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We study the problem
—diV(a(x)IVuI‘V2 Vu) =1+ IxI)a'Iuquzu — h(x)\u\'izu in Q cRY,

a()IVul? 2 Vu-n + b(x) - ul” *u = 6g(x,u) onT,

u=>0 in Q,

where () is an unbounded domain with smooth boundary I', n denotes the unit
outward normal vector on I', andA > 0, 6 are real parameters. We assume
throughout that p <gq <r <p* = %, 1<p<N, -N<ao <q~N—;P— - N,
while a, b, and & are positive functions. We show that there exist an open interval
I and A* > 0 such that the problem has no solution if § €I and A € (0, A*).
Furthermore, there exist an open interval J C I and A, > 0 such that, for any
6 € J, the above problem has at least a solution if A > A, but it has no solution
provided that A € (0, Ay). Our paper extends previous results obtained by J.
Chabrowski and K. Pfliiger.  © 2000 Academic Press

1. PRELIMINARIES

Let Q c RY be an unbounded domain with smooth boundary I'. We
assume throughout this paper that p, g, r, and «; are real numbers
satisfying

PN
1<p<N, p<q<r<p*==N—,
4
N ()
~-N<a; <q-—— —N.
p
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170 CIRSTEA AND RADULESCU

Denote by C3(Q) the space of Cj(R™)-functions restricted to (. We
define the weighted Sobolev space E as the completion of C5(Q) in the
norm

1/p

p|u(x)|pdx

lullg = (/Q|Vu(x)| + m

Denote by LI(Q;w,) and L™(T';w,) the weighted Lebesgue spaces with
weight functions

wi(x) =(1+x)", i=12 <R (2)

L

and norms defined by
lullgw, = [ wilu(x)["de and lully,, = [ wolu(x)|" dr.
Q r

The following embedding and trace result holds.
PROPOSITION 1. Assume (1) holds. Then the embedding E < L1(Q;w,)
is compact. If

N-1 N-p
. and —-N<a,<m-—— —N+1, (3)
N-p p

p<m<p

then the trace operator E — L™(T'; w,) is continuous. If the upper bounds for
m in (3) are strict, then the trace is compact.

This proposition is a consequence of Theorem 2 and Corollary 6 of [4].
We assume throughout that @ € L*(Q)) and b € L*(T') such that

a(x) =ay>0 forae.x € (4)

and

b(x)

<—7,
(1 + Ix)?

fora.e. x € I', where ¢,C > 0. (5)

- <
(1 + |x))?!

LeEmMMA 1. The quantity
lullf = [ a(x)IVul” dx + [ b(x)lul” dT
Q r

defines an equivalent norm on E.
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For the proof of this result we refer to [3, Lemma 2].

Let h: ) — R be a positive and continuous function satisfying
W]r/(r—q) " .

_— o0
fQ ha/(r=a) <. ( )

We assume that g: ' X R — R is a Carathéodory function that satisfies
the following conditions:

(g) g(-,00 =0, g(x,s) + g(x, —s) = 0 for a.e. x €T and for any
s € R;

@) lglx, 9l < gy(x) + g(DsI"™ ", p <m <p- =, where g, are
nonnegative, measurable functions such that

|m71

0<g(x)<Cw, ae, g,&L"/ " DN(;wyt ™),

where =N < a, <m+*» — N + 1 and w, is defined as in (2).
Let G be the primitive function of g with respect to the second variable.
We denote by N,, N the corresponding Nemytskii operators.

LEMMA 2. The operators
Ny: L™(T5wy) — L/ D(T;wy/0=™),  Ng: L™(Tywy) — LY(T)
are bounded and continuous.

Proof. Let m' =m/(m — 1) and u € L"(T'; w,). Then, by (g2),

'[F|Ng(u)|m wl/A=m qr
< 2m’—1(fg5"’~w;/<1—m> dr + [ gi"lul" - wy/¢=m dr
r r

< 2'"'1(c - cg-fr|u|’” ‘W, dF),
which shows that N, is bounded. In a similar way we obtain

J INs(w)]dT < [ goluldT + [ g lul" dT
r r r

1/m'
< (/Fg(’)" 'wé/(l"")dl“) . (frlul'" W, dF)

+cg-fr|u|’"-w2dr

1/m

and we claim that N is bounded.
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From the usual properties of Nemytskii operators we deduce the conti-
nuity of these operators. |

Set

X = {u e E:fﬂh(x)lul’dx < oo}

endowed with the norm

p/r
ullf = g + (/Qh(xnu(x)rdx) .

We observe that X is a Banach space.
Consider the problem

—div(a(x)IVuIV2 Vu) = A1+ le)alluquzu - h(x)lulrizu
in Q cRY,
(1y.0) a(x)IVul” > Vu-n + b(x) - lul” *u = 0g(x,u)

on I,
u>0 in ().

The energy functional corresponding to (1, ,) is given by ®: X — R,

d(u) = lf a(x)|Vul” dx + lf b(x)lul? dT" — if w,lul? dx
pa p’r q’a

+l[ h(x)ul dx = 0 G(x,u)dr.

r’o r

Proposition 1 shows that the embedding E c LI(Q; w,) is continuous. This
implies that the functional ® is well defined. Solutions to problem (1, ,)

will be found as critical points of ®. Therefore, a function u € X is a
solution of the problem (1, ,) provided that, for any v € X,

f alVul? > Vu - Vo + f blul” ™ *uv
Q r

= Afnwlluquzuv - '[thulrfzuv + Ofrgv.

2. MAIN RESULTS

THEOREM 1. Assume hypotheses (1), (4), (5), (6), (g1), and (g2) hold.
Then there exist real numbers 0,, 0%, and X* > 0 such that the problem
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(1, 4) does not have a nontrivial solution, for any 6, < 6 < 0* and 0 < A
< %,

Proof.  Suppose that u is a solution in X of (1, ;). Then u satisfies
/a(x)quIpdx—F/b(x)Iulp dr — Ofg(x,u)udF + f h(x)lul” dx
Q r r 0
= )\f wilul? dx. (7)
Q

It follows from the Young inequality that

Aw,
q = R/ yld
)\[Qw]lul dx /Q 7l d

— r/(r=q)
L Y !

< _—
- 7 o h?/0-D

dx+zf hlul” dx.
rJ’q

This combined with (7) gives

, r—gq P W{/(r*q) q-—r ;
lllp = 0 g(x,wyudl < —=x7070 [~ de+ —— [ hlul” dv

-4 o Wi/ =)
= — N0 e 4 (8)
Set
A= {u eX:/g(x,u)udF < 0},
r
B = {u eX:fg(x,u)udI‘>0} (9)
r
o llullf 6% = inf lluellf
=sup ———— =, = inf ———.
* MEE Jrg(x,u)udl ueB [rg(x,u)udl
We introduce the convention that if 4 = Jthen 0, = —« and if B = J

then 0* = +oo.
We show that if we take 6, < 6 < 0* then there exists C, > 0 such
that

Collullf < llullf - 0] g(x,u)udl  forallu € X. (10)
r
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If 6 < 6* then there exists a constant C,; € (0, 1) such that

llell
QS(I—Cl)O*S(l—CI)W forall u € B
T B

which implies that

lullf — 6f g(x,u)udl = C,llullf  forall u < B. (11)
r

If 6, < 0 then there exists a constant C, € (0, 1) such that

d-cy—M e <0 foralluead
- P —— - o
2 frg(x,u)udl’ — 20w = ratu
which yields
lullf = 6f g(x,u)udl = Cyllullf  forallu 4. (12)
r

From (11) and (12) we conclude that
llullf — ef g(x,u)udl > min{C,,C,}lullf ~ forallu € X
r

and taking C, = min{C,, C,} we obtain (10).
By (7), (10), and Proposition 1 we have

r/4q
Coé(f wlul? dx) < Cyllullf < A/ wilul? dx, (13)
Q Q
for some constant C > 0. This inequality implies
(5)\_1C0)q/(q_p) < fwllulq dx
Q

which combined with (13) leads to the inequality

)p/(q*p)

Combining this with (8) and (10) we obtain that

— r/(r=q)
F(er-1o /e T4 e M
CyC(CA'Cy) < —A | o %
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If we take

(r—=qXq—-p)/q(r—p)

N =

r/(r=q) -1
—aq/q-p) T Wi
(COC) r—gq (.[Q ha/—a dx) )

the result follows. |

Set

U= {u eX:fFG(x,u)dr<0}, V= {u eX:er(x,u)dF>O}

) lull? o »
= Sup —————————— =, = nf ———.
B uEIl)]p[FG(x7u) ar uev plpG(x,u) dl

If U= J(resp. V = &) then we set 6_= — (resp. 6" = + ). Proceeding
in the same manner as we did for proving (10) we can show that if we take
6_< 6 < 0" then there exists ¢ > 0 such that

1
—llullf = 6/ G(x,u)dT = clulf  forallu € X. (15)
P r

In what follows, we shall employ the following elementary inequality: for
every h > 0, k > 0, and 0 < B8 < y we have

p k\B/=B)
Klul® = hlul” < CB,yk(E)

(16)
for all u € R, where C , > 0 is a constant depending on § and 7.
PROPOSITION 2. If 6_< 6 < 0% then the functional ® is coercive.

Proof. By virtue of (16) we write the estimate

w, q/(r=q)
) dx

AI |7 hI "] dx < C A
J— —_ — < —_—
fQ q Urwy 2r “ A Q e h
r/(r=q)
Wi
= r/(r—q) -
C, N/ fﬂ e .
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Using (15) it follows that
® 1|| If -6 G dr g hl " | dx
(u)—pub fr (x,u) /Q qu Wy = o lu

1
+— | hlul" dx
2r /g Jul

P ! hlul” dx
ze||u||b+5/ﬂ lul” dx — C,

and the coercivity follows. |

PROPOSITION 3. Suppose 0_< 6 < 0" and let {u,} be a sequence in X
such that (I>(un) is bounded. Then there exists a subsequence of {u,},
relabelled again by {u,}, such that u, — u, in X and

®(uy) < liminfd(u,).

Proof.  Since @ is coercive in X we see that the boundedness of ®(u,)
implies that |lu,ll, and [,Alu,|l” dx are bounded. From Proposition 1 we
have that the embedding E c LI(Q; w,) is compact and using the fact that
{u,} is bounded in E we may assume that u, — u, in E and u, — u, in
Li(Q;w)).

Set F(x,u) = 2|u|qw1 — Yhlul” and f(x,u) = F(x,u).

A simple computation yields

fulxou) = (g = DA 2w, = (r = 1hlul~2

/\Wl (g—2)/(r—q)
< C, | —

P ; (17)

where the last inequality follows from (16) and C, , > 0 is a constant
depending only on r and g. We now use (17) to derive the estimate for
d(u,y) — d(u,),

D(ug) — P(u,)

1 1
= —f a(x)|Vuyl? dx + —fb(x)luolp dar
pP-a r

AN

—lf a(x)|Vu,|” dx — lfb(x)lu [P ar
ra " pr "



EXISTENCE AND NON-EXISTENCE RESULTS 177
— 0f G(x,up) dT + 0 G(x,u,)dT
r r
+/ (F(x,u,) — F(x,uy))dx
Q
1
= I—)(lluollf — [lu,lIf)
+ 0(/ G(x,un)dI‘—fG(x,uO)dF)
r r
1,8
+ x,uy +t(u, —uy))dtds
[ Lt + oGy = ) s
x(un - u0)2 dx

1—17(||u0||b llu, IE) + o(f G(x,u,)dl — f G(x, uo)dI‘)

Wi/
* CZ/Q(”" ty)” -

where C, = ;C, ,A""?/U~9 We show that the last integral tends to 0 as
n — o, Indeed applymg Holder’s inequality we obtain

Wy D/=) wi/=a 4D/
fﬂ(” ~ ) Do B S fQ P

2/q
(f wilu, — uolqu) .
Q

Since u,, = u, in L1(Q;w,) we obtain

(r 2)/(r=q)
nlgr;f(u ~u)’ mdx 0. (18)

The compactness of the trace operator E — L™(T"; w,) and the continuity
of the Nemytskii operator N;: L™(I'; w,) — LX(T") imply N(u,) — Ng(u,)
in L'(I), i.e., [rIN;(u,) — No(uy)ldT' — 0 as n — . It follows that

%fc;(x u,) dl’ = fG(x uy) dr. (19)
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Since the norm in E is lower semicontinuous with respect to the weak
topology we deduce from (18) and (19) that
®(uy) < liminfd(u,).
n— o
1

PrROPOSITION 4. If 0, < 0 < 0* and u is a solution of problem (1, ,),
then

r/(r=q)

r—gq r—q wi
p r /o
Collullf + — [Qh|u| de < — =N/ [ o d
and
llull, = KA~/ @=P)
where K > 0 is a constant independent of u.
Proof. If u is a solution of (1, ,) then
lullf = 0f g(x,uyudl + [ hlul” dx
r Q
=\ w,|ul? dx
Jy
— r/(r—q)
q Wi q
AG Dl R — = r
<——A [Q o de rfﬂhlul d.

Using (10) we obtain the first part of the assertion.
From Proposition 1 we have that there exists C, > 0 such that

lullfo;wy < Cillullf,  forallu € E.

This inequality and (10) imply that

llull, > Cé/("_P)Cq‘l/(‘l‘P))\—1/(q—p)

and taking K = C;/7"PC'/1~P) the second part follows. [

THEOREM 2. Assume hypotheses (1), (4), (5), (6), (g1), and (g2) hold. Set
0 =max{6,,6_}, 0 = min{6*, 67}, andJ = (6, 0). There exists A, > 0 such
that the following hold:

(i) the problem (1, ,) admits a nontrivial solution, for any A > A, and
every 6 € J;

(ii)  the problem (1, ,) does not have any nontrivial solution, provided
that 0 < A < A, and 6 € J.
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Proof. According to Propositions 2 and 3, ® is coercive and lower
semicontinuous. Therefore there exists & € X such that ®(i7) = inf, ®(w).
To ensure that & # 0 we shall prove that inf, ® < 0. We set

A= inf{zllullf [ G(x.u)dl + L [ Hul dv:u € X,
P r r’qo

/ wilul? dx = 1}.
s}

First we check that A > 0. In order to prove that we consider the
constrained minimization problem

M = inf{f a(x)IVul? dx + / b(x)ul? dl':u e E,/ wilul? dx = 1}.
Q r Q
Clearly, M > 0. Since X is embedded in E, we have
f a(x)|Vul? dx + fb(x)lulp dlr > M
Q r

for all u € X with [yw,|ul? dx = 1. Now, applying the Holder inequality
we find

w,
= q = q/r|y,4
1 /lelu| dx /th/rh lul? dx

wi/e=o T o\
fQ i & ' (/th“' d") : (20)

Relation (15) implies that
Liullp — g [ G(x.u) dT = gellulf.
p r

By virtue of (20) we have

q q
—Nullf — g6 G(x,u) dT + — | hlul" dx
» b—4q fr (x,u) rfﬂ

q ,
> qellullf + = [ hlul” dx
r’qa

chM+g

r

W{/(r—q) —(r=q)/q
,/;2 hd/(r=a) dx
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for all u € X with [ow,|ul? dx = 1. It follows that

/(= -(r—q)/q
3 q( , wi/e—o
A=qcM + — dx
r

fQ h/0=D

and our claign follows.
Let A > A. Then there exists a function u € X with [ow,|ul? dx =1
such that

q q
A> — P — a0 G , dl + = hlul” dx.
pllullb q fr (x,u) r/ﬂ lul
This can be rewritten as
O(u) = Sallf — 6] Gxwyar + [ e — > [ wlult dx <0
p T ’ rJo q ‘o 1

and consequently inf, . , ®(u) < 0. By Propositions 2 and 3 it follows that
the problem (1, ,) has a solution.
We set

Ao = inf{A > 0: (1, ,) admits a solution}.

Suppose A, = 0. Then taking A, € (0, A*) (where A* is given by Theorem
1) we have that there is A such that the problem (15 ,) admits a solution.
But this is a contradiction, according to Theorem 1. Consequently, A, > 0.

We now show that for each A > A, problem (1, ,) admits a solution.
Indeed, for every A > A, there exists p € (A, A) such that the problem
(1, 4) has a solution u, which is a subsolution of problem (1, ,). We
consider the variational problem

inf{@(u) u€Xandu > up}.

By Propositions 2 and 3 this problem admits a solution %. This minimizer u
is a solution of problem (1, ,). Since the hypothesis g(x, s) + g(x, —s) = 0
for a.e. x €T and for all s € R implies that G(x, |ul) > G(x, &) (that is,
®(Ju)) < ®(u)) we may assume that 7 > 0 on . It remains to show that
problem (1, ,) also has a solution. Let A, = A, and A, > A, for each n.
Problem (1, ,) has a solution u, for each n. By Proposition 4 the
sequence {u,} is bounded in X. Therefore we may assume that u, — u, in
X and u, - u, in LY(Q;w,). We have that u, is a solution of (1, ,).
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Since u, and u, are solutions of (1, ,) and (1, ,), respectively, we have

/ a()c)(IVLtnl"’_2 Vu, — |Vu,|”~* Viy )(Vu, — V) dx
Q

+frb(x)(|un|p_2un — Iuolp_zuo)(un —u,)dl’

+ [ h Iunlrfzun — luyl" *u u, —u,) dx

J ol o) (1t = o)
= An'/ﬂwl(lunlqizun - |M0|q72140)(un - MO) dx
+(A, — Ao)f W1|”0|q72”0(”n —uy) dx
Q

+ 6 (80xu,) = 8(x,u))(, = ug) dT

=J1,n +J2,n +J3,n’

where
Jin = /\nfﬂwl(|”n|q_2“n - |“0|q_2”0)(”n — uy) dx,
Jyw = (A, — Ao)[ﬂw1|”0|q_2”0(”n — uy) dx,
T30 = 0‘/;(8(3@”;1) —8(x,ug))(u, = ug) dl’.

We have

-1 -1
Iy .l < sup/\n(/ wilw, | u, — uyl dx + f wiluel?™ lu, — ul dx)
Q Q

n>1
and it follows from the Holder inequality that
1/q

(g—D/q
[/, ,/ < supa, (fﬂmlunl" dx) . (fﬂwllun — uyl? dx)

nx>1
(g—D/q 1/q
+(f W1|Mo|qu) (f wilu, — ugl? dx) .
Q Q

We easily observe that J, , —> 0as n — o,
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From the estimate

1/q

(¢g=1/q
Iyl < 1A, — )\OI(/ wilul? dx) : (/ wilu, — uyl? dx
Q Q

we obtain that J, , > 0 as n — .

Using the compactness of the trace operator E — L™(T'; w,), the conti-
nuity of Nemytskii operator N,: L"(T'; w,) — L"/"=(T'; wy/=™), and
the estimate

[ lg e ) = gCxu) |- lu, = ol ar

(m—-1/m
= (frlg(x,un) — g(x,uy) [ Pwl/am gr

1/m

(f wolu, — uyl™ dT'
r

we see that J; , > 0 as n — o,
We have so proved that

lim (fﬂa(x)(qunV?Vun - |Vu0|P72Vu0)(Vun — Vu,) dx

+f b(x)(lunlpfzun — Iuolpfzuo)(un —u,)dl'| =0.
r
Now we apply the following inequality for £, € R (see [2, Lemma 4.10])

lE— (1P <CIEP = 1C17E) (€= ¢), forp=>2.

Then we obtain

llu, — u,lly = f a(x)IVu,, — Vul? dx + f b(x)lu, — uyl” dx
Q r
< C(f a(x)(IVunl”_zVun - IVMOI”_ZVMO)(VLL” — Vu,) dx
Q

[ b(x) (1172w, = gy ) (u, = wg) dT | =0
r
as n —> ©

which shows that [lu,|l, — llu,ll, and, by Proposition 4, u, # 0. In the case
1 <p <2 we obtain the same conclusion, by using the corresponding
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inequality (see [2, Lemma 4.10])

le— P <CEP P e=1C1P 7 0) (= O)(IEl+12)*7P,

for any &, £ € R". This concludes our proof. [
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