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ABSTRACT

In this paper, we are concerned with the following nonlinear magnetic

Schrödinger equation with critical growth:⎧⎨
⎩
( ε
i
∇− A(x))2u+ V (x)u = f(|u|2)u+ |u|2∗−2u in RN ,

u ∈ H1(RN ,C),

where ε > 0 is a parameter, N ≥ 3 and 2∗ = 2N
N−2

is the Sobolev critical

exponent, V : RN → R and A : RN → RN are continuous potentials,

f : R → R is a subcritical nonlinear term. Under a local assumption on

the potential V , by the variational methods, the penalization technique

and the Ljusternic–Schnirelmann theory, we prove the multiplicity and

concentration of nontrivial solutions of the above problem for ε small. For

the problem, the function f is only continuous, which allows to consider

larger classes of nonlinearities in the reaction.
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1. Introduction and main results

In this paper, we study multiplicity and concentration results for the following

nonlinear magnetic Schrödinger equation with critical growth:⎧⎨
⎩( εi∇−A(x))2u+ V (x)u = f(|u|2)u+ |u|2∗−2u in RN ,

u ∈ H1(RN ,C),
(1.1)

where ε > 0 is a parameter, N ≥ 3 and 2∗ = 2N
N−2 is the Sobolev criti-

cal exponent, V : RN → R is a continuous function, the magnetic potential

A : RN → RN is Hölder continuous with exponent α ∈ (0, 1], and −ΔAu is the

magnetic Laplace with the following form:

−ΔAu :=
(1
i
∇−A(x)

)2

u = −Δu− 2

i
A(x) · �u+ |A(x)|2u− 1

i
u div(A(x)).

Problem (1.1) arises when one looks for standing wave solutions

ψ(x, t) := e−iEt/�u(x)

(with E ∈ R) of the nonlinear evolution system

i�
∂ψ

∂t
=

(
�

i
∇−A(x)

)2

ψ + U(x)ψ − f(|ψ|2)ψ, x ∈ R
N .

From a physical point of view, the existence of such solutions and the study

of their shape in the semiclassical limit, namely, as � → 0+ (or, equivalently,

as ε → 0+ in (1.1)), is of the greatest importance, since the transition from

quantum mechanics to classical mechanics can be formally performed by sending

to zero the Planck constant �.

For problem (1.1), there is a vast literature concerning the existence and

multiplicity of bound states for the case without magnetic field, namely if A ≡ 0.

The first result in this direction was given by Floer and Weinstein [29], who

considered the case N = 1 and f = iR. Later on, several authors generalized

this result to larger values of N , using different methods. For instance, del

Pino and Felmer [27] studied the existence and concentration of solutions to

the following problem⎧⎪⎪⎨
⎪⎪⎩
−ε2Δu+ V (x)u = f(u) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,
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where Ω is a possibly unbounded domain in RN (N ≥ 3), the potential V is

locally Hölder continuous, bounded from below away from zero, there exists a

bounded open set Λ ⊂ Ω such that

(1.2) inf
x∈Λ

V (x) < min
x∈∂Λ

V (x),

and the nonlinearity f satisfies some subcritical growth conditions. In [2], Alves

and Figueiredo considered the following quasilinear elliptic equation⎧⎨
⎩−εpΔpu+ V (x)|u|p−2u = f(u), in RN ,

u > 0, in R
N ,

where V is a positive continuous function and satisfies the local assumption (1.2),

f ∈ C1 is a function having subcritical and superlinear growth. By using the

Nehari manifold method and the Ljusternik–Schnirelmann category theory, the

authors obtained the multiplicity of positive solutions. In order to apply the

Nehari manifold method, the authors assumed that f ∈ C1, which ensures that

the Nehari manifold is a C1-manifold. If f is only continuous, then the Nehari

manifold is only a topological manifold, thus the arguments developed in [2]

collapse. We notice that Szulkin and Weth in [41] considered the multiple solu-

tions for the nonlinear stationary Schrödinger equation −Δu+V (x)u = f(x, u)

in RN , here f is superlinear, subcritical and continuous. In order to use the

method of the Nehari manifold, they developed a new approach. In [30], He

and Zou considered the following fractional Schrödinger equation:

ε2s(−Δ)su+ V (x)u = f(u) + u2
∗
s−1, x ∈ R

N ,

where V satisfies the local assumption (1.2), and f is subcritical. By using the

Nehari manifold method and the Ljusternik–Schnirelmann category theory, the

authors obtained the multiplicity of positive solutions. We notice that f is only

continuous in [30], the Nehari manifold is only a topological manifold, thus the

critical points theory in the C1 manifold can not be applied. To overcome the

difficulty, He and Zou [30] applied the method that Szulkin and Weth developed

in [41]. For further results about existence, multiplicity and qualitative proper-

ties of semiclassical states with various types of concentration behaviors, which

have been established under various assumptions on the potential V and on the

nonlinearity f , see [4, 5, 6, 8, 9, 10, 16, 17, 18, 26, 34, 35, 39, 40, 43] and the refer-

ences therein (see [7] for the fractional case). We also refer to [12, 15, 19, 21, 45]
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for related contributions to the study of concentration phenomena associated

to various Schrödinger-type equations.

On the other hand, the magnetic nonlinear Schrödinger system (1.1) has

been extensively investigated by many authors applying suitable variational

and topological methods (see [3, 13, 14, 20, 23, 22, 24, 25, 28, 32, 31, 33, 36, 38]

and references therein). To the best of our knowledge, the first result involv-

ing the magnetic field was obtained by Esteban and Lions [28]. They used the

concentration-compactness principle and minimization arguments to obtain so-

lutions for ε > 0 fixed and N = 2, 3. In particular, due to our scope, we want to

mention [3] where the authors used the method of the Nehari manifold, the pe-

nalization method, and the Ljusternik–Schnirelmann category theory for a sub-

critical nonlinearity f ∈ C1. We point out that if f is only continuous, then the

arguments developed in [3] fail. In [31], Ji and Rădulescu used the method of the

Nehari manifold, the penalization technique and Ljusternik–Schnirelmann cat-

egory theory to study the multiplicity and concentration results for a magnetic

Schrödinger equation in which the subcritical nonlinearity f is only continuous.

It is quite natural to consider the multiplicity and concentrating phenomena of

nontrivial solutions for problem (1.1) with critical growth. Inspired by [30, 31],

the main purpose of this paper is to investigate multiplicity and concentration

of nontrivial solutions for problem (1.1) by combining a local assumption on V

and adapting the penalization technique and Ljusternik–Schnirelmann category

theory.

Throughout the paper, we make the following assumptions on the potential V :

(V 1) There exists V0 > 0 such that V (x) ≥ V0 for all x ∈ RN .

(V 2) There exists a bounded open set Λ ⊂ RN such that

V0 = min
x∈Λ

V (x) < min
x∈∂Λ

V (x).

Observe that

M := {x ∈ Λ : V (x) = V0} 	= ∅.
Moreover, let the nonlinearity f ∈ C(R,R) be a function satisfying:

(f1) f(t) = 0 if t ≤ 0;

(f2) there exists σ, q ∈ (2, 2∗) and μ > 0 such that

f(t) ≥ μtσ−2/2 ∀t > 0, lim
t→+∞

f(t2)t

tq−1
= 0;
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(f3) there is a positive constant θ > 2 such that

0 <
θ

2
F (t) ≤ tf(t), ∀ t > 0, where F (t) =

∫ t

0

f(s)ds;

(f4) f(t) is strictly increasing in (0,∞).

The main result of this paper is the following:

Theorem 1.1: Assume that V satisfies (V 1), (V 2) and f satisfies (f1)–(f4).

Then, for any δ > 0 such that

Mδ := {x ∈ R
N : dist(x,M) < δ} ⊂ Λ,

there exists εδ > 0 such that, for any 0 < ε < εδ, problem (1.1) has at

least catMδ
(M) nontrivial solutions. Moreover, for every sequence {εn} such

that εn → 0+ as n → +∞, if we denote by uεn one of these solutions of (1.1)

for ε = εn and ηεn ∈ RN the global maximum point of |uεn |, then
lim
n
V (ηεn) = V0.

The proof of Theorem 1.1 is inspired from [30, 31]. Notice that, due to the

presence of the magnetic field A(x), problem (1.1) cannot be changed into a

pure real-valued problem, hence we must deal directly with a complex-valued

problem, which causes several new difficulties in employing the methods in

dealing with our problem. On the other hand, since the problem we deal with

has critical growth, we need more refined estimates to overcome the lack of

compactness. The plan of the paper is as follows: in Section 2 we introduce

the functional setting and give some preliminaries. In Section 3, we study

the modified problem. We prove the Palais–Smale condition for the modified

functional and provide some tools which are useful to establish a multiplicity

result. In Section 4, we study the associated autonomous problem. It allows us

to show the modified problem has the multiple solutions. Finally, in Section 5,

we give the proof of Thereom 1.1.

Notation.

• C,C1, C2, . . . denote positive constants whose exact values are inessen-

tial and can change from line to line;

• BR(y) denotes the open ball centered at y ∈ R
N with radius R > 0

and Bc
R(y) denotes the complement of BR(y) in RN ;

• ‖·‖, ‖·‖q, and ‖·‖L∞(Ω) denote the usual norms of the spacesH1(RN ,R),

Lq(RN ,R), and L∞(Ω,R), respectively, where Ω ⊂ RN . 〈·, ·〉0 denotes

the inner product of the space H1(RN ,R).



470 C. JI AND V. D. RĂDULESCU Isr. J. Math.

2. The variational framework and the limit problem

For u : RN → C, let us denote

∇Au :=
(∇
i
−A

)
u

and

H1
A(R

3,C) := {u ∈ L2(RN ,C) : |∇Au| ∈ L2(RN ,R)}.
The space H1

A(R
N ,C) is Hilbert space endowed with the scalar product

〈u, v〉H := Re

∫
RN

(∇Au∇Av + uv)dx, for any u, v ∈ H1
A(R

N ,C),

where Re and the bar denote the real part of a complex number and the complex

conjugation, respectively. Moreover, we denote by ‖u‖A the norms induced by

inner product 〈u, v〉A.
On H1

A(R
N ,C) we will frequently use the following diamagnetic inequality

(see, e.g., [37, Theorem 7.21]):

(2.1) |∇Au(x)| ≥ |∇|u(x)||.
Moreover, making a simple change of variables, we can see that (1.1) is equiv-

alent to

(2.2)
(1
i
∇−Aε(x)

)2

u+ Vε(x)u = f(|u|2)u+ |u|2∗−2u in R
N ,

where Aε(x) = A(εx) and Vε(x) = V (εx).

Let Hε be the Hilbert spaces obtained as the closure of C∞
c (RN ,C) with

respect to the scalar product

〈u, v〉ε := Re

∫
RN

(
∇Aεu∇Aεv + Vε(x)uv

)
dx

and let us denote by ‖ · ‖ε the norm induced by inner product 〈·, ·〉ε.
The diamagnetic inequality (2.1) implies that, if u ∈ H1

Aε
(RN ,C), then

|u| ∈ H1(RN ,R) and ‖u‖ ≤ C‖u‖ε. Therefore, the embeddingHε ↪→ Lr(RN ,C)

is continuous for 2 ≤ r ≤ 2∗ and the embedding Hε ↪→ Lr
loc(R

N ,C) is compact

for 1 ≤ r < 2∗.
For compact supported functions in H1(RN ,R), we have the following result,

which will be very important for some estimates below.

Lemma 2.1: If u ∈ H1(RN ,R) and u has compact support, then

ω := eiA(0)·xu ∈ Hε.
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Proof. Assume that supp(u) ⊂ BR(0). Since V is continuous, it is clear that∫
RN

Vε(x)|ω|2dx =

∫
BR(0)

Vε(x)|ω|2dx ≤ C‖u‖22 < +∞.

Moreover, since V and A are continuous, we have∫
RN

|∇Aεω|2dx =

∫
RN

|∇ω|2dx+

∫
RN

|Aε(x)|2|ω|2dx+ 2Re

∫
RN

iAε(x)ω∇ωdx

≤ 2

∫
RN

|∇ω|2dx + 2

∫
RN

|Aε(x)|2|ω|2dx

≤ C

[ ∫
RN

|∇u|2dx+

∫
RN

|u|2dx
]
< +∞

and we conclude.

3. The modified problem

To study (1.1), or equivalently, (2.2) by variational methods, we shall modify

suitably the nonlinearity f so that, for ε > 0 small enough, the solutions of

such a modified problem are also solutions of the original one. More precisely,

we choose K > 2, there exists a unique number a0 > 0 verifying

f(a0) + a
(2∗−2)/2
0 = V0/K

by (f4) , where V0 is given in (V 1), and we consider the function

f̃(t) :=

⎧⎨
⎩f(t) + (t+)(2

∗−2)/2, t ≤ a0,

V0/K, t > a0,

and introduce the penalized nonlinearity g : RN × R → R by setting

(3.1) g(x, t) := χΛ(x)(f(t) + (t+)(2
∗−2)/2) + (1− χΛ(x))f̃ (t),

where χΛ is the characteristic function on Λ and

G(x, t) :=

∫ t

0

g(x, s)ds.

In view of (f1)–(f4), we have that g is a Carathéodory function satisfying

the following properties:

(g1) g(x, t) = 0 for each t ≤ 0;

(g2) limt→0+
g(x,t)

t = 0 uniformly in x ∈ RN ;

(g3) g(x, t) ≤ f(t) + t(2
∗−2)/2 for all t ≥ 0 and any x ∈ R

N ;
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(g4) 0 < θG(x, t) ≤ 2g(x, t)t for each x ∈ Λ and t > 0;

(g5) 0 < G(x, t) ≤ g(x, t)t ≤ V0t/K, for each x ∈ Λc, t > 0;

(g6) for each x ∈ Λ, the function t �→ g(x,t)
t is strictly increasing in t∈(0,+∞)

and for each x ∈ Λc, the function t �→ g(x,t)
t is strictly increasing

in (0, a0).

Then we consider the modified problem

(3.2)
(1
i
∇−Aε(x)

)2

u+ Vε(x)u = g(εx, |u|2)u in R
N .

Note that if u is a nontrivial solution of problem (3.2) with

|u(x)|2 ≤ a0 for all x ∈ Λc
ε, Λε := {x ∈ R

N : εx ∈ Λ},
then u is a nontrivial solution of problem (2.2).

The functional associated to problem (3.2) is

Jε(u) :=
1

2

∫
RN

(|∇Aεu|2 + Vε(x)|u|2)dx − 1

2

∫
RN

G(εx, |u|2)dx for all u ∈ Hε,

defined in Hε. By standard arguments we obtain that Jε ∈ C1(Hε,R) and its

critical points are the weak solutions of the modified problem (3.2).

We denote by Nε the Nehari manifold of Jε, that is,

Nε := {u ∈ Hε\{0} : J ′
ε(u)[u] = 0},

and define the number cε by

cε = inf
u∈Nε

Jε(u).

Let H+
ε be the open subset Hε given by

H+
ε = {u ∈ Hε : |supp(u) ∩ Λε| > 0},

and S+
ε = Sε ∩ H+

ε , where Sε is the unit sphere of Hε. Note that S+
ε is a

non-complete C1,1-manifold of codimension 1, modeled on Hε and contained

in H+
ε . Therefore,

Hε = TuS
+
ε

⊕
Ru

for each u ∈ TuS
+
ε , where

TuS
+
ε = {v ∈ Hε : 〈u, v〉ε = 0}.

Arguing as in Lemma 3.1 in [31], we can show that the functional Jε satisfies

the mountain pass geometry (see [11, 44]).
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Lemma 3.1: For any fixed ε > 0, the functional Jε satisfies the following prop-

erties:

(i) there exist β, r > 0 such that Jε(u) ≥ β if ‖u‖ε = r;

(ii) there exists e ∈ Hε with ‖e‖ε > r such that Jε(e) < 0.

Since f is only continuous, the next results are very important because they

allow us to overcome the non-differentiability of Nε and the incompleteness

of S+
ε .

Lemma 3.2: Assume that (V 1)–(V 2) and (f1)–(f4) are satisfied, then the fol-

lowing properties hold:

(A1) For any u ∈ H+
ε , let gu : R+ → R be given by gu(t) = Jε(tu). Then

there exists a unique tu > 0 such that g′u(t) > 0 in (0, tu) and g
′
u(t) < 0

in (tu,∞).

(A2) There is a τ > 0 independent on u such that tu ≥ τ for all u ∈ S+
ε .

Moreover, for each compact W ⊂ S+
ε there is CW such that tu ≤ CW ,

for all u ∈ W .

(A3) The map m̂ε : H+
ε → Nε given by m̂ε(u) = tuu is continuous and

mε = m̂ε|S+
ε
is a homeomorphism between S+

ε and Nε. Moreover,

m−1
ε (u) =

u

‖u‖ε .

(A4) If there is a sequence {un} ⊂ S+
ε such that dist(un, ∂S

+
ε ) → 0, then

‖mε(un)‖ε → ∞ and Jε(mε(un)) → ∞.

Proof. (A1) Arguing as in Lemma 3.1, we have gu(0) = 0, gu(t) > 0 for t > 0

small and gu(t) < 0 for t > 0 large. Therefore, maxt≥0 gu(t) is achieved at a

global maximum point t = tu verifying g′u(tu) = 0 and tuu ∈ Nε. Now, we show

that tu is unique. Arguing by contradiction, suppose that there exist t1 > t2 > 0

such that g′u(t1) = g′u(t2) = 0. Then, for i = 1, 2,

ti

∫
RN

(|∇Aεu|2 + Vε(x)|u|2)dx =

∫
RN

g(εx, t2i |u|2)ti|u|2dx.

Hence, ∫
RN (|∇Aεu|2 + Vε(x)|u|2)dx

t2i
=

∫
RN

g(εx, t2i |u|2)|u|2
t2i

dx,
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which implies that( 1

t21
− 1

t22

)(∫
RN

(|∇Aεu|2 + Vε(x)|u|2)dx
)

=

∫
RN

(g(εx, t21|u|2)
t21|u|2

− g(εx, t22|u|2)
t22|u|2

)
|u|4dx

≥
∫
Λc

ε∩{t22|u|2≤a0≤t21|u|2}

(g(εx, t21|u|2)
t21|u|2

− g(εx, t22|u|2)
t22|u|2

)
|u|4dx

+

∫
Λc

ε∩{a0≤t22|u|2}

(g(εx, t21|u|2)
t21|u|2

− g(εx, t22|u|2)
t22|u|2

)
|u|4dx

=

∫
Λc

ε∩{t22|u|2≤a0≤t21|u|2}

(V0
K

1

t21|u|2
− f(t22|u|2) + t42|u|4

t22|u|2
)
|u|4dx

+
1

K

( 1

t21
− 1

t22

)∫
Λc

ε∩{a0≤t22|u|2}
V0|u|2dx.

Since t1 > t2 > 0, we have∫
RN

(|∇Aεu|2 + Vε(x)|u|2)dx

≤ t21t
2
2

t22 − t21

∫
Λc

ε∩{t22|u|2≤a0≤t21|u|2}

(V0
K

1

t21|u|2
− f(t22|u|2) + t42|u|4

t22|u|2
)
|u|4dx

+
1

K

∫
Λc

ε∩{a0≤t22|u|2}
V0|u|2dx

≤ 1

K

∫
Λc

ε

V0|u|2dx ≤ 1

K
‖u‖2ε,

which is a contradiction. Therefore, maxt≥0 gu(t) is achieved at a unique t = tu

so that g′u(t) = 0 and tuu ∈ Nε.

(A2) For ∀u ∈ S+
ε , by (A1), there exists a unique tu > 0 such that

tu =

∫
RN

g(εx, t2u|u|2)tu|u|2dx.

From (g2), (g3), the Sobolev embeddings and 2 < q < 2∗, we get

tu ≤ ζtu

∫
RN

|u|2dx+ Cζt
2∗−1
u

∫
RN

|u|2∗dx ≤ C1ζtu + C2t
2∗−1
u ,

which implies that tu ≥ τ for some τ > 0. If W ⊂ S+
ε is compact, and suppose

by contradiction that there is {un} ⊂ W with tn := tun → ∞. Since W is

compact, there exists a u ∈ W such that un → u in Hε. Moreover, using the

proof of Lemma 3.1(ii), we have that Jε(tnun) → −∞.
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On the other hand, let vn := tnun ∈ Nε. Then from the definition of g

and (g4), (g5) and θ > 2, it follows that

Jε(vn) =Jε(vn)− 1

θ
J ′
ε(vn)[vn]

≥
(1
2
− 1

θ

)
‖vn‖2ε +

∫
Λc

ε

(1
θ
g(εx, |vn|2)|vn|2 − 1

2
G(εx, |vn|2)

)
dx

≥
(1
2
− 1

θ

)(
‖vn‖2ε −

1

K

∫
RN

V (εx)|vn|2dx
)

≥
(1
2
− 1

θ

)(
1− 1

K

)
‖vn‖2ε.

Thus, substituting vn := tnun and ‖vn‖ε = tn, we obtain

0 <
(1
2
− 1

θ

)(
1− 1

K

)
≤ Jε(vn)

t2n
≤ 0

as n→ ∞, which yields a contradiction. This proves (A2).

(A3) First of all, we note that m̂ε, mε and m−1
ε are well defined. Indeed,

by (A2), for each u ∈ H+
ε , there is a unique m̂ε(u) ∈ Nε. On the other hand,

if u ∈ Nε, then u ∈ H+
ε . Otherwise, we have |supp(u) ∩ Λε| = 0 and by (g5), it

follows that

‖u‖2ε =
∫
RN

g(εx, |u|2)|u|2dx

=

∫
Λc

ε

g(εx, |u|2)|u|2dx

≤ 1

K

∫
RN

V (εx)|u|2dx

≤ 1

K
‖u‖2ε

which is impossible since K > 2 and u 	= 0. Therefore, m−1
ε (u) = u

‖u‖ε
∈ S+

ε is

well defined and continuous. From

m−1
ε (mε(u)) = m−1

ε (tuu) =
tuu

tu‖u‖ε = u, ∀u ∈ S+
ε ,

we conclude that mε is a bijection.

Now we prove that m̂ε : H
+
ε → Nε is continuous. Let {un} ⊂ H+

ε and u ∈ H+
ε

such that un → u in Hε. By (A2), there is a t0 > 0 such that tn := tun → t0.

Using tnun ∈ Nε, we obtain

t2n‖un‖2ε =

∫
RN

g(εx, t2n|un|2)t2n|un|2dx, ∀n ∈ N,
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and passing to the limit as n→ ∞ in the last inequality, we have

t20‖u‖2ε =
∫
RN

g(εx, t20|u|2)t20|u|2dx,

which implies that t0u ∈ Nε and tu = t0. This proves that m̂ε(un) → m̂ε(u)

in H+
ε . Thus, m̂ε and mε are continuous functions and (A3) is proved.

(A4) Let {un} ⊂ S+
ε be a subsequence such that dist(un, ∂S

+
ε ) → 0, then

for each v ∈ ∂S+
ε and n ∈ N , we have |un| = |un − v| a.e. in Λε. Therefore,

by (V 1), (V 2) and the Sobolev embedding, for any t ∈ [2, 2∗], there exists a

constant Ct > 0 such that

‖un‖Lt(Λε) ≤ inf
v∈∂S+

ε

‖un − v‖Lt(Λε)

≤ Ct

(
inf

v∈∂S+
ε

∫
Λε

(|∇Aεun − v|2 + Vε(x)|un − v|2)dx
) 1

2

≤ Ct dist(un, ∂S
+
ε )

for all n ∈ N . By (g2), (g2) and (g5), for each t > 0, we have

∫
RN

G(εx, t2|un|2)dx ≤
∫
Λε

(
F (t2|un|2) + t2

∗ |un|2∗
2∗

)
dx

+
t2

K

∫
Λc

ε

V (εx)|un|2dx

≤C1t
2

∫
Λε

|un|2dx+ C2t
q

∫
Λε

|un|qdx

+
t2

∗

2∗

∫
Λε

|un|2∗dx+
t2

K
‖un‖2ε

≤C3t
2dist(un, ∂S

+
ε )2 + C4t

qdist(un, ∂S
+
ε )

q

+ C5t
2∗dist(un, ∂S

+
ε )2

∗
+
t2

K
.

Therefore,

lim sup
n

∫
RN

G(εx, t2|un|2)dx ≤ t2

K
, ∀ t > 0.
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On the other hand, from the definition ofmε and the last inequality, for all t > 0,

we obtain

lim inf
n

Jε(mε(un)) ≥ lim inf
n

Jε(tun)

≥ lim inf
n

t2

2
‖un‖2ε −

t2

K

=
K − 2

2K
t2.

This implies that

lim inf
n

1

2
‖mε(un)‖2ε ≥ lim inf

n
Jε(mε(un)) ≥ K − 2

2K
t2, ∀ t > 0.

From the arbitrariness of t > 0, it follows that

‖mε(un)‖ε → ∞ and Jε(mε(un)) → ∞ as n→ ∞.

We conclude the proof of Lemma 3.2.

Now we define the function

Ψ̂ε : H
+
ε → R

by Ψ̂ε(u) = Jε(m̂ε(u)) and denote Ψε := (Ψ̂ε)|S+
ε
.

From Lemma 3.2 , arguing as in [42, Corollary 10] we may obtain the following

result.

Lemma 3.3: Assume that (V 1)–(V 2) and (f1)–(f4) are satisfied. Then:

(B1) Ψ̂ε ∈ C1(H+
ε ,R) and

Ψ̂′
ε(u)v =

‖m̂ε(u)‖ε
‖u‖ε J ′

ε(m̂ε(u))[v], ∀u ∈ H+
ε and ∀ v ∈ Hε.

(B2) Ψε ∈ C1(S+
ε ,R) and

Ψ′
ε(u)v = ‖mε(u)‖εJ ′

ε(m̂ε(u))[v], ∀ v ∈ TuS
+
ε .

(B3) If {un} is a (PS)c sequence of Ψε, then {mε(un)} is a (PS)c sequence

of Jε. If {un} ⊂ Nε is a bounded (PS)c sequence of Jε, then {m−1
ε (un)}

is a (PS)c sequence of Ψε.

(B4) u is a critical point of Ψε if and only if mε(u) is a critical point of Jε.

Moreover, the corresponding critical values coincide and

inf
S+
ε

Ψε. = inf
Nε

Jε.
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As in [42], we have the following variational characterization of the infimum

of Jε over Nε:

(3.3) cε = inf
u∈Nε

Jε(u) = inf
u∈H+

ε

sup
t>0

Jε(tu) = inf
u∈S+

ε

sup
t>0

Jε(tu).

The following result is important to prove the (PS)c condition for the func-

tional Jε.

Lemma 3.4: Let c > 0 and {un} is a (PS)c sequence for Jε. Then {un} is

bounded in Hε.

Proof. Assume that {un} ⊂ Hε is a (PS)c sequence for Jε, that is, Jε(un) → c

and J ′
ε(un) → 0. By (g4) and (g5), we have

c+ on(1)+on(1)‖un‖ε
=Jε(un)− 1

θ
J ′
ε(un)[un]

=
(1
2
− 1

θ

)
‖un‖2ε +

∫
RN

(1
θ
g(εx, |un|2)|un|2 − 1

2
G(εx, |un|2)

)
dx

≥
(1
2
− 1

θ

)
‖un‖2ε +

∫
Λc

ε

(1
θ
g(εx, |un|2)|un|2 − 1

2
G(εx, |un|2)

)
dx

≥
(1
2
− 1

θ

)
‖un‖2ε −

1

2

∫
Λc

ε

G(εx, |un|2)dx

≥
(1
2
− 1

θ

)
‖un‖2ε −

1

2K

∫
RN

V (εx)|un|2dx

≥
(1
2
− 1

θ
− 1

2K

)
‖un‖2ε.

SinceK>2, from the last inequality we obtain that {un} is bounded inHε.

The following property provides a range of levels in which the energy func-

tional Jε verifies the Palais–Smale condition.

Lemma 3.5: The functional Jε satisfies the (PS)c condition for any

c ∈ (0, 1
N S

N/2), where S is the best constant for the Sobolev inequality

S

(∫
RN

|v|2∗dx
)2/2∗

≤
∫
RN

(|∇v|2 + |v|2)dx, for v ∈ H1(RN ,R).

Proof. Let (un) ⊂ Hε be a (PS)c for Jε. By Lemma 3.4, the sequence (un)

is bounded in Hε. Thus, up to a subsequence, un ⇀ u in Hε and un → u

in Lr
loc(R

N ,C) for all 1 ≤ r < 2∗ as n→ +∞.
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Step 1. For some fixed ε > 0, let R > 0 be such that Λε ⊂ BR/2(0). We show

that for any given ζ > 0 and if R is large enough,

lim sup
n

∫
Bc

R(0)

(|∇Aεun|2 + Vε(x)|un|2)dx ≤ ζ.(3.4)

Let φR ∈ C∞(RN ,R) be a cut-off function such that

φR = 0 x ∈ BR/2(0), φR = 1 x ∈ Bc
R(0), 0 ≤ φR ≤ 1, and |∇φR| ≤ C/R

where C > 0 is a constant independent of R. Since the sequence (φRun) is

bounded in Hε, we have

J ′
ε(un)[φRun] = on(1),

hence

Re

∫
RN

∇Aεun∇Aε(φRun)dx+

∫
RN

Vε(x)|un|2φRdx

=

∫
RN

g(εx, |un|2)|un|2φRdx+ on(1).

Since

∇Aε(φRun) = iun∇φR + φR∇Aεun,

using (g5), we have∫
RN

(|∇Aεun|2 + Vε(x)|un|2)φRdx

=

∫
RN

g(εx, |un|2)|un|2φRdx− Re

∫
RN

iun∇Aεun∇φRdx + on(1)

≤ 1

K

∫
RN

Vε(x)|un|2φRdx+ C

∣∣∣∣Re
∫
RN

iun∇Aεun∇φRdx
∣∣∣∣+ on(1).

By the definition of φR, the Hölder inequality and the boundedness of (un)

in Hε, we obtain(
1− 1

K

)∫
RN

(|∇Aεun|2 + Vε(x)|un|2)φRdx ≤C
R
‖un‖2‖∇Aεun‖2 + on(1)

≤C1

R
+ on(1)

and so (3.4) holds.
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Step 2. Now, we prove that for any R > 0, the following limit holds

lim sup
n

∫
BR(0)

(|∇Aεun|2+Vε(x)|un|2)dx=
∫
BR(0)

(|∇Aεu|2+Vε(x)|u|2)dx.(3.5)

Let φρ ∈ C∞(RN ,R) be a cut-off function such that

φρ = 1 x ∈ Bρ(0), φρ = 0 x ∈ Bc
2ρ(0), 0 ≤ φρ ≤ 1, and |∇φρ| ≤ C/ρ

where C > 0 is a constant independent of ρ. Let

Pn(x) = |∇Aεun −∇Aεu|2 + Vε(x)|un − u|2.
For the fixed R > 0, choosing ρ > R > 0, we have

(3.6)

∫
BR

Pn(x)dx ≤
∫
RN

Pn(x)φρ(x)dx

=

∫
RN

|∇Aεun−∇Aεu|2φρ(x)dx +

∫
RN

Vε(x)|un−u|2φρ(x)dx

=J1
n,ρ − J2

n,ρ + J3
n,ρ + J4

n,ρ,

where

J1
n,ρ =

∫
RN

|∇Aεun|2φρ(x)dx +

∫
RN

Vε(x)|un|2φρ(x)dx

−
∫
RN

g(εx, |un|2)|un|2φρdx,

J2
n,ρ =Re

∫
RN

∇Aεun∇Aεuφρ(x)dx +Re

∫
RN

Vε(x)unuφρ(x)dx

− Re

∫
RN

g(εx, |un|2)unuφρ(x)dx,

J3
n,ρ =− Re

∫
RN

(∇Aεun −∇Aεu)∇Aεuφρ(x)dx

− Re

∫
RN

Vε(x)(un − u)uφρ(x)dx,

and

J4
n,ρ =Re

∫
RN

g(εx, |un|2)un(un − u)φρ(x)dx.

It is easy to see that

J1
n,ρ = J ′

ε(un)[φρun]− Re

∫
RN

iun∇Aεun∇φρdx
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and

J2
n,ρ = J ′

ε(un)[φρu]− Re

∫
RN

iu∇Aεun∇φρdx.

Then

lim
ρ→∞lim sup

n→∞
|J1

n,ρ| = 0, lim
ρ→∞lim sup

n→∞
|J2

n,ρ| = 0.

On the other hand, since the sequence (un) is bounded in Hε, it is easy to see

that

lim
ρ→∞lim sup

n→∞
|J3

n,ρ| = 0.

Now we prove that

(3.7) lim
ρ→∞lim sup

n→∞
|J4

n,ρ| = 0.

We first show that

lim
n

∫
Λε

|un|2∗dx =

∫
Λε

|u|2∗dx.(3.8)

Using the boundedness of (un) inHε again, and the diamagnetic inequality (2.1),

we may assume that

(3.9) |∇|un||2 ⇀ μ and |un|2∗ ⇀ ν

in the sense of measures. Moreover, by the diamagnetic inequality (2.1)

and (3.4), (un) is a tight sequence in H1(R3,R), thus, using the concentration-

compactness principle in [44], we can find an at most countable index I, se-

quences (xi) ⊂ RN , (μi), (νi) ⊂ (0,∞) such that

(3.10)

μ ≥|∇|u||2dx +
∑
i∈I

μiδxi ,

ν =|u|2∗ +
∑
i∈I

νiδxi and Sν
2/2∗

i ≤ μi

for any i ∈ I, where δxi is the Dirac mass at the point xi. Let us show

that (xi)i∈I ∩ Λε = ∅. Assume, by contradiction, that xi ∈ Λε for some i ∈ I.

For any ρ > 0, we define

ψρ(x) = ψ
(x− xi

ρ

)
where ψ ∈ C∞

0 (RN , [0, 1]) is such that ψ = 1 in B1, ψ = 0 in RN \B2 and

‖∇ψ‖L∞(RN ,R) ≤ 2.
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We suppose that ρ > 0 is such that supp(ψρ) ⊂ Λε. Since (ψρun) is bounded

in Hε, we can see that

J ′
ε(un)[ψρun] = on(1),

that is,∫
RN

|∇Aεun|2ψρdx+Re

∫
RN

iun∇Aεun∇ψρdx+

∫
RN

Vε(x)|un|2ψρdx

=

∫
RN

g(εx, |un|2)|un|2ψρdx+ on(1)

=

∫
RN

f(|un|2)|un|2ψρdx+

∫
RN

|un|2∗ψρdx+ on(1).

Using the diamagnetic inequality (2.1) again, it follows that

(3.11)

∫
RN

|∇|un||2ψρdx+Re

∫
RN

iun∇Aεun∇ψρdx

≤
∫
RN

f(|un|2)|un|2ψρdx+

∫
RN

|un|2∗ψρdx+ on(1).

Due to the fact that f has the subcritical growth and ψρ has the compact

support, we have that

(3.12) lim
ρ→0

lim
n→∞

∫
RN

f(|un|2)|un|2ψρdx = lim
ρ→0

∫
RN

f(|u|2)|u|2ψρdx = 0.

Now, we show that

(3.13) lim
ρ→0

lim sup
n→∞

∣∣∣∣
∫
RN

iun∇Aεun∇ψρdx

∣∣∣∣ = 0.

Because of the boundedness of (un) in Hε, using the Hölder inequality, the

strong convergence of (|un|) in L2
loc(R

N ,R), |u| ∈ L2∗(RN ,R), |∇ψρ| ≤ Cρ−1

and |B2ρ(xi)| ∼ ρN , we have that

0 ≤ lim
ρ→0

lim sup
n→∞

∣∣∣∣
∫
RN

iun∇Aεun∇ψρdx

∣∣∣∣ ≤ lim
ρ→0

lim sup
n→∞

∫
RN

|un∇ψρ||∇Aεun|dx

≤ lim
ρ→0

lim
n→∞

(∫
B2ρ(xi)

|un∇ψρ|2dx
)1/2(∫

RN

|∇Aεun|2dx
)1/2

≤C lim
ρ→0

(∫
B2ρ(xi)

|u|2dx
)1/2

= 0

which shows that (3.13) holds.
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Then, taking into account (3.9), (3.11), (3.12) and (3.13), we can conclude

that νi ≥ μi. Together with the inequality Sν
2/2∗

i ≤ μi in (3.10), we have

(3.14) νi ≥ SN/2.

Now, from (f3), (g4) and (g5), we have

c =Jε(un)− 1

2
J ′
ε(un)[un] + on(1)

=

∫
RN

(1
2
g(εx, |un|2)|un|2 − 1

2
G(εx, |un|2)

)
dx+ on(1)

≥
∫
Λc

ε

(1
2
g(εx, |un|2)|un|2 − 1

2
G(εx, |un|2)

)
dx +

1

N

∫
Λε

|un|2∗dx+ on(1)

≥ 1

N

∫
Λε

|un|2∗dx+ on(1)

≥ 1

N

∫
Λε

ψρ|un|2∗dx+ on(1).

From the above arguments and relations (3.10) and (3.14), we obtain

c ≥ 1

N

∑
{i∈I:xi∈Λε}

ψρ(xi)νi

≥ 1

N
νi ≥ 1

N
SN/2 = c0

which gives a contradiction. This means that (3.8) holds.

We now observe that

|J4
n,ρ| ≤

∫
(RN\Λε)∩B2ρ(0)

|g(εx, |un|2)un(un − u)|dx

+

∫
Λε∩B2ρ(0)

|g(εx, |un|2)un(un − u)|dx.

By the Sobolev compact embeddingHε ↪→ Lr
loc(R

N ,C) for 1 ≤ r < 2∗, and (g5),

we have ∫
(RN\Λε)∩B2ρ(0)

|g(εx, |un|2)un(un − u)|dx→ 0, as n→ ∞.

Moreover, using the Sobolev compact embeddingHε ↪→Lr
loc(R

N,C) for 1≤r<2∗,
again, and (3.8), we have∫

Λε∩B2ρ(0)

|g(εx, |un|2)un(un − u)|dx→ 0, as n→ ∞.
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Thus, (3.7) holds. Moreover, by (3.6), it follows that

0 ≤ lim sup
n

∫
BR

Pn(x)dx ≤ lim sup
n

(|J1
n,ρ|+ |J2

n,ρ|+ |J3
n,ρ|+ |J4

n,ρ|) = 0,

hence

lim sup
n

∫
BR

Pn(x)dx = 0.

Thus, relation (3.5) holds.

Step 3. From (3.4) and (3.5), we have

‖u‖2ε ≤ lim inf
n

‖un‖2ε ≤ lim sup
n

‖un‖2ε

≤ lim sup
n

{∫
BR(0)

(|∇Aεun|2 + Vε(x)|un|2)dx

+

∫
Bc

R(0)

(|∇Aεun|2 + Vε(x)|un|2)dx
}

≤
∫
BR(0)

(|∇Aεu|2 + Vε(x)|u|2)dx+ ζ.

Passing to the limit as ζ → 0 we have R → ∞, which implies that

‖u‖2ε ≤ lim inf
n

‖un‖2ε ≤ lim sup
n

‖un‖2ε ≤ ‖u‖2ε.

Then un → u in Hε and we conclude.

Since f is only assumed to be continuous, the following result is required for

the multiplicity result in the next section.

Corollary 3.1: The functional Ψε satisfies the (PS)c condition on S+
ε at any

level c ∈ (0, 1
N S

N/2).

Proof. Let {un} ⊂ S+
ε be a (PS)c sequence for Ψε with c ∈ (0, 1

N S
N/2).

Then Ψε(un) → c and ‖Ψ′
ε(un)‖∗ → 0, where ‖ · ‖∗ is the norm in the dual

space (TunS
+
ε )∗. By Lemma 3.3(B3), we know that {mε(un)} is a (PS)c se-

quence for Jε in Hε. From Lemma 3.5, we know that there exists a u ∈ S+
ε

such that, up to a subsequence, mε(un) → mε(u) in Hε. By Lemma 3.2(A3),

we obtain

un → u in S+
ε ,

and the proof is complete.
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4. Multiple solutions for the modified problem

4.1. The autonomous problem. For our scope, we need also to study the

following limit problem

−Δu+ V0u = f(|u|2)u + u2
∗−1, u : RN → R, and u > 0,(4.1)

whose associated C1-functional, defined in H1(RN ,R), is

IV0(u) :=
1

2

∫
RN

(|∇u|2 + V0u
2)dx − 1

2

∫
RN

F (u2)dx − 1

2∗

∫
RN

(u+)2
∗
dx.

Let

N0 := {u ∈ H1(RN ,R) \ {0} : I ′V0
(u)[u] = 0}

and

cV0 := inf
u∈N0

IV0(u).

By (f1) and (f4), for each u ∈ H1(RN ,R)\{0}, there is a unique t(u) > 0 such

that

IV0 (t(u)u) = max
t≥0

IV0(tu) and t(u)u ∈ NV0 .

Then, using the assumptions on f , arguing as in [44, Lemma 4.1 and Theorem

4.2] we have that

0 < cV0 = inf
u∈H1(RN ,R)\{0}

max
t≥0

IV0(tu).

Let

H0 := H1(RN ,R)

and define by H+
0 the open set of H0 given by

H+
0 = {u ∈ H0 : |supp(u+)| > 0},

and S+
0 = S0 ∩H+

0 , where S0 be the unit sphere of H0.

As in Section 3, S+
0 is a non-complete C1,1-manifold of codimension 1, mod-

eled on H0 and contained in H+
0 . Therefore,

H0 = TuS
+
0

⊕
Ru

for each u ∈ TuS
+
0 , where

TuS
+
0 = {v ∈ H0 : 〈u, v〉0 = 0}.

Arguing as in Lemma 3.2, we have the following property.
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Lemma 4.1: Let V0 be given in (V 1) and suppose that (f1)–(f4) are satisfied.

Then the following properties hold:

(a1) For any u ∈ H+
0 , let gu : R+ → R be given by gu(t) = IV0(tu). Then

there exists a unique tu > 0 such that g′u(t) > 0 in (0, tu) and g
′
u(t) < 0

in (tu,∞).

(a2) There is a τ > 0 independent on u such that tu > τ for all u ∈ S+
0 .

Moreover, for each compact W ⊂ S+
0 there is CW such that tu ≤ CW ,

for all u ∈ W .

(a3) The map m̂ : H+
0 → N0 given by m̂(u) = tuu is continuous and

m0 = m̂0|S+
0

is a homeomorphism between S+
0 and N0. Moreover,

m−1(u) = u
‖u‖0

.

(a4) If there is a sequence {un} ⊂ S+
0 such that dist(un, ∂S

+
0 ) → 0, then

‖m(un)‖0 → ∞ and IV0(m(un)) → ∞.

We shall consider the functional defined by

Ψ̂0(u) = IV0(m̂(u)) and Ψ0 := Ψ̂0|S+
0
.

Arguing as in [42, Proposition 9 and Corollary 10], we have

Lemma 4.2: Let V0 be given in (V 1) and suppose that (f1)–(f4) are satisfied.

Then:

(b1) Ψ̂0 ∈ C1(H+
0 ,R) and

Ψ̂′
0(u)v =

‖m̂(u)‖0
‖u‖0 I ′V0

(m̂(u))[v], ∀u ∈ H+
0 and ∀v ∈ H0.

(b2) Ψ0 ∈ C1(S+
0 ,R) and

Ψ′
0(u)v = ‖m(u)‖0I ′V0

(m̂(u))[v], ∀v ∈ TuS
+
0 .

(b3) If {un} is a (PS)c sequence of Ψ0, then {m(un)} is a (PS)c sequence

of IV0 . If {un}⊂N0 is a bounded (PS)c sequence of IV0 , then {m−1(un)}
is a (PS)c sequence of Ψ0.

(b4) u is a critical point of Ψ0 if and only if m(u) is a critical point of IV0 .

Moreover, the corresponding critical values coincide and

inf
S+
0

Ψ0 = inf
N0

IV0 .
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Similar to the previous argument, we have the following variational charac-

terization of the infimum of IV0 over N0:

(4.2) cV0 = inf
u∈N0

IV0(u) = inf
u∈H+

0

sup
t>0

IV0(tu) = inf
u∈S+

0

sup
t>0

IV0(tu).

Arguing as in [1], we have

Lemma 4.3: Assume that (f1)–(f4) hold; problem (4.1) has a positive ground

state solution ω which is radially symmetric and a classical solution, that

is ω ∈ C2(RN ,R) ∩ L∞(RN ,R). Moreover, 0 < cV0 <
1
N S

N/2.

Moreover, we have the following important property.

Lemma 4.4: Let (un) ⊂ N0 be such that IV0 (un) → cV0 . Then (un) has a

convergent subsequence in H0.

Proof. Since (un) ⊂ N0, from Lemma 4.1(a3), Lemma 4.2(b4) and the definition

of cV0 , we have

vn = m−1(un) =
un

‖un‖0 ∈ S+
0 , ∀n ∈ N,

and

Ψ0(vn) = IV0 (un) → cV0 = inf
u∈S+

0

Ψ0(u).

Although S+
0 is not a complete C1 manifold, we still can apply Ekeland’s vari-

ational principle to the functional E0 : H → R ∪ {∞} defined by

E0(u) := Ψ̂0(u) if u ∈ S+
0

and

E0(u) := ∞ if u ∈ ∂S+
0 ,

where H = S+
0 is the complete metric space equipped with the metric

d(u, v) := ‖u− v‖0.
In fact, by Lemma 4.1(a4), E0 ∈ C(H,R ∪ {∞}), and from Lemma 4.2(b4), E0
is bounded below. Therefore, there exists a sequence {ṽn} ⊂ S+

0 such that {ṽn}
is a (PS)cV0

sequence for Ψ0 on S+
0 and

‖ṽn − vn‖0 = on(1).

Arguing as in Lemma 3.5, we conclude.

Now, we show that relationship between cε and cV0 .
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Lemma 4.5: The numbers cε and cV0 satisfy the following inequality:

lim
ε→0

cε = cV0 <
1

N
SN/2.

Proof. Let η ∈ C∞
c (RN , [0, 1]) be a cut-off function such that η = 1 in Bρ/2 and

supp(η) = Bρ ⊂ Λ for some ρ > 0. Let us define

ωε(x) := ηε(x)ω(x)e
iA(0)·x,

where

ηε(x) = η(εx) for ε > 0,

ω is a positive and radial ground state solution of problem (4.1), and we observe

that |ωε| = ηεω and ωε ∈ Hε in view of Lemma 2.1. Arguing as in [25, Lemma

4.1] or [31, Lemma 4.6], we have that

(4.3) lim
ε→0

‖ωε‖2ε = ‖ω‖2V0

and

(4.4) lim
ε→0

∫
RN

|∇Aεωε|2dx =

∫
RN

|∇ω|2dx.

It is also easy to verify that

(4.5) lim
ε→0

∫
RN

|∇ωε|2∗dx =

∫
RN

|∇ω|2∗dx.

Now let tε > 0 be the unique number such that

Jε(tεωε) = max
t≥0

Jε(tωε).

We observe that tε satisfies

t2ε

(∫
RN

|∇Aεωε|2dx+

∫
RN

Vε(x)|ωε|2dx
)

=

∫
RN

g(εx, t2ε |ωε|2)t2ε |ωε|2dx

=

∫
RN

f(t2ε |ωε|2)t2ε |ωε|2dx+

∫
RN

t2
∗

ε |ωε|2∗dx,
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where we use supp(η) ⊂ Λ and the definition of g(x, t). Moreover, using that

η = 1 in Bρ/2, u is a positive continuous function and (f4), we have

1

t2ε

(∫
RN

|∇Aεωε|2dx+

∫
RN

Vε(x)|ωε|2dx
)

=
1

t2ε

∫
RN

f(t2ε |ωε|2)|ωε|2dx+

∫
RN

t2
∗−4

ε |ωε|2∗dx

≥ 1

t2ε

∫
RN

f(t2εη
2(|εx|)ω2(x))η2(|εx|)ω2(x)dz

≥ 1

t2ε

∫
Bρ/(2ε)(0)

f(t2εω
2(z))ω2(z)dz

≥ 1

t2ε

∫
Bρ/2(0)

f(t2εω
2(z))ω2(z)dz

≥f(t
2
εγ

2)

t2ε

∫
Bρ/2(0)

ω2(z)dz

for all 0 < ε < 1 and where γ = min{ω(z) : |z| ≤ ρ/2}.
If tε → +∞ as ε → 0, by (f4), we contradict (4.4). Therefore, up to a

subsequence, we may assume that tε → t0 ≥ 0 as ε→ 0.

If tε → 0, using the fact that f is increasing, the Lebesgue dominated con-

vergence theorem and (4.5), we obtain that∫
RN

|∇Aεωε|2+
∫
RN

Vε(x)|ωε|2dx

=

∫
RN

f(t2ε |ωε|2)|ωε|2dx+

∫
RN

t2
∗−2

ε |ωε|2∗dx→ 0, as ε→ 0

which contradicts (4.3). Thus, we have t0 > 0 and

t20

∫
RN

(|∇ω|2 + V0ω
2)dx =

∫
RN

f(t20ω
2)t20ω

2dx+

∫
RN

t2
∗

0 |ω|2∗dx,

so that t0ω ∈ NV0 . Since ω ∈ NV0 , we obtain that t0 = 1 and so, using the

Lebesgue dominated convergence theorem, we get

lim
ε→0

∫
RN

F (|tεωε|2)dx =

∫
RN

F (ω2)dx.

Hence

lim
ε→0

Jε(tεωε) = IV0(u) = cV0 .
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Since

cε ≤ max
t≥0

Jε(tωε) = Jε(tεωε),

we can conclude that lim supε→0 cε ≤ cV0 . Moreover, by (3.3), (4.2) and

IV0 (|u|) ≤ Jε(u) for any u ∈ Hε, we have cV0 ≤ cε. Then cV0 ≤ lim infε→0 cε.

Combining with the previous arguments, we conclude that

lim
ε→0

cε = cV0 <
1

N
SN/2.

Remark 4.1: From Lemma 4.1 and Lemma 3.5, we see that for ε > 0 small, the

problem (3.2) has a ground state solution uε such that

Jε(uε) = cε and J ′
ε(uε) = 0.

4.2. Technical results. In this subsection, we prove a multiplicity result for

the modified problem (3.2) using the Ljusternik–Schnirelmann category theory.

In order to get it, we first provide some useful preliminaries.

Let δ > 0 be such that Mδ ⊂ Λ, ω ∈ H1(RN ,R) be a positive ground state

solution of the limit problem (4.1), and η ∈ C∞(R+, [0, 1]) be a nonincreasing

cut-off function defined in [0,+∞) such that

η(t) =1 if 0 ≤ t ≤ δ/2

and

η(t) =0 if t ≥ δ.

For any y ∈M , let us introduce the function

Ψε,y(x) := η(|εx − y|)ω
(εx− y

ε

)
exp

(
iτy

(εx− y

ε

))
,

where

τy(x) :=

N∑
i

Ai(y)xi.

Let tε > 0 be the unique positive number such that

max
t≥0

Jε(tΨε,y) = Jε(tεΨε,y).

Note that tεΨε,y ∈ Nε.

Let us define Φε :M → Nε as

Φε(y) := tεΨε,y.

By construction, Φε(y) has compact support for any y ∈M .
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Moreover, arguing as in Lemma 4.1, the energy of the above functions has

the following behavior as ε→ 0+.

Lemma 4.6: The limit

lim
ε→0+

Jε(Φε(y)) = cV0

holds uniformly in y ∈M .

Now we define the barycenter map.

Let ρ > 0 be such that Mδ ⊂ Bρ and consider Υ : RN → R
N defined by

setting

Υ(x) :=

⎧⎨
⎩x, if |x| < ρ,

ρx/|x|, if |x| ≥ ρ.

The barycenter map βε : Nε → RN is defined by

βε(u) :=
1

‖u‖22

∫
RN

Υ(εx)|u(x)|2dx.

We have the following asymptotic uniform estimate.

Lemma 4.7: The limit

lim
ε→0+

βε(Φε(y)) = y

holds uniformly in y ∈M .

Proof. Assume by contradiction that there exist κ > 0, (yn) ⊂ M and εn → 0

such that

(4.6) |βεn(Φεn(yn))− yn| ≥ κ.

Using the change of variable z = (εnx− yn)/εn, we can see that

βεn(Φεn(yn)) = yn +

∫
RN (Υ(εnz + yn)− yn)η

2(|εnz|)ω2(z)dz∫
RN η2(|εnz|)ω2(z)dz

.

Taking into account (yn) ⊂ M ⊂ Mδ ⊂ Bρ and the Lebesgue dominated con-

vergence theorem, we can obtain that

|βεn(Φεn(yn))− yn| = on(1),

which contradicts (4.6).

Now, we prove the following useful compactness result.
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Proposition 4.1: Let εn → 0+ and (un) ⊂ Nεn be such that Jεn(un) → cV0 .

Then there exists (ỹn) ⊂ RN such that the sequence (|vn|) ⊂ H1(RN ,R),

where vn(x) := un(x+ ỹn), has a convergent subsequence in H1(RN ,R). More-

over, up to a subsequence, yn := εnỹn → y ∈M as n→ +∞.

Proof. Since J ′
εn(un)[un] = 0 and Jεn(un) → cV0 , arguing as in the proof of

Lemma 3.4, we can prove that there exists C > 0 such that ‖un‖εn ≤ C for

all n ∈ N.

Arguing as in Lemma 3.1(ii), we have that cV0 > 0. Moreover, arguing as in

the proof of Lemma 3.2, we have that there exist a sequence {ỹn} ⊂ RN and

constants R, β > 0 such that

(4.7) lim inf
n

∫
BR(ỹn)

|un|2dx ≥ β.

Now, let us consider the sequence {|vn|} ⊂ H1(RN ,R), where

vn(x) := un(x+ ỹn).

By the diamagnetic inequality (2.1), we get that {|vn|} is bounded inH1(RN ,R),

and using (4.7), we may assume that |vn|⇀ v in H1(RN ,R) for some v 	= 0.

Let tn > 0 be such that ṽn := tn|vn| ∈ NV0 , and set yn := εnỹn.

Using the diamagnetic inequality (2.1) again, we have

cV0 ≤ IV0(ṽn) ≤ max
t≥0

Jεn(tun) = Jεn(un) = cV0 + on(1),

which yields I0(ṽn) → cV0 as n→ +∞.

Since the sequences {|vn|} and {ṽn} are bounded in H1(RN ,R) and |vn| 	→ 0

in H1(RN ,R), then (tn) is also bounded and so, up to a subsequence, we may

assume that tn → t0 ≥ 0.

We claim that t0 > 0. Indeed, if t0 = 0, then, since (|vn|) is bounded, we

have ṽn → 0 in H1(RN ,R), that is I0(ṽn) → 0, which contradicts cV0 > 0. Thus,

up to a subsequence, we may assume that ṽn ⇀ ṽ := t0v 	= 0 inH1(RN ,R), and,

by Lemma 4.4, we can deduce that ṽn → ṽ in H1(RN ,R), which gives |vn| → v

in H1(RN ,R).

Now we show the final part, namely that {yn} has a subsequence such

that yn → y ∈M . Assume by contradiction that {yn} is not bounded and so, up

to a subsequence, |yn| → +∞ as n→ +∞. Choose R > 0 such that Λ ⊂ BR(0).

Then for n large enough, we have |yn| > 2R, and, for any x ∈ BR/εn(0),

|εnx+ yn| ≥ |yn| − εn|x| > R.
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Since un ∈ Nεn , using (V1) and the diamagnetic inequality (2.1), we get that

(4.8)

∫
RN

(|∇|vn||2 + V0|vn|2)dx

≤
∫
RN

|∇Aεvn|2 +
∫
RN

V (εnx+ yn)|vn|2dx

≤
∫
RN

g(εnx+ yn, |vn|2)|vn|2dx

≤
∫
BR/εn(0)

f̃(|vn|2)|vn|2dx+
∫
Bc

R/εn
(0)

f(|vn|2)|vn|2dx+
∫
Bc

R/εn
(0)

|vn|2∗dx.

Since |vn| → v in H1(RN ,R) and f̃(t) ≤ V0/K, we can see that (4.8) yields

min
{
1, V0

(
1− 1

K

)}∫
RN

(|∇|vn||2 + |vn|2)dx = on(1),

that is |vn| → 0 in H1(RN ,R), which contradicts v 	≡ 0.

Therefore, we may assume that yn → y0 ∈ RN . Assume by contradiction

that y0 	∈ Λ. Then there exists r > 0 such that for every n large enough we

have that |yn − y0| < r and B2r(y0) ⊂ Λ
c
. Then, if x ∈ Br/εn(0), we have that

|εnx+ yn − y0| < 2r so that εnx+ yn ∈ Λ
c
and so, arguing as before, we reach

a contradiction. Thus, y0 ∈ Λ.

To prove that V (y0)=V0, we suppose by contradiction that V (y0)>V0. Using

Fatou’s lemma, the change of variable z=x+ỹn and maxt≥0 Jεn(tun)=Jεn(un),

we obtain

cV0 =IV0 (ṽ) <
1

2

∫
RN

(|∇ṽ|2 + V (y0)|ṽ|2)dx − 1

2

∫
RN

F (|ṽ|2)dx − 1

2∗

∫
RN

|ṽ|2∗dx

≤lim inf
n

(
1

2

∫
RN

(|∇ṽn|2 + V (εnx+ yn)|ṽn|2)dx

− 1

2

∫
RN

F (|ṽn|2)dx − 1

2∗

∫
RN

|ṽ|2∗dx
)

=lim inf
n

(
t2n
2

∫
RN

(|∇|un||2 + V (εnz)|un|2)dx

− 1

2

∫
RN

F (|tnun|2)dx− 1

2∗

∫
RN

|tnun|2∗dx
)

≤lim inf
n

Jεn(tnun) ≤ lim inf
n

Jεn(un) = cV0

which is impossible and the proof is complete.
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Let now

Ñε := {u ∈ Nε : Jε(u) ≤ cV0 + h(ε)},

where h : R+ → R
+, h(ε) → 0 as ε→ 0+.

Fixing y ∈M , by Lemma 4.6,

|Jε(Φε(y))− cV0 | → 0 as ε→ 0+,

we get that Ñε 	= ∅ for any ε > 0 small enough.

We have the following relation between Ñε and the barycenter map.

Lemma 4.8: We have

lim
ε→0+

sup
u∈Ñε

dist(βε(u),Mδ) = 0.

Proof. Let εn → 0+ as n → +∞. For any n ∈ N, there exists un ∈ Ñεn such

that

sup
u∈Ñεn

inf
y∈Mδ

|βεn(u)− y| = inf
y∈Mδ

|βεn(un)− y|+ on(1).

Therefore, it is enough to prove that there exists (yn) ⊂Mδ such that

lim
n

|βεn(un)− yn| = 0.

By the diamagnetic inequality (2.1), we can see that IV0(t|un|) ≤ Jεn(tun) for

any t ≥ 0. Therefore, recalling that {un} ⊂ Ñεn ⊂ Nεn , we can deduce that

(4.9) cV0 ≤ max
t≥0

IV0(t|un|) ≤ max
t≥0

Jεn(tun) = Jεn(un) ≤ cV0 + h(εn)

which implies that Jεn(un) → cV0 as n→ +∞.

Thus, by Proposition 4.1, there exists {ỹn} ⊂ RN such that yn = εnỹn ∈Mδ

for n large enough.

Making the change of variable z = x− ỹn, we get

βεn(un) = yn +

∫
RN (Υ(εnz + yn)− yn)|un(z + ỹn)|2dz∫

RN |un(z + ỹn)|2dz .

Since, up to a subsequence, |un|(· + ỹn) converges strongly in H1(RN ,R) and

εnz + yn → y ∈M for any z ∈ R
N , we conclude.
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4.3. Multiplicity of solutions for problem (3.2). Finally, we present a

relation between the topology ofM and the number of solutions of the modified

problem (3.2).

Theorem 4.1: For any δ > 0 such that Mδ ⊂ Λ, there exists ε̃δ > 0 such that,

for any ε ∈ (0, ε̃δ), problem (3.2) has at least catMδ
(M) nontrivial solutions.

Proof. For any ε > 0, we define the function πε : M → S+
ε by

πε(y) = m−1
ε (Φε(y)), ∀y ∈M.

By Lemma 4.6 and Lemma 3.3(B4), we obtain

lim
ε→0

Ψε(πε(y)) = lim
ε→0

Jε(Φε(y)) = cV0 , uniformly in y ∈M.

Hence, there is a number ε̂ > 0 such that the set

S̃+
ε := {u ∈ S+

ε : Ψε(u) ≤ cV0 + h(ε)}

is nonempty, for all ε ∈ (0, ε̂), since πε(M) ⊂ S̃+
ε . Here h is given in the

definition of Ñε.

Given δ > 0, by Lemma 4.6, Lemma 3.2(A3), Lemma 4.7, and Lemma 4.8,

we can find ε̃δ > 0 such that for any ε ∈ (0, ε̃δ), the following diagram

M
Φε−−→ Φε(M)

m−1
ε−−−→ πε(M)

mε−−→ Φε(M)
βε−→Mδ

is well defined and continuous. From Lemma 4.7, we can choose a func-

tion Θ(ε, z) with |Θ(ε, z)| < δ
2 uniformly in z ∈ M , for all ε ∈ (0, ε̂) such

that βε(Φε(z)) = z +Θ(ε, z) for all z ∈M . Define H(t, z) = z + (1 − t)Θ(ε, z).

Then H : [0, 1]×M →Mδ is continuous. Clearly,

H(0, z) = βε(Φε(z)) H(1, z) = z

for all z ∈M . That is, H(t, z) is a homotopy between βε ◦ Φε = (βε ◦mε) ◦ πε
and the embedding ι :M →Mδ. Thus, this fact implies that

(4.10) catπε(M)(πε(M)) ≥ catMδ
(M).

By Corollary 3.1 and the abstract category theorem [42], Ψε has at least

catπε(M)(πε(M)) critical points on S+
ε . Therefore, from Lemma 3.3(B4) and

(4.10), we have that Jε has at least catMδ
(M) critical points in Ñε which im-

plies that problem (3.2) has at least catMδ
(M) solutions.



496 C. JI AND V. D. RĂDULESCU Isr. J. Math.

5. Proof of Theorem 1.1

In this section we prove our main result. The idea is to show that the solutions uε

obtained in Theorem 4.1 satisfy

|uε(x)|2 ≤ a0 for x ∈ Λc
ε

for ε small. Arguing as in [31, Lemma 5.1], we have the following important

result.

Lemma 5.1: Let εn → 0+ and un ∈ Ñεn be a solution of problem (3.2)

for ε = εn. Then Jεn(un) → cV0 . Moreover, there exists {ỹn} ⊂ R
N such that,

if vn(x) := un(x + ỹn), we have that {|vn|} is bounded in L∞(RN ,R) and

lim
|x|→+∞

|vn(x)| = 0 uniformly in n ∈ N.

Now, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let δ > 0 be such that Mδ ⊂ Λ. We want to show that

there exists ε̂δ > 0 such that for any ε ∈ (0, ε̂δ) and any uε ∈ Ñε solution of

problem (3.2), then

‖uε‖2L∞(Λc
ε)

≤ a0(5.1)

holds. We argue by contradiction and assume that there is a sequence εn → 0

such that for every n there exists un ∈ Ñεn which satisfies J ′
εn(un) = 0 and

‖un‖2L∞(Λc
εn

) > a0.(5.2)

Arguing as in Lemma 5.1, we have that Jεn(un) → cV0 , and therefore we can

use Proposition 4.1 to obtain a sequence (ỹn) ⊂ RN such that yn := εnỹn → y0

for some y0 ∈ M . Then, we can find r > 0, such that Br(yn) ⊂ Λ, and

so Br/εn(ỹn) ⊂ Λεn for all n large enough.

Using Lemma 5.1, there existsR > 0 such that |vn|2 ≤ a0 in B
c
R(0) and n large

enough, where vn = un(·+ ỹn). Hence |un|2 ≤ a0 in B
c
R(ỹn) and n large enough.

Moreover, if n is so large that r/εn > R, then Λc
εn ⊂ Bc

r/εn
(ỹn) ⊂ Bc

R(ỹn), which

gives |un|2 ≤ a0 for any x ∈ Λc
εn . This contradicts (5.2) and proves the claim.

Let now εδ := min{ε̂δ, ε̃δ}, where ε̃δ > 0 is given by Theorem 4.1. Then we

have catMδ
(M) nontrivial solutions to problem (3.2). If uε ∈ Ñε is one of these

solutions, then, by (5.1) and the definition of g, we conclude that uε is also a

solution to problem (2.2).
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Finally, we study the behavior of the maximum points of |ûε|, where

ûε(x) := uε(x/ε) is a solution to problem (1.1), as ε→ 0+.

Take εn → 0+ and the sequence (un) where each un is a solution of (3.2)

for ε = εn. From the definition of g, there exists γ ∈ (0, a0) such that

g(εx, t2)t2 ≤ V0
K
t2, for all x ∈ R

N , |t| ≤ γ.

Arguing as above we can take R > 0 such that, for n large enough,

(5.3) ‖un‖L∞(Bc
R(ỹn)) < γ.

Up to a subsequence, we may also assume that for n large enough

(5.4) ‖un‖L∞(BR(ỹn)) ≥ γ.

Indeed, if (5.4) does not hold, up to a subsequence, if necessary, we

have ‖un‖∞ < γ. Thus, since J ′
εn(uεn) = 0, using (g5) and the diamagnetic

inequality (2.1) that∫
RN

(|∇|un||2 + V0|un|2)dx ≤
∫
RN

g(εnx, |un|2)|un|2dx ≤ V0
K

∫
RN

|un|2dx

and, with K > 2, ‖un‖ = 0, which is a contradiction.

Taking into account (5.3) and (5.4), we can infer that the global maximum

points pn of |uεn | belong to BR(ỹn), that is pn = qn + ỹn for some qn ∈ BR.

Recalling that the associated solution of the problem (1.1) is ûn(x) = un(x/εn),

we can see that a maximum point ηεn of |ûn| is

ηεn = εnỹn + εnqn.

Since qn ∈ BR, εnỹn → y0 and V (y0) = V0, the continuity of V allows to

conclude that

lim
n
V (ηεn) = V0.

The proof is now complete.
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