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Abstract

We are concerned with the generalized Lane—Emden—Fowler equatian= A f (1) + a(x)g(«)
in £2, subject to the Dirichlet boundary conditiafy , = 0, wheres2 is a smooth bounded domain
inRY, A € R, a is a nonnegative Holder function, arfdis positive and nondecreasing such that the
mappingf (s)/s is nonincreasing irf0, o). Here, the singular character of the problem is given by
the nonlinearityg which is assumed to be unbounded around the origin. We distinguish two different
cases which are related to the sublinear (respectively linear) growtrabinfinity.
0 2004 Elsevier SAS. All rights reserved.

Résumé

On étudie I'équation de Lane—Emden—Fowler généralisée = A f (1) + a(x)g(u) danss2 avec
une condition de Dirichlet|; = 0, ot1$2 ¢ RY est un domaine borné réguliere R, a est une
fonction de Hdélder non-négative gt est positive et croissante telle que I'applicatifts)/s soit
décroissante sup, co). Le caractére singulier de ce probleme est donné par la nonlingagjte est
non bornée autour de I'origine. Sous des hypothéses différentes concgrmianton discute I'exis-
tence et 'unicité d’'une solution classique positive. On distingue deux cas différents, correspondant
aux situations otf a une croissance sous-linéaire ou linéaire a I'infini.
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1. Introduction and statement of the problem

The study of singular semilinear equations has an important place in the literature. From
a physical point of view, these equations arise in the context of chemical heterogenous
catalysts, in the theory of heat conduction in electrically conducting materials, as well
as in the study of non-Newtonian fluids, boundary layer phenomena for viscous fluids.
Nonlinear singular elliptic equations are also encountered in glacial advance (see [32]), in
transport of coal slurries down conveyor belts (see [4]) and in several other geophysical and
industrial contents (see [3] for the case of the incompressible flow of a uniform stream past
a semi-infinite flat plate at zero incidence). Singular problems have also been considered
in the context of integral equations. In this sense we mention the papers [16,19,24,27]. For
elliptic operators more general than the Laplacian, this kind of problems were treated in
[9,28]. For more details we refer to [7,11,22,25,26,30] and the references therein.

This paper is motivated by our recent work [14] in which we have studied the role of
positive parameters andu in the boundary value problem:

—Au+a(x)gw) =rf(x,u) + uh(x) in$2,
{ u>0 in £, (1)
u=0 onas2,
where f is a positive function with sublinear growth, apds a singular nonlinearity. The
aim of this paper is to study the bifurcation problem:

—Au=xrf(u)+alx)gu) in§2,
{ u>0 in £2, (P;)
u=0 onas2,
where 1 € R is a parameter an®® ¢ RV (N > 2) is a bounded domain with smooth
boundaryd2. Let 0< f € C%P[0, 00) and 0< g € C%A(0, 00) (0 < B < 1) fulfill the
hypotheses

(f1) f isnondecreasing of®, co) while f(s)/s is nonincreasing fos > 0;
(g1) g is nonincreasing o0, co) with limg\ o g(s) = +o00;
(g2) there exisCop, ng > 0 andu € (0, 1) so thatg(s) < Cos™%, Vs € (0, no).

The assumptiong?2) has been used in [14] and it implies the following Keller—
Osserman-type growth condition around the origin:
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/(/g(s) ds) dr < +o00. 2
0

0

As proved by Bénilan, Brezis and Crandall in [1], condition (2) is equivalent tpriygerty
of compact supporthatis, for any: € L1(RV) with compact support, there exists a unique
u € WLL(RN) with compact support such that: € L1(RV) and

—Au+gw)=h a.e.inR".

In many papers (see, e.g., [10,20]) the potential) is assumed to depend “almost”
radially onx, in the sense that

C1p(Ix]) < a(x) < Cap(Ix]),

whereC1, C2 are positive constants and|x|) is a positive function satisfying some in-
tegrability condition. We do not impose any growth assumptiorupbut we suppose
throughout this paper that the variable potentiat) satisfiesa € C%#(2) anda > 0
in £2.

If A = 0 this equation is called the Lane—-Emden—Fowler equation and arises in the
boundary-layer theory of viscous fluids (see [33]). Problems of this type, as well as the as-
sociated evolution equations, describe naturally certain physical phenomena. For example,
superdiffusivities equations of this type have been proposed by de Gennes [12] as a model
for long range Van der Waals interactions in thin films spreading on solid surfaces. This
equation also appears in the study of cellular automata and interacting particle systems
with self-organized criticality (see [5]), as well as to describe the flow over an imperme-
able plate (see [2,3]). Problems of this type are obtained from evolution equations of the
form,

up = div@” " Vu) + h(x,u) in 2 x (0, T)

through the implicit discretization in time arising in nonlinear semigroup theory (see [8,
31]). In [13], Fulks and Maybee studied the existence of solutions to singular parabolic
equations of the form,

ur— Au=g(x,t,u) in2x(0,7T)

coupled with initial and boundary conditions. Under the hypothesegtisatonincreasing
inu andg(x,t,r) — g(x,r) ast — oo, they obtain classical solutions of the correspond-
ing elliptic boundary value problem.

The problem(P;) has been widely studied for the special nonlinearifié¢s = ¢” and
g() =177, wherep andy are positive parameters. In this caé@,) becomes:

—Au=> uP +ax)u”? ing2,
u>0 in 2, (3)
u=0 onas2.
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In [29], Shi and Yao studied the problem (3) fpry € (0,1) andx > 0. Fori =0 and
a =1, Lazer and McKenna [21] proved that (3) has a unique solutierC2(£2) N C(£2).
Moreover, ify > 1 thenu is notin C1(2). If a = 1 andy < (0, 1), Coclite and Palmieri
[6] showed that (3) has at least one solution providedxhat0 andp € (0, 1). In turns, if
p > 1, they proved that there exist$ > 0 such that (3) has a solution fare [0, »*) and
no solutions exist il > A*. A similar problem to (3) whemp = 1 andA < 0 was studied
in [9].

2. Themain results

Our purpose is to study the effect of the asymptotically linear perturbgtiohin (Py),
as well as to describe the set of values of the positive pararhetech that probleniP;,)
admits a solution. In this case, we also prove a uniqueness result. Due to the singular
character of P,), we cannot expect to find solutionsdif(s2). However, under the above
assumptions we will show tha&P; ) has solutions in the class:

&={ueC?*@)nct(2); AueL*(2)}.
We first observe that, in view of the assumptigfi), there exists

m:= lim & € [0, 00).
§—>00 5
This number plays a crucial role in our analysis. More precisely, the existence of the solu-
tions to (P,) will be separately discussed far > 0 andm = 0. We point out that in [14]
we studied in detail the problem (1) in the case where 0 anda is a sign-changing po-
tential. In that case, a significant role in the study of the existence of solutions was played
by the decay rate of combined with the signs of the extremal values of the poteatial
in 2. Leta, =min, g a(x).
Ouir first result is:

Theorem 1. Assume(f1), (gl), (g2) andm = 0. If a, > 0 (respectivelya, = 0), then
(P,) has a unique solution;, € £ for all A € R (respectivelyj > 0) with the properties

(i) u,, is strictly increasing with respect to;
(i) there exist two positive constant;,c; > 0 depending on A such that
c1d(x) <uy <cad(x)in 2.

The bifurcation diagram in the “sublinear” cage= 0 is depicted in Fig. 1. We now
consider the case: > 0. The results in this case are different from those presented in
Theorem 1. A careful examination ¢P,) reveals the fact that the singular tegtu) is
not significant. Actually, the conclusions are close to those established in [23, Theorem A],
where an elliptic problem associated to an asymptotically linear function is studied.

Let A1 be the first Dirichlet eigenvalue ¢f-A) in 2 andA™ = A1/m. Our result in this
case is the following:
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Fig. 1. The “sublinear” case = 0.

Theorem 2. Assume f1), (g1), (g2) andm > 0. Then the following hold

(i) If » > A%, then(P,) has no solutions ig.
(iiy If a, > O (respectivelya, = 0) then (P,) has a unique solution, € £ for all
—00 < A < A* (respectivel\0 < A < A*) with the properties
(ii1) u, is strictly increasing with respect to;
(i2) there exist two positive constantg,c2 > 0 depending oni such that
c1d(x) <uy, < cad(x) in £2;
(ii3) limy s+ u; = +o00, uniformly on compact subsets @f

The bifurcation diagram in the “linear” cage > 0 is depicted in Fig. 2.

Fig. 2. The “linear” case: > 0.
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3. Proof of Theorem 1
We first recall some auxiliary results that we need in the proof.

Lemma 3 (see [29]) Let F: 2 x (0, o0) — R, be a Holder continuous function with ex-
ponents € (0, 1), on each compact subset@f x (0, co) which satisfies

(F1) limsup_, (s~ tmax .5 F(x,s)) < A1
(F2) for eachr > 0, there exists a constad(r) > 0, such that

F(x,r)— F(x,s) > —D(@)(r —s), forxeQandr>s>t;
(F3) there existg)g > 0, and an open subse&?g C §2, such that

min F(x,s) >0 fors e (0, no),
xesn

and

. F(x,
lim x,5)
sN\0 S

=400 uniformly forx € £20.

Then, for any nonnegative functiam € C%>#(352), the problem,

—Au=F(x,u) Iing2,
:u>0 in 2,
u =g onods2,

has at least one positive solution € C%#(G) N C(2), for any compact set
G CRU{x €082; ¢o(x) > 0}

Lemma 4 (see [29]) Let F: 2 x (0,00) — R, be a continuous function such that the
mapping (0, o) > s > %‘) is strictly decreasing at each € 2. Assume that there
existsv, w € C2(£2) N C(2) such that

(@ Aw+ F(x,w) <0< Av+ F(x,v) in £2;
(b) v,w>0in £ andv < w ONIL2;
(c) Ave LY(£).

Thenv < w in £2.

Now we are ready to give the proof of Theorem 1. This will be divided into four steps.
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Step 1. Existence of solutions to probléem)
For anyx € R, define the function:
Dy (x,8) =1f(s) +a(x)g(s), (x,5) €2 x (0,00). 4)

Taking into account the assumptions of Theorem 1, it follows dhaverifies the hypothe-
ses of Lemma 3 fok € R if a, > 0 andx > 0 if a, = 0. Hence, for in the above range,
(P,) has at least one solution, € C2#(£2) N C(2).

Step 2. Uniqueness of solution

Fix A € R (respectively,. > 0) if a, > O (respectivelya, = 0). Let u; be a solu-
tion of (P,). Denoter~ = min{0, A} andA™ = max0, 1}. We claim thatAu; € L1(£2).
Sincea € C%#(£2), by [15, Theorem 6.14], there exists a unique nonnegative solution
¢ € C2A () of

—Az=a(x) In$,
=0 onos2.

By the weak maximum principle (see, e.g., [15, Theorem 22,0 in 2. Moreover, we
are going to prove that

@) z(x) :==ct(x) is a_subsolution of P,.), for ¢ > 0 small enough;
(b) z(x) > c1d(x) in £2, for some positive constant > 0;
(€) up>zin 2.

Therefore, by (b) and (c);, > c1d(x) in 2. Using(g2), we obtaing (u;) < Cd~*(x)
in £2, whereC > 0 is a constant. Sg,(u;) € L1(£2). This implies:

Auy € LY(£2).
Proof of (a). Using(f1) and(gl), we have:
Az(x) + P).(x,2) = —ca(x) + Af (ct) +a(x)g(cs)
> —ca(x) + 17 f(cllg loo) +alx)g(cll¢ loo)

2(Cltllo0) gclitlee)
Wl(x)[ 2 _1}+f(c"g"m)[“*2f<c||c||oo>“}

for eachx € £2. Since A < 0 corresponds tar, > 0, using lim\0g(t) = +oo and
lim;—o f () € (0, 00), we can findc > 0 small such that

Az+ P, (x,z2) >0, Vxef.

This concludes (a). O
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Proof of (b). Sincet € C2#(2), ¢ > 0in £2 and¢ =0 ond$2, by Lemma 3.4 in [15],
we have:

a
—C(y) <0, Vyeodsf.
av

Therefore, there exists a positive constansuch that

B_C(y) = lim Mé—co, Vy € 952.
Jv xeR, x—y |x —y|

So, for eacty € £2, there exists,, > 0 such that

() o Vx € B, (y) N £2. (5)
lx—yl = 2 ’

Using the compactness 62, we can find a finite numbekr of balls By, (i) such that
082 C Ule By, (yi). Moreover, we can assume that for smalt 0,

k
{x € 2: dx) <do} | B, )
i=1

Therefore, by (5) we obtain:
co .
Z(x) > Ed(x), Vx € 2 with d(x) < dp.

This fact, combined witls > 0 in £2, shows that for some constaht- 0
C(x) >cd(x), VxeSf2.
Thus, (b) follows by the definition of. O

Proof of (c). We distinguish two cases:
Casel. 1 > 0. We see tha®, verifies the hypotheses in Lemma 4. Since
Auy + D). (x,u;) SO Az + D, (x,z) in £2,
uy, z>0 ins2,
u)y =z 0Nas2,
Az e LY(2),
by Lemma 4 it follows that;, > z in £2.

Now, if u1 anduy are two solutions of P,), we can use Lemma 4 in order to deduce
thatuy = us.
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Case2. ) < 0 (corresponding ta, > 0). Lete > 0 be fixed. We prove that
z<u +e(l+x3)" in2, (6)

wheret < 0 is chosen such that|x|> + 1 > 0, Vx € £. This is always possible since
2 c RN (N > 2) is bounded.

We argue by contradiction. Suppose that there exisgse 2 such that
u, (x0) + e(1+ |xol)® < z(x0). Then min g {us(x) +&(1+|x[%)® —z(x)} < 0is achieved
at some poink; € £2. Sinced; (x, z) is nonincreasing i, we have:

0> —A[MA(X) —z(x) +8(1+ |x|2)r]|x=x1
= &), (x1, 15, (x1) — Pa (w1, 2(x0) — eA[(1+ |x1)]|

> —eA[(1+1xP)7],

X=x1
= —267(L+ [x1) [N + 21 — ) [x1]2+ N]

=x1

> —481’(1+ |x1|2)r_2(r|x1|2 + 1) > 0.
This contradiction proves (6). Passing to the limit- 0, we obtain (c). O
In a similar way we can prove thapP;) has a unique solution.

Step 3. Dependence an

We fix A1 < A2, whererq, A2 € R if a, > 0 respectivelyjr1, A2 € [0, o0) if a, =0. Let
uy,. Uy, be the corresponding solutions @,,) and(P,,) respectively.
If X1 >0, then®,, verifies the hypotheses in Lemma 4. Furthermore, we have:

Au}»z + dﬁkl(x, ukz) < 0 < Aukl + (pkl ()C, ukl) in 2,
I/[)Ll,u)L2>O |n Q,
Up, =Uy, 0N 052,
Auy, € LY(R2).
Again by Lemma 4, we conclude that, < uy, in £2. Moreover, by the maximum princi-
ple,uy, <u,, in £2. B
Let 2> < 0; we show thait,, < u,, in £2. Indeed, supposing the contrary, there exists

xo € §2 such thats;,, (xo) > uj,(xo). We conclude now that maxg{u, (x) — u;,(x)} > 0
is achieved at some point 2. At that point, sayr, we have:

0< —Aupy — p,) (%) = Piy (X, 3, (X)) — Py, (X, 3, (X)) <O,
which is a contradiction. It follows that;, < u;, in £2, and by maximum principle we

haveu,, <u,, in £2.
If X1 <0< Ap, thenu,, < ug < uy, in 2. This finishes the proof of Step 3.
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Step 4. Regularity of the solution

Fix » € R and letu; € C%(£2) N C(£2) be the unique solution afP;). An important
result in our approach is the following estimate:

c1d(x) <u)(x) <cod(x), forallxe s, @)

wherecs, ¢2 are positive constants. The first inequality in (7) was established in Step 2. For
the second one, we apply an idea found in [17].

Using the smoothness obs2, we can find § € (0,1) such that for all
X0 € 25 :={x € 2; d(x) <8}, there existsy € RV \ 2 with d(y,9£2) = § and
d(x0) = |xo — y| — 8.

Let K > 1 be such that diaff12) < (K — 1)§ and letw be the unique solution of the
Dirichlet problem:

—Aw=21Tf(w)+g(w) in Bg(0)\ B1(0),
w>0 in Bk (0) \ B1(0), )
w=0 ond(Bk (0) \ B1(0)),
where B, (0) is the open ball iRY of radiusr and centered at the origin. By uniqueness,
w is radially symmetric. Hence (x) = w(|x|) and

>0 in (1, K), ®)

{ @+ NG 40t (@) + g(@) =0 forr e (1, K),

Integrating in (9) we have:

t

W'(t) = ' (@)a" "N — 7N / PN (W) + g (W(r)] dr,
b

=@ (p)pN 1N +t1_N/rN_1[k+f(ﬁ(r)) +g(W(r)]dr,

t

where 1<a <t < b < K. Sinceg(#) € L1(1, K), we deduce that botf#’ (1) and@'(K)
are finite, sab € C2(1, K) N C1[1, K. Furthermore,

w(x) <Cmin{K —|x|, x| —1}, foranyx € Bx(0)\ B1(0). (10)

Let us fixxg € £25. Then we can findig € RV \ £ with d(yo, 8£2) = § andd (xg) = |xo —
y|—8.Thus,2 C Bgs(yo)\ Bs(yo). Definev(x) = cw((x —yo)/8), x € £2. We show thab
is a supersolution afP;), provided that: is large enough. Indeed,df> max(1, 82| al| o},
then for allx € £2 we have:



F. Cirstea et al. / J. Math. Pures Appl. 84 (2005) 493-508 503

— N-1_
Av+Af(v) +a(x)g) < <w (r+ —w (r))

+ )C"f(cﬁ(r)) + a(x)g(cw(r)),

wherer = |x — yo|/8 € (1, K). Using the assumptioif1l) we get f(cw) < ¢f (w) in
(1, K). The above relations lead us to

_, N-1 o _
Av+Af () +a(x)gv) < 32( +—w>+x of (@) + llallsog ()

N
° o

~/ N_1~/ + o0 ~
(w + W A f(w)+g(w)>

SinceAu;, € L1(£2), with a similar proof as in Step 2 we get < v in £2. This combined
with (10) yields:

|xo — yol |xo — yol
1) ’ 1)

u3.(x0) < v(x0) < Cmin{K - - 1} < %d(xo)-

Henceu;, < $d(x) in £25 and the last inequality in (7) follows.
Let G be the Green’s function associated with the Laplace operat@r. ifhen, for all
x € 2 we have:

() = — / G () [ (12.()) + a (g (ux ()] .

2

and

Vit (x) = f G (e [Af (12 0)) + a0 (un ()] dy
2

If x1,x2 € £2, using(g2) we obtain:

| Vs (x1) — Vuy (x2)| < A f |Gx(x1,y) — G (x2,y)| - f(un(y)) dy
22

. f (G (1, ) = Gz )| ;% (1) dy.
2

Now, taking into account that, € C(£2), by the standard regularity theory (see [15]) we
get:

f|Gx<x1, ¥) = Gy (i )| - F(un () < Gt — xal.
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On the other hand, with the same proof as in [17, Theorem 1], we deduce:

/|Gx(x1, ¥) = Gz )| - 4 () < Ealoxs — 2l
2

The above inequalities imply; € C2(£2) N C117%(82). The proof of Theorem 1 is now
complete.

4. Proof of Theorem 2

(i) Let g1 be the first eigenfunction of the Laplace operata®invith Dirichlet boundary
condition. Arguing by contradiction, let us suppose that there exista.* such that
(Py) has a solutiom;, € £.

Multiplying by ¢1 in (P,) and then integrating ove® we get:

—/(pl Aux=)»/f(ux)<p1+/a(X)g(ux)<ﬂ1. (11)
2

ko) 2

Sincel > A1/m, in view of the assumptionf 1) we getif (u;) > A1u; in 2. Using
this fact in (11) we obtain:

—/wlAux >)»1/MM,01-

2 2

The regularity ofy;, yields— [, uy Ap1 > A1 [, upe1. This s clearly a contradiction
since—Ag1 = A1¢1 in 2. Hence(P;) has no solutions i& for anyx > A*.
(i) From now, the proof of the existence, uniqueness and regularity of solution is the
same as in Theorem 1.
(ii3) In what follows we shall apply some ideas developed in [23]. Due to the special char-
acter of our problem, we will be able to prove that, in certain ca&foundedness
implies H}-boundedness!

Let u; € £ be the unique solution ofP,) for 0 < A < A*. We prove that
lim;,_ .« u; = 400, uniformly on compact subsets @2. Suppose the contrary. Since
(up)0<r <+ is a sequence of nonnegative superharmonic functiofis ioy Theorem 4.1.9
in [18], there exists a subsequence(®@f); -+ (still denoted by(u; ); <x+) which is con-
vergent inL} (£2).

We first prove thatu; ), -+ is bounded inL2(£2). We argue by contradiction. Suppose
that ()<~ is not bounded irL.2(£2). Thus, passing eventually at a subsequence we have
u; = M) w,, where
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Using (f1), (g2) and the monotonicity assumption @ we deduce the existence of
A,B,C,D >0 (A > m) such that

f@O)<Ar+B, gt)<Ct ™+ D, forallr>0. (13)

This implies:

TGy @) +a()g@,)) = 0 in Lise(2) ash /5"

that is,
—Awy, — 0 inLE.(2)asr /2% (14)
By Green'’s first identity, we have:
/Vw,\-dexz—/qJAw,\dx:— / pAw, dx Vo e C(£2). (15)
2 2 Suppy

Using (14) we derive that

f¢wadx < / g1l Aw | dx
Suppy Suppy (16)
< llgllpee / |Aw,|dx — 0 asir 7 A",
Suppy

Combining (15) and (16), we arrive at
/Vw;\'V(pdx—>0aS)L/'A*, Vo € C3°($2). a7
2

By definition, the sequendev; )o<x <+ is bounded IL2(£2).
We claim that{w; ) <+ is bounded ian}(Q). Indeed, using (13) and Holder’s inequal-
ity, we have:

/|VU))L|2 /kaw;\_ M()L)/‘U))LAM)\

= m/[kwxf(ux)Jra(X)g(ux)wx]
2

llalloo

A —a
< m/w,\(Auk—}-B)—f- oo w;(Cu;® + D)
2 2
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||a||OOC/ o AB+llalleD /
=2 | wP 2 o
/ Ut o e | Y T ey

2 2

<AA+ lallecC |_Q|(1+0‘)/2+ AB + |lalloo D |_Q|1/2,
M)lte M)

From the above estimates, it is easy to see thad, -, is bounded inHol(Q), so the
claim is proved. Then, there exisise Hol(.Q) such that (up to a subsequence)

wy—w weakly in H}(2) asx 7 A* (18)
and, becaus#}(£2) is compactly embedded ib?(£2),
w;, — w strongly inL?(2) asx /' A*. (19)

On the one hand, by (12) and (19), we derive that, 2, = 1. Furthermore, using (17)
and (18), we infer that

/Vw-Vgodx =0, VpeC&(Q).
2

Sincew € H(}(Q), using the above relation and the definitionlq}(.Q), we getw = 0.
This contradiction shows that:; ), .+ is bounded inL2(£2). As above forw;, we can
derive thaty, is bounded inH(}(Q). So, there exists* € Hol(.Q) such that, up to a subse-
guence,

up—u*  weakly in H}(2) asir /' 1¥,
u) — u* strongly inL2(£2) asa 7 A*, (20)
u), — u* a.e.in2asir /A%,

Now we can proceed to get a contradiction. Multiplyingdayin (P,) and integrating
over 2 we have:

—/<p1AuA = A/f(u;)(pl +/a(x)g(u;\)<p1, forall 0 < A < A*. (22)
2 2 2
On the other hand, bgf1) it follows that f (i) > mu; in £2, forall 0 < A < A*. Combin-

ing this with (21) we obtain:

Alfumpl2)»m/ux(p1+/‘a(x)g(u;\)g01, forall0 < 1 < A*. (22)
2 2 2
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Notice that by(g1), (20) and the monotonicity af, with respect tax we can apply the
Lebesgue convergence theorem to find:

/a(x)g(uk)wldx — /a(x)g(u*)wldx asi 1.
2 2

Passing to the limit in (22) as ~ A*, and using (20), we get:

kl/u*m>A1/u*¢1+/a(X)g(u*)¢1- (23)

2 2 2

Hence f_Qa(x)g(u*)gol = 0, which is a contradiction. This fact shows that
lim;, = u; = 400, uniformly on compact subsets of. This ends the proof.
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