
J. Math. Anal. Appl. 330 (2007) 416–432

www.elsevier.com/locate/jmaa

Existence and multiplicity of solutions
for quasilinear nonhomogeneous problems:

An Orlicz–Sobolev space setting
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Abstract

We study the boundary value problem −div(log(1 + |∇u|q)|∇u|p−2∇u) = f (u) in Ω , u = 0 on ∂Ω ,
where Ω is a bounded domain in R

N with smooth boundary. We distinguish the cases where either f (u) =
−λ|u|p−2u + |u|r−2u or f (u) = λ|u|p−2u − |u|r−2u, with p, q > 1, p + q < min{N,r}, and r < (Np −
N +p)/(N −p). In the first case we show the existence of infinitely many weak solutions for any λ > 0. In
the second case we prove the existence of a nontrivial weak solution if λ is sufficiently large. Our approach
relies on adequate variational methods in Orlicz–Sobolev spaces.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Classical Sobolev and Orlicz–Sobolev spaces play a significant role in many fields of math-
ematics, such as approximation theory, partial differential equations, calculus of variations,
nonlinear potential theory, the theory of quasiconformal mappings, differential geometry, geo-
metric function theory, and probability theory. These spaces consists of functions that have weak
derivatives and satisfy certain integrability conditions. The study of nonlinear elliptic equations
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involving quasilinear homogeneous type operators is based on the theory of Sobolev spaces
Wm,p(Ω) in order to find weak solutions. In the case of nonhomogeneous differential opera-
tors, the natural setting for this approach is the use of Orlicz–Sobolev spaces. The basic idea is
to replace the Lebesgue spaces Lp(Ω) by more general spaces LΦ(Ω), called Orlicz spaces.
The spaces LΦ(Ω) were thoroughly studied in the monograph by Krasnosel’skii and Rutickii
[19] and also in the doctoral thesis of Luxemburg [18]. If the role played by Lp(Ω) in the
definition of the Sobolev spaces Wm,p(Ω) is assigned instead to an Orlicz space LΦ(Ω) the
resulting space is denoted by WmLΦ(Ω) and called an Orlicz–Sobolev space. Many properties
of Sobolev spaces have been extended to Orlicz–Sobolev spaces, mainly by Dankert [9], Donald-
son and Trudinger [11], and O’Neill [22] (see also Adams [2] for an excellent account of those
works). Orlicz–Sobolev spaces have been used in the last decades to model various phenomena.
Chen et al. [6] proposed a framework for image restoration based on a variable exponent Lapla-
cian. A second application which uses variable exponent type Laplace operators is modeling
electrorheological fluids [1,5,12,13,21,25].

This paper is devoted to the study of weak solutions for problems of the type{−div(a(|∇u(x)|)∇u(x)) = f (u(x)), for x ∈ Ω,

u(x) = 0, for x ∈ ∂Ω,
(1)

where Ω ⊂ R
N (N � 3) is a bounded domain with smooth boundary.

The first general existence result using the theory of monotone operators in Orlicz–Sobolev
spaces were obtained in [10] and in [15,16]. Other recent work that puts the problem into this
framework is contained in [7,8,14,17]. In these papers, the existence results are obtained using
variational techniques, monotone operator methods or fixed point and degree theory arguments.

The case where a(t) = tp−2 (p > 1, t � 0) is fairly understood and a great variety of existence
results are available. In this paper we focus on the case where a : [0,∞) → R is defined by a(t) =
log(1 + tq) · tp , where p, q > 1. We treat separately the cases where either f (t) = −λ|t |p−2t +
|t |r−2t or f (t) = λ|t |p−2t − |t |r−2t , where r < (Np − N + p)/(N − p) and λ is a positive
parameter.

We remark that we deal with a nonhomogeneous operator in the divergence form. Thus, we
introduce an Orlicz–Sobolev space setting for problems of type (1).

Define

ϕ(t) := log
(
1 + |t |q) · |t |p−2t, for all t ∈ R,

and

Φ(t) :=
t∫

0

ϕ(s), for all t ∈ R.

A straightforward computation yields

Φ(t) = 1

p
log

(
1 + |t |q) · |t |p − q

p

|t |∫
0

sp+q−1

1 + sq
ds,

for all t ∈ R. We point out that ϕ is an odd, increasing homeomorphism of R into R, while Φ is
convex and even on R and increasing from R+ to R+.
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Set

Φ�(t) :=
t∫

0

ϕ−1(s) ds, for all t ∈ R.

The functions Φ and Φ� are complementary N -functions (see [2,19,20]).
Define the Orlicz class

KΦ(Ω) :=
{
u :Ω → R, measurable;

∫
Ω

Φ
(∣∣u(x)

∣∣)dx < ∞
}

and the Orlicz space

LΦ(Ω) := the linear hull of KΦ(Ω).

The space LΦ(Ω) is a Banach space endowed with the Luxemburg norm

‖u‖Φ := inf

{
k > 0;

∫
Ω

Φ

(
u(x)

k

)
dx � 1

}

or the equivalent norm (the Orlicz norm)

‖u‖(Φ) := sup

{∣∣∣∣
∫
Ω

uv dx

∣∣∣∣; v ∈ KΦ̄(Ω),

∫
Ω

Φ̄
(|v|)dx � 1

}
,

where Φ̄ denotes the conjugate Young function of Φ , that is,

Φ̄(t) = sup
{
ts − Φ(s); s ∈ R

}
.

By Lemma 2.4 and Example 2 in [8, p. 243] we have

1 < lim inf
t→∞

tϕ(t)

Φ(t)
� sup

t>0

tϕ(t)

Φ(t)
< ∞. (2)

The above inequalities imply that Φ satisfies the Δ2-condition. By Lemma C.4 in [8] it follows
that Φ� also satisfies the Δ2-condition. Then, according to [2, p. 234], it follows that LΦ(Ω) =
KΦ(Ω). Moreover, by Theorem 8.19 in [2] LΦ(Ω) is reflexive.

We denote by W 1LΦ(Ω) the Orlicz–Sobolev space defined by

W 1LΦ(Ω) :=
{
u ∈ LΦ(Ω); ∂u

∂xi

∈ LΦ(Ω), i = 1, . . . ,N

}
.

This is a Banach space with respect to the norm

‖u‖1,Φ := ‖u‖Φ + ∥∥|∇u|∥∥
Φ

.

We also define the Orlicz–Sobolev space W 1
0 LΦ(Ω) as the closure of C∞

0 (Ω) in W 1LΦ(Ω). By
Lemma 5.7 in [15] we obtain that on W 1

0 LΦ(Ω) we may consider an equivalent norm

‖u‖ := ∥∥|∇u|∥∥
Φ

.

The space W 1
0 LΦ(Ω) is also a reflexive Banach space.

In the first part of the present paper we study the boundary value problem⎧⎨
⎩

−div(log(1 + |∇u(x)|q)|∇u(x)|p−2∇u(x)) = −λ|u(x)|p−2u(x) + |u(x)|r−2u(x),

for x ∈ Ω, (3)
u(x) = 0, for x ∈ ∂Ω.
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We say that u ∈ W 1
0 LΦ(Ω) is a weak solution of problem (3) if∫

Ω

log
(
1 + ∣∣∇u(x)

∣∣q)∣∣∇u(x)
∣∣p−2∇u∇v dx

+ λ

∫
Ω

∣∣u(x)
∣∣p−2

u(x)v(x) dx −
∫
Ω

∣∣u(x)
∣∣r−2

u(x)v(x) dx = 0,

for all v ∈ W 1
0 LΦ(Ω).

We prove the following multiplicity result.

Theorem 1. Assume that p,q > 1, p +q < N , p +q < r and r < (Np −N +p)/(N −p). Then
for every λ > 0 problem (3) has infinitely many weak solutions.

Next, we consider the problem⎧⎨
⎩

−div(log(1 + |∇u(x)|q)|∇u(x)|p−2∇u(x)) = λ|u(x)|p−2u(x) − |u(x)|r−2u(x),

for x ∈ Ω,

u(x) = 0, for x ∈ ∂Ω.

(4)

We say that u ∈ W 1
0 LΦ(Ω) is a weak solution of problem (4) if∫

Ω

log
(
1 + ∣∣∇u(x)

∣∣q)∣∣∇u(x)
∣∣p−2∇u∇v dx

− λ

∫
Ω

∣∣u(x)
∣∣p−2

u(x)v(x) dx +
∫
Ω

∣∣u(x)
∣∣r−2

u(x)v(x) dx = 0,

for all v ∈ W 1
0 LΦ(Ω).

We prove

Theorem 2. Assume that the hypotheses of Theorem 1 are fulfilled. Then there exists λ� > 0 such
that for any λ � λ�, problem (4) has a nontrivial weak solution.

A careful analysis of the proofs shows that Theorems 1 and 2 still remain valid for more gen-
eral classes of differential operators. Indeed, we can replace div(log(1+|∇u(x)|q)|∇u(x)|p−2 ×
∇u(x)) by div(a(|∇u(x)|)∇u(x)), where a(t) is so that the assumption (2) is fulfilled. Some
potentials a(t) satisfying this hypothesis are a(t) = |t |α−1 (α > 0) and a(t) = |t |α/ log(1 + |t |β)

(0 < β < α).
We remark that in the particular case corresponding to q = 1, λ = 0, 1 < p < N − 1, and

p < r � [N(p − 1)+p]/(N −p), problem (3) has a nontrivial weak solution, by means of The-
orem 1.2 in [7]. On the other hand, Theorem 1.2 in [7] also applies for solving equations involving
more general differential operators div(a(|∇u(x)|)∇u(x)). We also remark that if a(t) = 1 and
f (u) = −λu + |u|r−2u, then problem (1) becomes{−Δu = −λu + |u|r−2u, in Ω,

u = 0, on ∂Ω.
(5)

This problem has been studied by Ambrosetti and Rabinowitz [3] provided 2 < r < 2∗ =
2N/(N − 2). Using the Mountain Pass theorem combined with the remark that the operator
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−Δ + λI (λ > 0) is coercive in H 1
0 (Ω), Ambrosetti and Rabinowitz showed that problem (5)

has a positive solution for any λ > 0. The result we establish in Theorem 1 establishes the exis-
tence of infinitely many solutions (not necessarily positive) for a related class of boundary value
problems, but involving another differential operator in the class of Orlicz–Sobolev spaces.

The strong difference between the results of Theorems 1 and 2 should be understood by the
following elementary arguments. Indeed, consider the corresponding problems⎧⎨

⎩
−Δu = −λu + ur−1, in Ω,

u = 0, on ∂Ω,

u > 0, in Ω

(6)

and ⎧⎨
⎩

−Δu = λu − ur−1, in Ω,

u = 0, on ∂Ω,

u > 0, in Ω.

(7)

As we have seen, the Mountain Pass theorem implies that problem (6) has at least one solution
for any λ > 0, provided 2 < r < 2∗ = 2N/(N − 2). Problem (7) corresponds to the case studied
in Theorem 2. A simple multiplication with the first eigenfunction ϕ1 > 0 in (7) implies

λ1

∫
Ω

uϕ1 dx = λ

∫
Ω

uϕ1 dx −
∫
Ω

ur−1ϕ1 dx.

Thus, a necessary condition that problem (7) has a solution is that λ is sufficiently large. The
same arguments apply in the general cases studied in the main results of this paper. Indeed,
under the assumptions of Theorem 1, the nonlinear term f1(u) := −λ|u|p−2u+ |u|r−2u satisfies
the Ambrosetti–Rabinowitz condition 0 � r

∫ t

0 f1(s) ds � tf1(t), for all t � 0. This condition
fails if f2(u) := λ|u|p−2u − |u|r−2u but, in this case, we show that the corresponding energy
functional is coercive and lower semicontinuous.

2. Auxiliary results on Orlicz–Sobolev embeddings

In many applications of Orlicz–Sobolev spaces to boundary value problems for nonlinear
partial differential equations, the compactness of the embeddings plays a central role. Compact
embedding theorems for Sobolev or Orlicz–Sobolev spaces are also intimately connected with
the problem of discreteness of spectra of Schrödinger operators (see Benci and Fortunato [4] and
Reed and Simon [24]).

While the Banach spaces W 1LΦ(Ω) and W 1
0 LΦ(Ω) can be defined from fairly general con-

vex properties of Φ , it is also well known that the specific functional-analytic and topological
properties of these spaces depend very sensitively on the rate of growth of Φ at infinity. Com-
pactness is not an exception and, using standard notions traditionally used to describe convex
functions, we recall in this section a compact embedding theorem for a class of Orlicz–Sobolev
spaces.

Define the Orlicz–Sobolev conjugate Φ� of Φ by

Φ−1
� (t) :=

t∫
0

Φ−1(s)

s
N+1
N

ds.
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Proposition 1. Assume that the hypotheses of Theorems 1 or 2 are fulfilled. Then the following
properties hold true:

(a) limt→0
∫ 1
t

Φ−1(s)

s
N+1
N

ds < ∞;

(b) limt→∞
∫ t

1
Φ−1(s)

s
N+1
N

ds = ∞;

(c) limt→∞ |t |γ+1

Φ�(kt)
= 0, for all k > 0 and all 1 � γ <

Np−N+p
N−p

.

Proof. (a) By L’Hôpital’s rule we have

lim
t↘0

Φ(t)

tp+q
= lim

t↘0

ϕ(t)

(p + q)tp+q−1
= 1

p + q
lim
t↘0

log(1 + tq)

tq
= 1

p + q
lim
t↘0

qtq−1

1+tq

qtq−1
= 1

p + q
.

We deduce that Φ is equivalent to tp+q near zero. Using that fact and the remarks [2, p. 248] we
infer that (a) holds true if and only if

lim
t→0

1∫
t

s
1

p+q

s
N+1
N

ds < ∞

or

p + q < N.

The last inequality holds since the hypotheses of Theorems 1 or 2 are fulfilled.
(b) By the change of variable s = Φ(τ) we obtain

t∫
1

Φ−1(s)

s
N+1
N

ds =
Φ−1(t)∫

Φ−1(1)

τϕ(τ )

Φ(τ)

(
Φ(τ)

)−1/N
dτ. (8)

A simple calculation yields

0 � lim
τ→∞

∫ τ

0
sp+q−1

1+sq ds

τp log(1 + τq)
� lim

τ→∞

∫ τ

0
sp+q−1

sq ds

τp log(1 + τq)
= lim

τ→∞

1
p
τp

τp log(1 + τq)
= 0.

Thus

lim
τ→∞

∫ τ

0
sp+q−1

1+sq ds

τp log(1 + τq)
= 0. (9)

A first consequence of the above relation is that

lim
t→∞

Φ(t)

tp log(1 + tq)
= 1

p
. (10)

On the other hand, by (9),

lim
τ→∞

τϕ(τ)

Φ(τ)
= lim

τ→∞
τp log(1 + τq)

1
p
τp log(1 + τq) − q

p

∫ τ

0
sp+q−1

1+sq ds

= p lim
τ→∞

(
1 − q ·

∫ τ

0
sp+q−1

1+sq ds

p q

)−1

= p (11)

τ log(1 + τ )
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and

lim
t→∞Φ(t) = lim

t→∞
1

p
tp log

(
1 + tq

)[
1 − q ·

∫ |t |
0

sp+q−1

1+sq ds

tp log(1 + tq)

]
= ∞. (12)

Relations (8), (11) and (12) yield

lim
t→∞

t∫
1

Φ−1(s)

s
N+1
N

ds = ∞.

Equivalently, we can write
∞∫

Φ−1(1)

dτ

[Φ(τ)]1/N
= ∞

or, by (10),
∞∫

Φ−1(1)

dτ

τp/N [log(1 + τq)]1/N
= ∞. (13)

Since

log(1 + θ) � θ, ∀θ > 0,

we deduce that
1

τp/N [log(1 + τq)]1/N
� 1

τ (p+q)/N
, ∀τ > 0.

Since p + q < N , we find
∞∫

Φ−1(1)

τ−(p+q)/N dτ = ∞

and thus relation (13) holds true. We conclude that

lim
t→∞

t∫
1

Φ−1(s)

s
N+1
N

ds = ∞.

(c) Let γ be fixed such that 1 � γ < (Np − N + p)/(N − p).
By Adams [2, p. 231], we have

lim
t→∞

|t |γ+1

Φ�(kt)
= 0, ∀k > 0,

if and only if

lim
t→∞

Φ−1
� (t)

t1/(γ+1)
= 0. (14)

Using again L’Hôpital’s rule we deduce that

lim sup
t→∞

Φ−1
� (t)

t1/(γ+1)
� (γ + 1) lim sup

t→∞
Φ−1(t)

1 + 1 .
t γ+1 N
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Setting τ = Φ(t) we obtain

lim sup
t→∞

Φ−1
� (t)

t1/(γ+1)
� (γ + 1) lim sup

τ→∞
τ

[Φ(τ)] 1
γ+1 + 1

N

.

Since γ < (Np − N + p)/(N − p) we have

p >
N(γ + 1)

N + γ + 1
.

Using the above inequality and (9) we get

lim sup
τ→∞

τ
N(γ+1)
N+γ+1

Φ(τ)
= 0.

We conclude that (c) holds true.
Thus the proof of Proposition 1 is complete. �

Remark 1. Proposition 1 enables us to apply Theorem 2.2 in [14] (see also Theorem 8.33 in [2])
in order to obtain that W 1

0 LΦ(Ω) is compactly embedded in Lγ+1(Ω) provided that 1 � γ <

(Np − N + p)/(N − p).

An important role in what follows will be played by

p0 := sup
t>0

tϕ(t)

Φ(t)
.

Remark 2. By Example 2 [8, p. 243] it follows that

p0 = p + q.

3. Proof of Theorem 1

The key argument in the proof of Theorem 1 is the following Z2-symmetric version (for even
functionals) of the Mountain Pass lemma (see [23, Theorem 9.12]).

Mountain Pass lemma. Let X be an infinite dimensional real Banach space and let I ∈
C1(X,R) be even, satisfying the Palais–Smale condition (that is, any sequence {xn} ⊂ X such
that {I (xn)} is bounded and I ′(xn) → 0 in X� has a convergent subsequence) and I (0) = 0.
Suppose that

(I1) There exist two constants ρ,b > 0 such that I (x) � b if ‖x‖ = ρ.

(I2) For each finite dimensional subspace X1 ⊂ X, the set {x ∈ X1; I (x) � 0} is bounded.

Then I has an unbounded sequence of critical values.

Let E denote the Orlicz–Sobolev space W 1
0 LΦ(Ω). Let λ > 0 be arbitrary but fixed.

The energy functional associated to problem (3) is Jλ :E → R defined by

Jλ(u) :=
∫
Ω

Φ
(∣∣∇u(x)

∣∣)dx + λ

p

∫
Ω

∣∣u(x)
∣∣p dx − 1

r

∫
Ω

∣∣u(x)
∣∣r dx.

By Remark 1, Jλ is well defined on E.
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Let us denote by Jλ,1, Jλ,2 :E → R the functionals

Jλ,1(u) :=
∫
Ω

Φ
(∣∣∇u(x)

∣∣)dx and Jλ,2(u) := λ

p

∫
Ω

∣∣u(x)
∣∣p dx − 1

r

∫
Ω

∣∣u(x)
∣∣r dx.

Therefore

Jλ(u) = Jλ,1(u) + Jλ,2(u), ∀u ∈ E.

By Lemma 3.4 in [14] it follows that Jλ,1 is a C1 functional, with the Fréchet derivative given by

〈
J ′

λ,1(u), v
〉 =

∫
Ω

log
(
1 + ∣∣∇u(x)

∣∣q)∣∣∇u(x)
∣∣p−2∇u(x)∇v(x) dx,

for all u,v ∈ E.
Similar arguments as those used in the proof of Lemma 2.1 in [7] imply that Jλ,2 is of class

C1 with the Fréchet derivative given by

〈
J ′

λ,2(u), v
〉 = λ

∫
Ω

∣∣u(x)
∣∣p−2

u(x)v(x) dx −
∫
Ω

∣∣u(x)
∣∣r−2

u(x)v(x) dx,

for all u,v ∈ E.
The above information shows that Jλ ∈ C1(E,R) and

〈
J ′

λ(u), v
〉 =

∫
Ω

log
(
1 + ∣∣∇u(x)

∣∣q)∣∣∇u(x)
∣∣p−2∇u(x)∇v(x) dx

+ λ

∫
Ω

∣∣u(x)
∣∣p−2

u(x)v(x) dx −
∫
Ω

∣∣u(x)
∣∣r−2

u(x)v(x) dx,

for all u,v ∈ E. Thus, the weak solutions of (3) coincide with the critical points of Jλ.

Lemma 1. There exist η > 0 and α > 0 such that Jλ(u) � α > 0 for any u ∈ E with ‖u‖ = η.

Proof. In order to prove Lemma 1 we first show that

Φ(t) � τp0
Φ(t/τ), ∀t > 0 and τ ∈ (0,1], (15)

where p0 is defined in the previous section.
Indeed, since

p0 = sup
t>0

tϕ(t)

Φ(t)

we have
tϕ(t)

Φ(t)
� p0, ∀t > 0.

Let τ ∈ (0,1] be fixed. We have

log
(
Φ(t/τ)

) − log
(
Φ(t)

) =
t/τ∫
t

ϕ(s)

Φ(s)
ds �

t/τ∫
t

p0

s
ds = log

(
τ−p0)

and it follows that (15) holds true.
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Fix u ∈ E with ‖u‖ < 1 and ξ ∈ (0,‖u‖). Using relation (15) we have∫
Ω

Φ
(∣∣∇u(x)

∣∣)dx � ξp0
∫
Ω

Φ

( |∇u(x)|
ξ

)
dx. (16)

Defining v(x) = |∇u(x)|/ξ , for all x ∈ Ω , we have ‖v‖Φ = ‖u‖/ξ > 1. Since Φ(t) � tϕ(t)
p

, for
all t ∈ R, by [8, Lemma C.9] we deduce that∫

Ω

Φ
(
v(x)

)
dx � ‖v‖p

Φ > 1. (17)

Relations (16) and (17) show that∫
Ω

Φ
(∣∣∇u(x)

∣∣)dx � ξp0
.

Letting ξ ↗ ‖u‖ in the above inequality we obtain∫
Ω

Φ
(∣∣∇u(x)

∣∣)dx � ‖u‖p0
, ∀u ∈ E with ‖u‖ < 1. (18)

On the other hand, since E is continuously embedded in Lr(Ω), it follows that there exists a
positive constant C1 > 0 such that∫

Ω

∣∣u(x)
∣∣r dx � C1 · ‖u‖r , ∀u ∈ E. (19)

Using relations (18) and (19) we deduce that for all u ∈ E with ‖u‖ � 1 we have

Jλ(u) �
∫
Ω

Φ
(∣∣∇u(u)

∣∣)dx − 1

r

∫
Ω

∣∣u(x)
∣∣r dx � ‖u‖p0 − C1

r
· ‖u‖r

=
(

1 − C1

r
· ‖u‖r−p0

)
‖u‖p0

.

But, by Remark 2 and the hypotheses of Theorem 1, we have p0 = p + q < r . We conclude that
Lemma 1 holds true. �
Lemma 2. Assume that E1 is a finite dimensional subspace of E. Then the set S = {u ∈ E1;
Jλ(u) � 0} is bounded.

Proof. With the same arguments as those used in the proof of relation (15) we have

Φ(σ t)

Φ(t)
� σp0

, ∀t > 0 and σ > 1. (20)

Then, for all u ∈ E with ‖u‖ > 1, relation (20) implies
∫

Φ
(∣∣∇u(x)

∣∣)dx =
∫

Φ

(
‖u‖ |∇u(x)|

‖u‖
)

dx � ‖u‖p0
∫

Φ

( |∇u(x)|
‖u‖

)
dx � ‖u‖p0

. (21)
Ω Ω Ω
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On the other hand, since E is continuously embedded in Lp(Ω) it follows that there exists a
positive constant C2 > 0 such that∫

Ω

∣∣u(x)
∣∣pdx � C2 · ‖u‖p, ∀u ∈ E. (22)

Relations (21) and (22) yield

Jλ(u) � ‖u‖p0 + λ

p
· C2 · ‖u‖p − 1

r

∫
Ω

∣∣u(x)
∣∣r dx, (23)

for all u ∈ E with ‖u‖ > 1.
We point out that the functional | · |r :E → R defined by

|u|r =
(∫

Ω

∣∣u(x)
∣∣r dx

)1/r

is a norm in E. In the finite dimensional subspace E1 the norms |.|r and ‖.‖ are equivalent, so
there exists a positive constant C3 = C3(E1) such that

‖u‖ � C3 · |u|r , ∀u ∈ E1.

The above remark and relation (23) imply

Jλ(u) � ‖u‖p0 + λ

p
· C2 · ‖u‖p − 1

r
· C−1

3 · ‖u‖r ,

for all u ∈ E1 with ‖u‖ > 1.
Hence

‖u‖p0 + λ

p
· C2 · ‖u‖p − 1

r
· C−1

3 · ‖u‖r � 0, (24)

for all u ∈ S with ‖u‖ > 1. Since, by Remark 2 and the hypotheses of Theorem 1 we have
r > p0 > p, the above relation implies that S is bounded in E. �
Lemma 3. Assume that {un} ⊂ E is a sequence which satisfies the properties∣∣Jλ(un)

∣∣ < M, (25)

J ′
λ(un) → 0 as n → ∞, (26)

where M is a positive constant. Then {un} possesses a convergent subsequence.

Proof. First, we show that {un} is bounded in E. Assume by contradiction the contrary. Then,
passing eventually to a subsequence, still denoted by {un}, we may assume that ‖un‖ → ∞ as
n → ∞. Thus we may consider that ‖un‖ > 1 for any integer n.

By (26) we deduce that there exists N1 > 0 such that for any n > N1 we have∥∥J ′
λ(un)

∥∥ � 1.

On the other hand, for any n > N1 fixed, the application

E 
 v → 〈
J ′

λ(un), v
〉

is linear and continuous.
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The above information yields∣∣〈J ′
λ(un), v

〉∣∣ �
∥∥J ′

λ(un)
∥∥ · ‖v‖ � ‖v‖, ∀v ∈ E, n > N1.

Setting v = un we have

−‖un‖ �
∫
Ω

log
(
1 + ∣∣∇un(u)

∣∣q)∣∣∇un(x)
∣∣p dx + λ

∫
Ω

∣∣un(x)
∣∣p dx −

∫
Ω

∣∣un(x)
∣∣r dx

� ‖un‖,
for all n > N1. We obtain

−‖un‖ −
∫
Ω

log
(
1 + ∣∣∇un(u)

∣∣q)∣∣∇un(x)
∣∣p dx − λ

∫
Ω

∣∣un(x)
∣∣p dx � −

∫
Ω

∣∣un(x)
∣∣r dx,

(27)

for any n > N1.
If ‖un‖ > 1, then relations (25) and (27) imply

M > Jλ(un) =
∫
Ω

Φ
(∣∣∇un(x)

∣∣)dx + λ

p

∫
Ω

∣∣un(x)
∣∣p dx − 1

r

∫
Ω

∣∣un(x)
∣∣r dx

�
∫
Ω

Φ
(∣∣∇un(x)

∣∣)dx + λ ·
(

1

p
− 1

r

)
·
∫
Ω

∣∣un(x)
∣∣p dx

− 1

r
·
∫
Ω

log
(
1 + ∣∣∇un(u)

∣∣q)∣∣∇un(x)
∣∣p dx − 1

r
· ‖un‖

=
∫
Ω

Φ
(∣∣∇un(x)

∣∣)dx − 1

r
·
∫
Ω

ϕ
(∣∣∇un(x)

∣∣)∣∣∇un(x)
∣∣dx

+ λ ·
(

1

p
− 1

r

)
·
∫
Ω

∣∣un(x)
∣∣p dx − 1

r
· ‖un‖.

Since

p0 � tϕ(t)

Φ(t)
, ∀t > 0,

we find∫
Ω

Φ
(∣∣∇un(x)

∣∣)dx − 1

r
·
∫
Ω

ϕ
(∣∣∇un(x)

∣∣)∣∣∇un(x)
∣∣dx �

(
1 − p0

r

)∫
Ω

Φ
(∣∣∇un(x)

∣∣)dx.

Using the above relations we deduce that for any n > N1 such that ‖un‖ > 1 we have

M >

(
1 − p0

r

)
·
∫
Ω

Φ
(∣∣∇un(x)

∣∣)dx − 1

r
· ‖un‖. (28)

Since Φ(t) � (tϕ(t))/p for all t ∈ R we deduce by [8, Lemma C.9] that∫
Ω

Φ
(∣∣∇un(x)

∣∣)dx � ‖un‖p, (29)

for all n > N1 with ‖un‖ > 1.
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Relations (28) and (29) imply

M >

(
1 − p0

r

)
· ‖un‖p − 1

r
· ‖un‖,

for all n > N1 with ‖un‖ > 1. Since p0 < r , letting n → ∞ we obtain a contradiction. It follows
that {un} is bounded in E.

Since {un} is bounded in E we deduce that there exists a subsequence, still denoted by {un},
and u0 ∈ E such that {un} converges weakly to u0 in E. Since E is compactly embedded in
Lp(Ω) and Lr(Ω) it follows that {un} converges strongly to u0 in Lp(Ω) and Lr(Ω). Hence

lim
n→∞Jλ,2(un) = Jλ,2(u0) and lim

n→∞J ′
λ,2(un) = J ′

λ,2(u0). (30)

Since

Jλ,1(u) = Jλ(u) − Jλ,2(u), ∀u ∈ E,

relations (30) and (26) imply

lim
n→∞J ′

λ,1(un) = −J ′
λ,2(u0), in E�. (31)

Using the fact that Φ is convex and thus Jλ,1 is convex we have that

Jλ,1(un) � Jλ,1(u0) + 〈
J ′

λ,1(un), un − u0
〉
.

Passing to the limit as n → ∞ and using (31) we deduce that

lim sup
n→∞

Jλ,1(un) � Jλ,1(u0). (32)

Using again the fact that Jλ,1 is convex, it follows that Jλ,1 is weakly lower semicontinuous and
hence

lim inf
n→∞ Jλ,1(un) � Jλ,1(u0). (33)

By (32) and (33) we find

lim
n→∞Jλ,1(un) = Jλ,1(u0)

or

lim
n→∞

∫
Ω

Φ
(∣∣∇un(x)

∣∣)dx =
∫
Ω

Φ
(∣∣∇u0(x)

∣∣)dx. (34)

Since Φ is increasing and convex, it follows that

Φ

(
1

2

∣∣∇un(x) − ∇u0(x)
∣∣) � Φ

(
1

2

(∣∣∇un(x)
∣∣ + ∣∣∇u0(x)

∣∣))

� Φ(|∇un(x)|) + Φ(|∇u0(x)|)
2

,

for all x ∈ Ω and all n. Integrating the above inequalities over Ω we find

0 �
∫

Φ

(
1

2

∣∣∇(un − u0)(x)
∣∣)dx �

∫
Ω

Φ(|∇un(x)|) dx + ∫
Ω

Φ(|∇u0(x)|) dx

2
,

Ω
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for all n. We point out that Lemma C.9 in [8] implies∫
Ω

Φ
(∣∣∇un(x)

∣∣)dx � ‖un‖p < 1, provided that ‖un‖ < 1,

while relation (20) yields∫
Ω

Φ
(∣∣∇un(x)

∣∣)dx � ‖un‖p0
, provided that ‖un‖ > 1.

Since {un} is bounded in E, the above inequalities prove the existence of a positive constant K1
such that∫

Ω

Φ
(∣∣∇un(x)

∣∣)dx � K1,

for all n. So, there exists a positive constant K2 such that

0 �
∫
Ω

Φ

(
1

2

∣∣∇(un − u0)(x)
∣∣)dx � K2, (35)

for all n.
On the other hand, since {un} converges weakly to u0 in E, Theorem 2.1 in [14] implies∫

Ω

∂un

∂xi

v dx →
∫
Ω

∂u0

∂xi

v dx, ∀v ∈ LΦ�(Ω), ∀i = 1, . . . ,N.

In particular, this holds for all v ∈ L∞(Ω). Hence
{

∂un

∂xi

}
converges weakly to ∂u0

∂xi
in L1(Ω) for

all i = 1, . . . ,N . Thus we deduce that

∇un(x) → ∇u0(x) a.e. x ∈ Ω. (36)

Relations (35) and (36) and Lebesgue’s dominated convergence theorem imply

lim
n→∞

∫
Ω

Φ

(
1

2

∣∣∇(un − u0)(x)
∣∣)dx = 0.

Taking into account that Φ satisfies the Δ2-condition it follows by Lemma A.4 in [8] (see also
[2, p. 236]) that

lim
n→∞

∥∥∥∥1

2
(un − u0)

∥∥∥∥ = 0

and thus

lim
n→∞

∥∥(un − u0)
∥∥ = 0.

The proof of Lemma 3 is complete. �
Proof of Theorem 1. It is clear that the functional Jλ is even and verifies Jλ(0) = 0. Lemma 3
implies that Jλ satisfies the Palais–Smale condition. On the other hand, Lemmas 1 and 2 show
that conditions (I1) and (I2) are satisfied. Thus the Mountain Pass lemma can be applied to the
functional Jλ. We conclude that Eq. (3) has infinitely many weak solutions in E. The proof of
Theorem 1 is complete. �
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Remark 3. We point out the fact that the Orlicz–Sobolev space E cannot be replaced by a
classical Sobolev space, since, in this case, condition (I1) in the Mountain Pass lemma cannot be
satisfied. For a proof of that fact one can consult the proof of Remark 4 in [7, pp. 56–57].

4. Proof of Theorem 2

Let λ > 0 be arbitrary but fixed. Let Iλ :E → R be defined by

Iλ(u) :=
∫
Ω

Φ
(∣∣∇u(x)

∣∣)dx − λ

p

∫
Ω

∣∣u(x)
∣∣p dx + 1

r

∫
Ω

∣∣u(x)
∣∣r dx.

The same arguments as those used in the case of functional Jλ show that Iλ is well defined on E

and Iλ ∈ C1(E,R) with the Fréchet derivative given by

〈
I ′
λ(u), v

〉 =
∫
Ω

log
(
1 + ∣∣∇u(x)

∣∣q)∣∣∇u(x)
∣∣p−2∇u(x)∇v(x) dx

− λ

∫
Ω

∣∣u(x)
∣∣p−2

u(x)v(x) dx +
∫
Ω

∣∣u(x)
∣∣r−2

u(x)v(x) dx,

for all u,v ∈ E. This time our idea is to show that Iλ possesses a nontrivial global minimum
point in E. We start with the following auxiliary result.

Lemma 4. The functional Iλ is coercive on E.

Proof. In order to prove Lemma 4, we first show that for any b, d > 0 and 0 < k < l the following
inequality holds:

b · tk − d · t l � b ·
(

b

d

)k/(l−k)

, ∀t � 0. (37)

Indeed, since the function

[0,∞) 
 t → tθ

is increasing for any θ > 0 it follows that

b − d · t l−k < 0, ∀t >

(
b

d

)1/(l−k)

,

and

tk · (b − d · t l−k
)
� b · tk < b ·

(
b

d

)k/(l−k)

, ∀t ∈
[

0,

(
b

d

)1/(l−k)]
.

The above two inequalities show that (37) holds true.
Using (37) we deduce that for any x ∈ Ω and u ∈ E we have

λ · ∣∣u(x)
∣∣p − 1 · ∣∣u(x)

∣∣r � λ ·
[
λ · r ](p/(r−p))

= D1,

p r p p
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where D1 is a positive constant independent of u and x. Integrating the above inequality over Ω

we find

λ

p

∫
Ω

∣∣u(x)
∣∣p dx − 1

r

∫
Ω

∣∣u(x)
∣∣r dx � D2, ∀u ∈ E, (38)

where D2 is a positive constant independent of u.
Using inequalities (29) and (38) we obtain that for any u ∈ E with ‖u‖ > 1 we have

Iλ(u) � ‖u‖p − D2.

Thus Iλ is coercive and the proof of Lemma 4 is complete. �
Proof of Theorem 2. First, we prove that Iλ is weakly lower semicontinuous on E. Indeed,
using the definitions of Jλ,1 and Jλ,2 introduced in the above section we get

Iλ(u) = Jλ,1(u) − Jλ,2(u), ∀u ∈ E.

Since Φ is convex it is clear that Jλ,1 is convex and thus weakly lower semicontinuous on E. By
Remark 1 the functional Jλ,2 is also weakly lower semicontinuous on E. Thus, we obtain that Iλ

is weakly lower semicontinuous on E.
By Lemma 4 we deduce that Iλ is coercive on E. Then Theorem 1.2 in [26] implies that there

exists uλ ∈ E a global minimizer of Iλ and thus a weak solution of problem (4).
We show that uλ is not trivial for λ large enough. Indeed, letting t0 > 1 be a fixed real and Ω1

be an open subset of Ω with |Ω1| > 0 we deduce that there exists u1 ∈ C∞
0 (Ω) ⊂ E such that

u1(x) = t0 for any x ∈ Ω̄1 and 0 � u1(x) � t0 in Ω \ Ω1. We have

Iλ(u1) =
∫
Ω

Φ
(∣∣∇u1(x)

∣∣)dx − λ

p

∫
Ω

∣∣u1(x)
∣∣p dx + 1

r

∫
Ω

∣∣u1(x)
∣∣r dx

� L − λ

p

∫
Ω1

∣∣u1(x)
∣∣p dx � L − λ

p
· tp0 · |Ω1|

where L is a positive constant. Thus, there exists λ� > 0 such that Iλ(u1) < 0 for any λ ∈ [λ�,∞).
It follows that Iλ(uλ) < 0 for any λ � λ� and thus uλ is a nontrivial weak solution of problem (4)
for λ large enough. The proof of Theorem 2 is complete. �
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