ

for every ξ ∈ [0, b].

Let {rj}j∈N ⊂]0,+∞[ be a sequence such that limj→∞ rj = 0. Then, for

every j ∈ N, there exists εj > 0 such that, for every

λ ∈ Jj :=]μ0, μ0 + εj [,

the problem

(S∗
λ)

⎧⎨
⎩(−Δ)α/2u = f(u) in Ω

u = 0 on ∂Ω

has a positive weak solution uλ,j ∈ H
α/2
0 (Ω) satisfying ‖uλ,j‖Hα/2

0 (Ω)
< rj .

In particular, we have

(3.20) lim
j→∞

sup
λ∈Jj

‖uλ,j‖Hα/2
0 (Ω)

= 0.
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Now, arguing as in the previous subsection, we can find a positive constant

k (independent of j and λ) and μ sufficiently small such that

‖uλ,j‖∞ ≤ k‖uλ,j‖1−μ
∞ ‖uλ,j‖μ

H
α/2
0 (Ω)

+
b

2

for every λ ∈ Jj and j ∈ N.

From (3.20) and the previous inequality, we infer that

lim
j→∞

sup
λ∈Jj

‖uλ,j‖∞ ≤ b

2
.

In particular, we can fix j0 ∈ N such that

‖uλ,j0‖∞ ≤ b,

for every λ ∈ Jj0 .

Consequently, for every

λ ∈ ]μ0, μ0 + εj0 [ ,

the problem (S∗
λ) admits a weak solution uλ,j0 ∈ H

α/2
0 (Ω).

This is absurd, since the restriction of problem (S∗
λ) has a solution only for

countably many positive values of the parameter λ.
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[6] J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, Vol. 121, Cambridge

University Press, Cambridge, 1996.



350 G. MOLICA BISCI AND V. D. RĂDULESCU Isr. J. Math.
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