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Abstract. Let f be anon-decreasin@!-function such thaf > 00on(0, c0), f(0) =0,
71 VFE@Dd < oo and F(1)/f%4(t) — 0 ast — oo, whereF (1) = fO’ f(s)ds
anda € (0, 2]. We prove the existence of positive large solutions to the equation
q(x)|Vul* = p(x) f(u) in a smooth bounded domai c R", provided thatp, g are
non-negative continuous functions so that any zegoissurrounded by a surface strictly
included inQ2 on which p is positive. Under additional hypotheses pme deduce the
existence of solutions & is unbounded.
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1. Introduction and the main results

The aim of this paper is to study the following semilinear elliptic problem

Au+q@)|Vul* = p0) f@),  inQ
u>0, uz#0, inQ

1)

whereQ ¢ RY (N > 3)is a smooth domain (bounded or possibly unbounded) with
compact (possibly empty) boundary. We assume throughout this paper tha is a
positive real numberp, ¢ are non-negative functions such thag 0, p, g € CO%(Q) if

Q is bounded, angh, g € Cl%g‘(Q), otherwise. The non-linearity is assumed to fulfill
(f1) f ecl0,00), />0, f(0)=0andf > 00on(0, cc).
(f2) JIFO17Y2de <00, where F(t) = [y f(s) ds.
F
#3) @ 0 as 1> o

[
The condition (f2) is called Keller—Osserman condition (see [5,11]). We also point out
that the increasing non-linearity is called an absorption term.

Remarks

(1) The above conditions hold provided thétr) = ¥, k > 1 and O< a < 2k/(k + 1)
(<2),orf(t)=€¢ —1,0orf(t) =€ —tanda < 2.
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(2) By (f1)and (f3) it follows thatf/ F%/? > g > 0 fort large enough, that i§F 1-4/2) >
B > 0 for ¢ large enough which yields @ a < 2.
(3) Conditions (f2) and (f3) imply;* dt/ /% (1) < co.

We are mainly interested in finding propertiedanfye (explosivé solutionsof (1), that
is, solutionsu satisfyingu(x) — oo as dist(x, 9Q2) — 0 (if @ # RY), oru(x) — oo as
|x| = oo (if @ = RY). In the latter case the solution is calledemtire large(explosivé
solution.

Cirstea and Rdulescu [2] proved the existence of large solutions to (1) in thegcas®.

The aim of this paper is to study the influence of the non-linear gradient|témi. It

turns out that the presence of this term can have significant influence on the existence of a
solution, as well as on its asymptotic behavior. Problems of this type appear in stochastic
control theory and have been first studied by Lasry and Lions [8]. The corresponding
parabolic equation was considered in Quittner [12]. In terms of the dynamic programming
approach, an explosive solution of (1) corresponds to a value function (or Bellman function)
associated to an infinite exit cost (see [8]).

Bandle and Giarrusso [1] studied the existence of a large solution of problem (1) in the
casep = 1, ¢ = 1 and2 bounded, while Lair and Wood [7] studied the sublinear case if
p = 1. Giarrusso [4] also studied the asymptotic behavior of the explosive solution under
the same assumptions as in [1].

As observedin[1], the simplest caseis- 2, which can be reduced to a problem without
gradient term. Indeed, if is a solution of (1) fo = 1, then the functiom = € satisfies

Av = p(x)vf(nv) in Q,
v(x) > +00 if dist (x, 9Q2) — 0.
We shall therefore mainly consider the case where d < 2.

Our first result concerns the existence of a large solution to problem (1) whisn
bounded.

Theorem 1. Suppose? is bounded angb satisfies

(p1) For everyxp € Q with p(xg) = 0, there exists a domaifg > xg such thaty C Q
andp > 0ondQ.

Then problen{l) has a positive large solution.

Note that, by the maximum principle, a solution of (1) provides an upper bound for any
solution of

Au = p(x)g(u, Vu) in Q,
where
g, &) > fu) — ], VueR, V& eRV.

The next purpose of the paper is to prove the existence of an entire large solution for
(). Our result in this case is

Theorem 2. Assume tha®2 = R and that problen{1) has at least a solution. Suppose
that p satisfies the condition

(p1)’ There exists a sequence of smooth bounded dort@jpg=1 such thai2, ¢ Q,41,
RY = U Q,, and(pl) holds inQ,, for anyn > 1.
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Then there exists a classical solutiohof (1) which is a maximal solution i is positive.

If p verifies the additional condition
o

(p2) ro&(r)ydr < oo, whered(r) =max{px): |x| =r},
0
thenU is an entire large solution ofL).

An example of functiom satisfying both the conditionl)’ and(p2), with p vanishing
in every neighborhood of infinity is given in [1].

Theorem 3. Suppose thaR2 # R is unbounded and that proble(d) has at least a
solution. Assume thatsatisfies conditioipl)’ in 2. Then there exists a classical solution
U of problem(1) which is maximal solution ip is positive.

If @ = RV \ B(0, R) and p satisfies the additional conditiofp2), with & (r) = 0 for
r € [0, R], then the solutior/ of (1) is a large solution that blows-up at infinity.

Our paper is organized as follows. In 82 we give an auxiliary result concerning problem
(1) for © bounded. In 83 we prove Theorem 1 while in 84 we prove Theorems 2 and 3.
In the last part of the paper we prove the following necessary condition for the existence
of entire large solutions to eq. (1) jf satisfies(p2), and for whichf is not assumed to
satisfy(f2), andp is not required to be so regular as before. More precisely, we prove

Theorem 4. Assume thap € C(R") is a non-negative and non-trivial function which
satisfiegp2). Let f be a function satisfying assumpti¢ii). Then condition
® dr
—_— < X
1 f@)

is necessary for the existence of entire large solutior{g o

)

The above results also apply to problems on Riemannian manifoldssifeplaced by
the Laplace—Beltrami operator

:%%(«/Ea,ﬂx)%) y Cc .= det(al-j),
with respect to the metricsd = cij dx;dx;, where(c;;) is the inverse ofg;;). In this
case our results apply to concrete problems arising in Riemannian geometry (see, e.g.,
Li [9] and Loewner—Nirenberg [10]). For instancefifis replaced by the standard-
sphere(SV, go), A is the Laplace—Beltrami operatdv,, and f (u) = (N — 2)/[4(N —
1] uN+2/(N=2) "\e find the prescribing scalar curvature equatiors8n

The proofs are essentially based on the maximum principle for non-linear elliptic equa-
tions and we also use the sub- and super-solutions method.

Ap

2. An auxiliary result

Lemmal. Let 2 be a bounded domain. Assume thay; € C%%(Q) are non-negative
functions0 < a < 2isarealnumberf satisfiegf1l) andg : 92 — (0, co) is continuous.
Then the boundary value problem

Au +q(x)|Vul® = p(x) f (u) in

u=gyg on Q 3)

u>0 u#z0 in Q
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has a classical solution. Furthermqiié p is positive andf is strictly increasingthen the
solution is unique.

Proof. First we notice that the functiom* (x) = » is a super-solution of problem (3), if
n is large enough. In order to find a positive sub-solution, we apply Theorem 5 in [2] (see
also [3]). Hence the problem

Au = p(x) f(u) in Q
u=g onaoQ
u>0 us0 inQ

has a unique classical solutiopwhich is positive. Thug_ = v is a positive sub-solution
of problem (3). Therefore this problem has at least a positive solutidgfurthermore,
taking into account the regularity ¢f, ¢ and f, a standard bootstrap argument based on
Schauder and #lder regularity shows that € C2(Q2) N C(RQ).

Let us now assume that andu, are arbitrary solutions of (3). In order to prove the
unigueness, it is enough to show that> u» in Q. We claim that

uz(x) < up(x) foranyx € Q. 4
Suppose the contrary. Due to the fact that (4) is obviously fulfilled @nwe deduce that

ma§><{u2(x) —u1(x)}

is achieved im2. At that point, say, we have V(u1 — u2)(xp) = 0 and

0> A (u2(x0) — u1(xo))
= p(x0) (f (u2(x0)) — f(u1(x0)))
—q(x0)(IVu1(x0)|* — [Vuz(xo)|")

= p(x0) (f (u2(x0)) — f(u1(x0))) > 0.

This contradiction concludes our proof. [ |

3. Existence results for bounded domains

Proof of Theoreml.. By Lemma 1, the boundary value problem

Av, +q(x) |V, |* = <p(X) + %) S () in €
vy =n onog2

v, >0, v, #0 in Q

has a unique positive solution, for any> 1.
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Let us notice first that the sequen@g) is non-decreasing. Indeed, by Lemma 1, the
boundary value problem

AL +q)IVE* = (lplle + D f(Q) in Q
=1 ona2
;>0 in Q

has a unique solution. Using the same arguments as in the proof of Lemma 1 we deduce that
O<¢<v<---<v, <---, inQ. (5)
We now claim that

(a) for allxg € Q2 there existan open sé& c C 2 which contains,g andMg = Mo(xg) >
O such thab, < Mpin O foralln > 1.
(b) lim,_ 50 v(x) = oo, wherev(x) = lim,,_ oo v, (x).

We also observe that the statement (a) shows that the sequghisauiniformly bounded
on every compact subset 6f. Standard elliptic regularity arguments show that a
solution of problem (1). Then, by virtue of (5) and the statement (b), it followsutliga
large solution of problem (1).

To prove (a) we distinguish two cases:

Casep(xg) > 0. By the continuity ofp, there exists a baB = B(xg, r) CC 2 such that
mo :=min{p(x); x € B} > 0.

Let w be a positive solution of the problem

Aw + qg(x)|Vw|* = mo f(w) in B

w(x) > 00 asx — 0B.
The existence oiv follows by considering the problem

Awy + g(xX)|Vwa|® = mo f (wy) in B

w, =n ondB.
The maximum principle implies),, < w,4+1 < 6, where

AO + llgllL=IVO|* = mo f(O) in B

O(x) => o0 asx — 0B.

We point out that the existence @follows as in [1] with the changing of variabfax) =
u(§x), whereg = g,

Using the same arguments as in the proof of Lemma 1, it followsiwhat w in B.
Furthermorew is bounded imB(xg, r/2). SettingMo = sup, w, whereQ® = B(xg,r/2),
we obtain (a).
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Casep(xp) = 0. Our hypothesis (pl) and the boundednes® @fnply the existence of a
domain© cc  which containstg such thatp > 0 ond© . The above case shows that
foranyx € 90 there exist a balB(x, r,) strictly contained ir2 and a constan/,, > 0
such tha, < M, on B(x, r/2), foranyn > 1. Sinced O is compact, it follows that it
may be covered by a finite number of such balls, Bay;, ry,/2),i =1, ... , ko. Setting
Mo = max{M,,, ... ,Mxko}, we havev, < Mg on O, for anyn > 1. Applying the
maximum principle (as in the proof of the uniqueness in Lemma 1) we objfain My in
O and (a) follows.

Let z be the unigue solution of the linear problem

—Az = p(x) in Q
z=0 onog (6)
z>0,z#0 inQ.

Moreover, by the maximum principle,> 0 in €.
We first observe that for proving (b) it is sufficient to show that

/U: % < z(x) foranyx € Q. @)

By ([2], Lemma 1), the left-hand side of (7) is well-definedsin We choosek > 0 so
thatQ c B(0, R) and fixe > 0. Sincev, = n ond, letn1 = n1(¢) be such that

1
8
"= e(N —3)(1+ R?2)=3/2 4 3¢(1+ R2)—5/2” (8)
and
o dt
[ —— <z +eQ+xPHV? VxedQ,¥n>ni. 9)
o) S0
In order to prove (7), it is enough to show that
o dt
/ — <z +e@+xPV?2  VxeQ, Vn>n. (10)
Uy (x) f(l)

Indeed, taking: — oo in (10) we deduce (7), since> 0 is arbitrarily chosen. Assume
now, by contradiction, that (10) fails. Then

o dr
— —z(x)—e(1 2—1/2} 0.
Te"g‘{fu,,u) IO

Using (9) we see that the point where the maximum is achieved must {ie At this
point, sayxo, for alln > n1 we have
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© dr
0> A et P 1/2)
= (/vnm Q) et lx=xo

— (—LAU — (l>/(v ) - |V |2 _ Az(x))
"\ fn "t \ ) " =10

—e(AQL+ 1x1D)7Y2) iy

[Vv,| 1
( (x)——+ (x) —— <

o) —) (n) - |Vuu|? + p(x))

f
— (AL + 1x1D)7Y2) i

_ ( (x) [Vv,|* _ (£>/(U )|V |2>
=|gq Fon) 7 n n s

+e(N = 3)(L+ %02 Y2+ 3e(L+ |xo|?) 52 -

< x )IanI“ (1)/(1) e |2>
f( H) f " " |x:x0

1
+e(N-3)1+R)H ¥ 4+3:1+R>) ¥ -Z>0
n

(for the last inequality from above we have used (8)). This contradiction shows thatinequal-
ity (9) holds and the proof of Theorem 1 is complete. [

4. Existence results for unbounded domains

Proof of Theoren2. By Theorem 1, the boundary value problem

Auy + Q(x)lvun|a = p(x) f (un) inQ,
Uy (x) = o0 asx — 09, (12)

Uy > 0 |n Qn

has solution. Sinc&, C 2,1, for eachn > 1, in the same manner as in the uniqueness
proof of Lemma 1 we find that, > wu,41 in ©,. SinceRY = U 12 and®, C Q41
it follows that for everyxg € RY there existsig = no(xg) such thatxg € Q, for all
n > ng. In view of the monotonicity of the sequen@eg, (xg)) >, we can definé/ (xg) =
lim,,_ o u, (x0). Applying a standard bootstrap argument (see ([6], Theorem 1)) we find
thatU e CEZ(RN) andAU + ¢(x)|VU |4 = p(x) f(U) in RV,

We now prove that/ is the maximal solution of problem (1) under the assumption that
p is positive. Indeed, let be an arbitrary solution of (1). By the maximum principle, we
find thatu,, > v in Q, for alln > 1. Thus the definition of/ implies thatU > v in RV.
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We suppose, in addition, that satisfies (p2) and we shall prove tHatblows-up at
infinity. From [2], the problem
Au = p(x) f(u) in Q
u>0 uz#0 inQ,

admits a classical maximal solutidn which, under the above assumption blows-up at
infinity. It is sufficient now to show that

V(x) <up(x) +e@4x1)7Y2  foranyx € Q, (12)
whereg is fixed. Suppose it is contrary. Then

max( V(x) — u,(x) —e(1+ [x|>)~Y?) > 0.

xeQ,
Sinceu, (x) - oo asx — 9%, we find that the point where the maximum is achieved
must lie in2,,. At that point, sayg, we have

0> A(V(x) — tup(x) — e(1+ 1x1)7Y2) iy
= p(x0) (f (V(x0)) — f(n(x0))) + q(x) |Vatn|* (x0)
+e(N =31+ |xP) ¥ +3c1+ xDH %2> 0.

This contradiction shows that the inequality (12) holds. HeVice u, in 2,,. By definition
of U itfollowsthatV < U in RY and soU(x) — oo as |x| — oo. This completes the
proof. [ |

Proof of Theoren8. Let(2,),>1 be the sequence of bounded smooth domains given by
condition(pl)’. Forn > 1fixed, letu,, be a positive solution of problem (11) and recall that
Up > Ups1in Q,. SetU (x) = lim,_, o u, (x), for everyx € Q. With the same arguments
as in the proof of Theorem 2 we find thidtis a classical solution to (1) and thétis the
maximal solution provided that is positive.

For the second part, in which = R \ B(0, R), we suppose that (p2) is fulfilled, with
®(r) =0forr € [0, R].

By ([2], Theorem 3), the problem

Av=px) f(v) inQ
v>0,v#0 inQ,

admits a maximal solutiol which, under the same assumptions as in Theorem 3, blows-
up at infinity. In the same manner as in the proof of Theorem 2 we showthatU,
henceU blows up at infinity. [ |

5. Proof of Theorem 4

Letu be an entire large solution of problem (1). Define

. 1 / /-u(x) dr i 1 '/u(ré) dr ds
u(r) = ———= TPy = () ’
ontV T oo \ Ve £ oN Jig=1 \Jay (O
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wherewy denotes the surface area of the unit spher®thandag is chosen such that
ap € (0, ug), whereup = infgyv u > 0. By the divergence theorem, we have

y 1
u(r)y=—

oN Jig=1 fu(r§))
1 / 1
onrN Jyi=r fu(y))

1 “»  dr
N A
WNT lyl=r ap ()
1 u(y)
WNT lyl=r v ag ()
1 u(x)
B YT
wNT B(0,r) a S@)

Sinceu is a positive classical solution it follows that

Vu(rg) - £dS

Vu(y) - yds

la'(n| < Cr — 0, asr — 0.

On the other hand

u(x) 1
N-1-/ N—-1-/ _
onN(RY MU' (R) —r u(r))_LA<LO _f(t)d)dx

= /rR(/pc:zA (/a:(X) %) dS) dz,

whereD = {x € RY :r < |x| < R}. Dividing by R — r and takingR — r we find

ux) gy
N—-1-/ ’_ A / —~ ldas
wN(r ‘ (r)) /lx:r < ag f(t)>
—/ div (LVu(x)) ds
= f@(x))

—[ [(£>/(u(x))-lw(x)|2+ : Au(x)} ds
= LS S u(x))

</ p(x) f(u(x)) ds < wyr¥-1o ().
- |x|=r f(u(x)) -

The above inequality yields by integration

u(ry <u0) + / o=V (/o TN—14>(T)df> do  vr>0. (13)
0 0
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On the other hand, according @2), for all » > 0 we have

/ral_N (/0 ™V 1lo(r) dr) do
0 0

= ﬁ /Or %(UZ_N) (/00 N1l (1) dt) do

1

r 1 r
- mrH’/o z”%(r)dz—mfo o® (o) do

o0

< 3 A r&(r)dr < oo.

So, by (13),
i(r) <i(0)+K  ¥r>0.

The lastinequality implies thatis bounded and assuming that (2) is not fulfilled it follows
thatu cannot be a large solution. [ |

We point out that the hypothesis (p2) pris essential in the statement of Theorem 4.
Indeed, letus considgi(r) =7, p = 1,a € (0,1),q(x) = 2 2.|x|*,a =2—«a € (1, 2).
The corresponding problem is

Au+2°"?|x|*|Vul* =u  inRN
u>0 u#0 in RN

which has the entire large solutiarix) = |x|2 + 2N. Itis clear that (2) is not fulfilled.
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