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ABSTRACT

In this paper, we study the existence of infinitely many solutions for a fractional Kirchhoff-Schrodinger-Poisson system. Based
on variational methods, especially the fountain theorem for the subcritical case and the symmetric mountain pass theorem
established by Kajikiya for the critical case, we obtain infinitely many solutions for the system under certain assumptions. The
novelties of this article lie in the appearance of the possibly degenerate Kirchhoff function and weak assumptions on the nonlinear
term which are quite mild.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5019677

I. INTRODUCTION AND MAIN RESULTS

In this paper, we are concerned with the multiplicity of solutions for the nonlinear fractional Schrédinger-Poisson system

of Kirchhoff type,
M(UIA)(-AYu + Ve + p(x)u = Af(x,u)  in R, W
(=)' p(x) = u? in R?, '

where 5
[u(x) — wy)l
[ul; = / I(- A)2u|2dx /Rg /]Rs |x) y|3+};)s dxdy,

s,t €(0,1) with 2t+4s > 3, M : R}, - R" is a continuous function satisfying certain assumptions, the potential function V : R* — R*
is continuous, f : R* x R — R satisfies a Carathéodory condition, A is a positive parameter, and (-A)* is the fractional Laplace
operator which, up to a normalization constant, is defined as

s #() () 3
(-A)Pp(x) =2 ]I_I})R ko, -y dy, x e R,

along functions ¢ € Cg"(RS), where B.(x) denotes the ball of R? centered at x € R® and with radius & > 0. It is worth pointing
out that the fractional Laplace operator (-A)” becomes the classic Laplace operator —A as v — 17; see Ref. 17, Proposition 4.4.
From a probabilistic point of view, the fractional Laplace operator could be viewed as the infinitesimal generator of a Lévy pro-
cess; cf. Ref. 9. This operator arises in the description of various phenomena in the applied sciences, such as plasma physics,?*
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flame propagation,’? finance,'® free boundary obstacle problems,'® Signorini problems,*>” Hamilton-Jacobi equation with critical
fractional diffusion,*® or phase transitions in the Gamma convergence framework.! For more details on the nonlocal fractional
Laplace operator, we refer the readers to Refs. 17 and 29 and the references therein.

For our problem, we assume that the Kirchhoff function M : Ry — Ry is a continuous function satisfying the following
conditions:

M;) M is nondecreasing, and there exists mg > 0 such that inf, . M(t) > mo > 0.

(
(M) For any 7 > 0, there exists « = «(r) > 0 such that M(t) > « for all t > 7.

(M2) There exists @ € [2, 73-) such that 9 M(t) = 6 f§ M(z)dr > M(t)t for all t € Ry,

(M3)  M(wt) < M(t) for all w € [0, 1], where M (t) = 0 M(t) - M(t)t for all t € Ry.

A typical example for M is given by M(t) = bo + bt?~! for t > 0, where 6 € [2, 32-),bg > 0, by > 0, and by + by > 0. Note that (My)
implies that s > 3, and hence this leads to 2t + 4s > 3. The Kirchhoff problem is called non-degenerate if M(0) > 0, while it is
named degenerate if M(0) = O; see Ref. 33 for some physical explanations about degenerate Kirchhoff problems. For the physical
background of the fractional Kirchhoff model, we refer to Ref. 20, Appendix A.

Obviously, assumptions (M;)~(Ms) are automatic in the non-degenerate case. Meanwhile, (M), (M2), and (Ms) cover the
degenerate case. It is worth stressing that the degenerate case is rather interesting and is treated in well-known papers in
the Kirchhoff theory; see, for example, Ref. 18. In the vast literature on degenerate Kirchhoff problems, the transverse oscillations
of a stretched string, with nonlocal flexural rigidity, depends continuously on the Sobolev deflection norm of u via M([u]?).

In recent years, Kirchhoff-type problems, which arise in various models of physical and biological systems, have received
more and more attention. More precisely, Kirchhoff established a model given by

2 L
R
otz h 2L Jo

where p, po, h, E, L are constants which represent some physical meanings, respectively. Here (1.2) extends the classical
D’Alembert wave equation by considering the effects of the changes in the length of the strings during the vibrations. Note
that the presence of the nonlocal Kirchhoff function M makes (1.2) no longer a pointwise identity. Recently, Fiscella and Valdinoci
in Ref. 20 first proposed a stationary Kirchhoff model involving the fractional Laplacian by taking into account the nonlocal aspect
of the tension arising from nonlocal measurements of the fractional length of the string; see Ref. 20, Appendix A for more details.
In this case, M measures the change in the tension on the string caused by the change in its length during the vibration. From
this point of view, the fact that M(0) = 0 means that the base tension of the string is zero, a seemingly feasible model.

ou
ox

2 2
dx)% =0, (1.2)

On the one hand, the study of a system like (1.1) has been motivated by the following Schrédinger-Poisson type system:

—Au+V(x)u+¢u = f(x,u) in R?,
—Ag =u? inRR?, (L.3)

which was introduced by Benci and Fortunato in Ref. 7 as a physical model describing solitary waves for nonlinear Schrédinger
type equations interacting with an unknown electrostatic field. The first equation of (1.3) is coupled with a Poisson equation,
which means that the potential is determined by the charge of the wave function. The term ¢u is nonlocal and concerns the
interaction with the electric field. For more details on the physical background of system (1.3), we refer the readers to Refs. 8 and
35 and the references cited there.

In the last decades, many researchers have devoted to the existence and multiplicity of solutions for the system like (1.1) via
critical point theory under various assumptions on the potential V and the nonlinearity; for example, see Ref. 25. In particular,
Li et al. considered the following Schrédinger-Maxwell system:

—Au+V(xu+e¢u=f(x,u) in R?,
—A¢ = u? in R

Using the variant fountain theorem introduced by Zou in Ref. 50, under certain assumptions on V and f, the authors got infinitely
many large solutions for the above system. We refer to Refs. 15 and 39 for the applications of the same method. Zhao et al. in
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Ref. 47 studied the following Kirchhoff-Schrédinger-Poisson system:

[a +b /}RS(IVMl2 + V(x)lulz)dx](—Au + V() + Ax)pu = f(x,u), x € R?,

(L4)
~A¢ = A(x)u?, x € R®,

where a > 0, b > 0, and 4 > 0. Indeed, they obtained infinitely many solutions of (1.4) by using the symmetric mountain pass

theorem established by Kajikiya in Ref. 22.

On the other hand, Zhang et al. in Ref. 48 considered the following fractional Schrédinger-Poisson system:

(-Ay'u+A¢u=g(u) in R?,
(-A)g = a? inR3,

where 2 > 0 and g satisfies subcritical or critical growth conditions. By using a perturbation approach, the authors in Ref. 48
obtained the existence of positive solutions for small 2 and studied the asymptotic of solutions for 2 — 0*. In Ref. 40, Teng studied
the following fractional Schrédinger-Poisson system:

{ (~APu+V(Xu+ou = pulu+ u>2u in R3, (15)

(-A)'p =u? in R3,

where u > 0 is a parameter, 1 < q < 2;-1, and 2s + 4t > 3. In that paper, when y is large enough, the existence of a nontrivial ground
state solution was obtained by using the method of Pohozaev-Nehari manifold and the arguments of Brézis-Nirenberg, the
monotonic trick and global compactness Lemma. However, only the existence of solutions in the above papers was investigated.
In Ref. 43, Wei studied the following fractional Schrodinger-Maxwell equations:

{ (~APu+V(xu+ou = f(x,u) in R?, (1.6)

(-Ay ¢ = Keu? in R®,

where K; is a positive constant only depending on s. Consequently, with the help of the fountain theorem, the existence of
infinitely many (but possibly sign changing) solutions under suitable assumptions on the nonlinearity term was obtained. We
refer the interested reader to Refs. 14 and 36 for more recent results about the fractional Schrédinger-Poisson system. In Ref. 44,
Xiang and Wang first considered the following fractional Schrédinger-Poisson-Kirchhoff system:

M{{u+ [, VenuPs[-ayus Vi + sp@nulc
R

= Ah(x)[ulP2u+ [u-2u in R?,

(-A)g = p(x)|ul®c in R3,

where [u]; is the Gagliardo norm of u and M satisfies (M;), (Mz), and the following hypothesis: there exists mg > 0 such that M(z)
> mon?~1 for all 7 € [0, 1]. Concerning the multiplicity of solutions, the authors in Ref. 44 just considered the existence of two
non-negative solutions for the above system by the mountain pass theorem and the Ekeland variational principle. By utilizing
the minimax argument, Ambrosio in Ref. 3 obtained the existence of solutions for the fractional Kirchhoff-Schrédinger-Poisson
system with Berestycki-Lions type nonlinearities.

In the scalar case, we just collect some recent advances related to our problems and methods in the literature. By employing
the symmetric mountain pass theorem, Molica Bisci?® obtained the existence of infinitely many solutions for the fractional Lapla-
cian problem with zero boundary condition. In Ref. 45, Xiang et al. used the fountain theorem to study the existence of infinitely
many solutions for subcritical Kirchhoff type equations involving the fractional Laplacian with homogeneous Dirichlet boundary
conditions. See also Ref. 11 for some related results obtained by the fountain theorem. The existence of infinitely many solutions
is still proved in Refs. 10, 24, 27 and 33 by using Krasnoselskii’s genus theory under degenerate frameworks. Moreover, to get
infinitely many solutions, Krasnoselskii's genus theory is used in Ref. 19 for a critical Kirchhoff type fractional problem but just
on the non-degenerate case. In Ref. 42, applying Kajikiya's new version of the symmetric mountain pass lemma, the existence of
infinitely many solutions for a critical Kirchhoff type fractional equation was proved under a non-degenerate situation. Finally,
the symmetric mountain pass theorem was applied to study a fractional Schrédinger-Kirchhoff equation in Ref. 31, a degenerate
Kirchhoff-type Schrédinger-Choquard equation in Ref. 26, and a subcritical degenerate Kirchhoff system on a bounded domain
Qin Ref. 46 (see also Refs. 30 and 49).

Motivated by the above studies, we are interested in multiplicity of solutions for (1.1) in the Kirchhoff context. In the non-
degenerate case, we will use the fountain theorem to study the existence of infinitely many solutions for problem (1.1) in the
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subcritical case. In the possibly degenerate case, we will apply the symmetric mountain pass theorem established by Kajikiya
to investigate problem (1.1) for the critical case. To the best of our knowledge, there are few results in the literature about
the fractional Kirchhoff-Schrodinger-Poisson systems like (1.1). Here we need to overcome the lack of compactness due to the
presence of critical exponents as well as the possibly degenerate nature of the Kirchhoff function.

Throughout the paper, we suppose on the potential function V that

(V) V e C(R®) satisfies inf_ps V(x) > Vo > 0, where Vy is a constant.
(Vo) meas{x € R®: —o0 < V(x) < h} < +o forall h € R.

Note that if V is coercive, a.e. limx|» V(x) = +co, then assumption (V2) is satisfied.

Moreover, we impose the following assumptions on the nonlinearity f. Let us denote F(x,t) = [3 f(x,u)du and let the real
number 6 be given in (Mp).

F) f: R?® xR — R satisfies the Carathéodory condition in the sense that f(x, -) is continuous for almost all x € R? and f(-, t) is
measurable for all t € R.
(F2) There exist non-negative functions p(x) € L> N L“’(Rs) and o(x) € L‘X’(]Rs) such that, for all (x,t) € R xR,

If(x, 1) < p(x) + o(x)[t197}, q € (26,27).

(F3) limyg-e % = oo uniformly for a.e. x € R?.
(F4) There existv >1and C > 0 such that

vFx,t) > Fix,nt) - C forall (x,t) € R*xR, 5 €[0,1],

where F(x, t) = f(x, t)t — 20F(x, t).
(Fs) There exist u > 260 and ¢ > 0 such that, for all (x,t) € R xR,

uF(x,t) < tf(x, t) + st2.

Before stating our main results, we introduce some notations. The fractional Sobolev space HS(RS) can be described by means
of the Fourier transform as follows:

HRY) = (u e 2R /3(|g|25 + IR < o,
R
which is endowed with the standard scalar product and norm
= 28 L 1\id 2 _ 2s a2
()= [ (e +vidde, ik, g, = [ (6P 4 Diarde.
In view of Plancherel’s theorem (see, for example, Ref. 17, Sec. 3), we have

(w,v) = /RS((—A)%u(—A)%v+uv)dx, ”“”isa@) :/RS(|(_A)%u|2+ [u?)dx.

The homogeneous fractional Sobolev space DS(R%) = {u e L%(R?) : Jgo 1€1% 17 dé < oo} is the completion of Cg"(R?’) with respect

to the norm [u]?. According to Theorem 6.5 in Ref. 17, HS(R?) is continuously embedded into LP(R®) for 2 < p < 27, and for anys e
(0, 1), there exists a best constant Ss > 0 such that

/R3 I(-A)5 ul?dx
Ss = inf

ueDs(R*)\(0} ( ul dx)Z/ZZ
R3

The natural solution space for problem (1.1) is E, which is defined as

(1.7)

E= {u e B R : lullg = (/Rg(|(—A)%u|2 +V(x)|u|2)dx)Z < oo}.

In the subcritical case, we will apply the fountain theorem to study the existence of infinitely many solutions for problem
(1.1). As a consequence, we obtain the following results.
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Theorem 1.1. Lets,t € (0, 1) with s > 3 /4. Assume that (Vy) and (Vz), (M1)-(Ms), and (F1)-(F4) hold. If f(x, —t) = —f(x, t) holds for all
(x,t) € R* xR, then for any A > 0, problem (1.1) has a sequence of nontrivial weak solutions {un }, C E such that I;(uy) — o asn — co.

Theorem 1.2. Lets, t € (0, 1) with s > 3/4. Assume that (V1) and (V3), (M;) and (Mz), and (F1)-(Fs), (Fs) hold. If f(x, -t) = —f(x, t)
holds for all (x,t) € RS xR, then for any A > 0, problem (1.1) has a sequence of nontrivial weak solutions {u, }n c E such that I;(uy) — oo
asn — .

Remark 1.1. The hypothesis (F4) without the constant C, which was proposed by Jeanjean in Ref. 21, is slightly stronger than
(F4). Moreover, the condition (F5) is much weaker than (F5) with ¢ = 0, while the latter assumption was proposed by Ambrosetti
and Rabinowiz in Ref. 2.

Next, we consider the critical case in the possibly degenerate Kirchhoff setting. More precisely, we consider a special case
Af(x, u) = A(x) [u[P~?u + [u|>~2u, that is,

M([U3)(~A)u + V(x)u + p(u = Ah(x)[ulP2u+ [u>2u  inR>

1.8
(~A) p(x) = u? in R, (8)

where 2} = 6/(3 - 2s)and 1 < p < 2. Now we are in a position to state the corresponding result as follows.

Theorem 1.3. Lets, t € (0, 1) with s > 3/4. Supposed that (V1) and (Vo) and (M;), (Mz) hold. Then there exists 1y > 0 such that if 0
< A < Ay, problem (1.8) has a sequence of solutions {un}n C E with I1(un) < 0, I1(un) = 0, and limy Seoun — 0.

Remark 1.2. As far as we know, Theorems 1.1-1.3 are new even in the Laplacian case. Although the methods adopted in this
article are used before, we need to study carefully some properties of the term ¢(x)u and the effect of the (degenerate) Kirchhoff
term.

It is natural to ask the following question: what about the existence of infinitely many solutions for problem (1.8) if 2 < p < 25?
It is still open to be solved in the future.

The paper is organized as follows. In Sec. II, we introduce some notations and preliminaries and give the variational formu-
lation for problem (L1). In Sec. I1I, we prove Theorems 1.1 and 1.2 in the subcritical case by using the fountain theorem under the
Cerami condition. In Sec. IV, we will apply the symmetric mountain pass lemma established by Kajikiya to prove Theorem 1.3 in
the critical case.

Il. PRELIMINARIES AND VARIATIONAL SETTING

In the following, we outline the variational framework for problem (1.1) and investigate some properties of the nonlocal term
¢y appearing in problem (1.1).

It is well known that problem (1.1) can be reduced to a single equation with a nonlocal term. Since s, t € (0, 1) satisfy 2t + 4s > 3,

there holds 52; < 78 and thus HY(R%) < L#% (R®). For all u € H{(R®), let us define the linear functional L, by

Ly(v) = /3 u?vdx, Yo e DY(RY).
R

Then, from the Holder inequality and (1.7), there exist Cj, C2 > 0 such that

3+2t

o)l < (/R3 |u(x)2|%dx)7(/w lv(X)I%dx)%

1 2.1
< iS¢ U, o[0Tt = Collul, o T0
Hence, from the Lax-Milgram theorem, for every u € HY(R?), there exists a unique ¢, € D{(R®) such that
/ w?vdx = / (~A)2 gt - (-A)2vdx (2.2)
R R®
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3 . . .
for any v € DY(R”), that is, ¢}, is a weak solution of

(-A) gt =u? in R

and the representation formula

u*(y) 1
to_ _ 2 3
¢u_CI/R3 |x—y|3‘2tdy_ct D xu, VYxeR (2.3)
holds, which is called the t-Riesz potential, where
_ T(3-2t)
Ce= 73222 (1)’

Then, ¢!, > 0 for all u # 0. Moreover, by (2.1) and (2.2) and the Sobolev inequality, there exist C3, C4, C5 > 0 such that

and

[piJe < Callwly oy 00 ll2 oy < Caloie (24)
1
L L oy en)xdy = [, et < Colutd o 25)

Substituting ¢}, in problem (1.1), we get the following fractional Schrédinger equation:

M([ul) (=AY u + V(x)u + ¢l (u = Af(x,u) in R (2.6)

Obviously, solutions of problem (2.6) can be obtained by looking for critical points of the functional I : HS(R?’) — R defined by

Li(u) = %M([u]g) + /]R3 V() lul?dx + }1 /Rs Luldx - /l/]R3 F(x, w)dx.

In addition, it is standard to show that (2.4) and (2.5) imply that I, is a well-defined C! functional, and for all v € HS(RS), we get

I (u),v) = /]Rs (M[u]2)(=A) 2 u(-A)3 v + V(x)uv)dx + /R3 ptuvdx — /l/Rsf(x, ujvdx.

Hence, ifu € HS(R?’) is a critical point of I, then the pair (u, ¢%), with ¢f as in (2.3), is a (weak) solution of problem (1.1).

Let us define the operator @ : H{(R®) - DY(R?) as follows: ®[u] = ¢L. In the next lemma, we summarize some properties of @,

which is useful for the study of our problem. The proof follows the same lines of Refs. 40, 41, and 48.

)
)
®3)
)
©)

Lemma 2.1. Foranyu € Ht(]RB), we have that

@ is continuous;

@ maps bounded sets into bounded sets;

if up — win H(R?), then ®[u,] — ®[u] in DY(R?);
O[9u] = 6°0[u] for all 6 € R.

if Uy — win E and u, — win L(R®) for 2 < r < 27, then

/ , Bu, (XJunvdx — / , Su(xjuvdx forall v e E
R R

and

/R , Pl (Jupdx — /R , PhouPdx.

Since V(x) satisfies the conditions (V;) and (V2), we can recall the following continuous or compact embedding theorem in

Ref. 32, Lemma 1.

Lemma 2.2. Let 0 <s < 1with s < N/2. Suppose that (V;) and (Vz) hold. If r € [2,2%], then the embeddings

E < D¥(R®) = L'(R?)

J. Math. Phys. 60, 011506 (2019); doi: 10.1063/1.5019677 60, 011506-6
Published under license by AIP Publishing


https://scitation.org/journal/jmp

Journal of . . .
Mathematical Physics ARTICLE scitation.org/journal/jmp

are continuous with [u]s < Cljullg for all u € E, where C is a generic constant. In particular, for r € [2, 2§], there exists a constant C; > 0
such that ”u”LT(R3) < Crllullg for allu € E. If v € [2,2;), then the embedding

E oo L(RY)
is compact.

lll. THE SUBCRITICAL CASE

Now, we prove that the functional I, satisfies the Cerami condition [(C).-condition for short], i.e., for ¢ € R, any sequence
{un}n C E such that I1(un) — c and ||/, (un)l (1+ llunllg) — 0 as n — oo has a convergent subsequence. Here, E’ is a dual space of E.
This plays a key role in obtaining the existence of nontrivial weak solutions for the given problem.

Lemma 3.1. Lets, t € (0, 1) satisfy 2t + 4s > 3. Assume that (M;)-(Ms), (V1) and (Vz), and (F;)—(F4) hold. Then the functional I,
satisfies the (C).-condition for any A > 0.

Proof. Forc € R, let {uy}, be a (C).-sequence in E. This implies that
¢ = Ly(un) +on(1) and (La(un), un) = on(1), 3.1)

where oy(l) - 0 as n — . If {u,}, is bounded in E, it follows from the proceeding as in the proof of Lemma 6 in Ref. 32 that
{un }n converges strongly to u in E. Hence, it suffices to verify that the sequence {uy }, is bounded in E. We argue by contradiction.
Suppose that the sequence {uy}, is unbounded in E. We may assume that

unlle > 1 and [lunllg — o0, as n — oo (3.2)

Define a sequence {vy}n by vy = ﬁ Then it is obvious that {v,}, c E and |lv,|lg = 1. Hence, up to a subsequence, still denoted

by {vn}n, by Lemma 2.2, we have that as n — oo,
vp — v InE,
vy > v aein R3 (3.3)
vy —> v in LT(RS) for2 <r<2;.

According to (3.1), it is easy to see that

¢ = Li(un) +on(1)

- %[M([W]E)Jf‘/ﬂ{a V(x)lunlzdx] + 3—1 /JR3 ¢ﬂnu%dx—/l/Ra F(x, Un)dx + on(1).

Since ||uy |lg = o as n — oo, by (M;) and (My), we assert that

/R Rl un)dx = %[/\/l([un]gh /R i V(x)lunlzdx] vk /R ot uddx — § +0n(1)

2 2
> ML /R V() [2dx — & + 0y(1) (3.4)
> el jullf —  + on()
— 00

asn — oo. Hence by (3.4), we get

o<1 . IF(x, un)l
< — < lim sup 5 5
22 R® noco M([un]g) + f]R3 V(x)lunlzdx +3 fRs ¢fmundx

dx. (3.5)

The assumption (F3) implies that there exists ty > 1 such that F(x, t) > [t|?¢ for all x € R? and [t| > to. From assumptions (F;) and
(F2), we have that there exists a positive constant C such that |F(x, t)| > C for all (x,t) € R® x [-to, to]. Therefore we can choose a
real number Cy such that F(x, t) > C for all (x,t) € R3 x R, and hence
F(x,un) — Co 50
M([unl2) + fo V) lun [2dx + 3 fo ¢l uddx

(3.6)
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forallx € R3. SetQ = {x € R3: v(x) # 0}. By (3.3), we know that |uy(x)| = [vn(x)| - llunllg = o as n — o for all x € Q. So it follows
from assumptions (M), (M2), (F3), (2.5), (3.2), and (3.4) that for all x € Q, we have that

lim )

oo M([unB)y+fps VO)lun 2dx+ ] fo3 68, ubdx

> lim M(nuunué”+fR§%(ljc")\)unlzdx+%H“ﬂ“‘é

> B oo v
= i, s T fon

=00,

|2€

where we use the fact that M([u,]?) < M(|lun ||§) < M) |lun ||§9 , which is easily deduced from assumptions (M;) and (M2). Hence
we get that meas(Q) = 0. Indeed, if meas(Q2) # 0, according to (2.5), (3.4)-(3.7), and Fatou’s lemma, we deduce that

1 i s Jz3 F(x,un)dx

1 = liminf - e T Feuareon

T ng F(x,un)dx

= W I e P s Ve P ] s oL

P F(x,un)-Co
2 lim inf ) TOMQunB) g VCINunPd)+ 3T dx

I F(x,un)—-Co
> 1 =
> o s Vo P Tt 0% =

(3.8)

which is a contradiction. Thus, v(x) = O for almost all x € R®. Furthermore, by (3.3), we get for 2 < r < 2§,

vy, — 0in LT(RS) and vp(x) > 0 a.e.in R® as n — c. (3.9

As in Ref. 21, we choose a sequence {t,}n c [0,1] such that I;(tpu,) = maxtefo gl a(tuy). For any positive integer m, we can choose
7 = V2m such that 7 |ju, ||E1 € (0,1) as n is large enough. Since v, — 0 in LT(RS) and (Fy) by the continuity of the Nemiskii operator,
we know that F(-, 7v,) — 0 in LI(R?), which implies that

lim F(x,7vn)dx = 0. (3.10)
n—oo R3
Hence, for large enough n, it follows from (3.10) and (M;) that

Li(taun) > I,l(rllunllglun) =I,(rvn) = min{mgp, 1ym — /RS F(x, 7o,)dx,

from which we deduce that I (t,un) — +c0 as n — co. But I,(0) = 0, L1 (un) — ¢, so t, € (0, 1) and

d
(La(tathn), tatin) = tna‘tztnla(tun) - 0.

Now using (F4) and (M3), we get

%I,[(tnun)

% [Ll(tnun) - %(IIA (tnun), tn”n)] +on(1)
MtunF)+ (5= 55) [, Veoru P
+(?11 - %) 3 %%(u”)zdx * R® 20 %, t"u")dx] o)

1-4) /R3 V(%) |2dx

IA
-
—_—
g

IA
<=
—

[\
:b"‘
EE
I
3
[ S—)
)
-
+
—_

< Li(un) = o5 (T (Un), Un) + 555 +0n(1) = ¢+ 555 + 0n(1).

This contradicts the fact that I;(tnun) — +o0 as n — oo. Thus, {uy Iy is bounded in E. O
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Lemma 3.2. Lets, t € (0, 1) satisfy 2t + 4s > 3. Assume that (M;) and (Mz), (V1) and (Vz), (F1)=(F3), and (Fs) hold. Then the functional
1,1 satisfies the (C).-condition for any 1 > 0.

Proof. Let {un}, be a (C).-sequence in E. As in the proof of Lemma 3.1, we only need to prove that {u,}, is bounded in E.

Suppose that |[uy ||z — o0 asn — oo. Let vy = ”u T Then |lvy|lg = 1and lonll, ®) < Cyllvpllg = Gy for 2 < r < 2% by the continuous

embedding in Lemma 2.2. Passing to a subsequence, again by Lemma 2.2, we may assume that v, — vinE,v, — v a.e.in R?, v, —
v in U(Rg) for 2 < r < 2. By the assumptions (M;), (Mz), and (Fs), one has

¢+ 12 Liun) = (I (Un), Un)
= M)+ 4 [ Vetdxd [ o ubdx-a [ e w)ds

M) - L / V@ dr -4 [ ofubder 2 [ unuds

(3.11)
> (= MR + (5= 1) [, Veoualax (5= 1) [ ot e
/ (%, un)un — F(x, un)dx
> (35 — &) min{1,mo }lfunllf - Ag/Rg lup [2dx,
which implies that
2520 _ 1520 2
1< m hm SUP ||Un|| RY) = m ||U||L2(R3)- (3.12)

Hence, it follows from (3.12) that v # 0. From the same argument as that in Lemma 3.1, we can check the relations (3.4), (3.6), and
(3.7) and hence yield the relation (3.8). Therefore we arrive at a contradiction. Thus, {uy,}, is bounded in E.

mi

Next, using the oddity on f and applying the fountain theorem of Bartsch,> we demonstrate the existence of infinitely many
weak solutions for problem (1.1). To do this, let X be a separable and reflexive Banach space. It is well known that there are
{entn € X and {f;;}n € X* such that

X =spanfe,:n=12,---}, X"=span{f;:in=12--},

and ;
. 1 if i=j
<fi’ef>:{0 if i;&;'

Let us denote X, = spanfe, }, Yy = @ﬁ:l Xpand Z, = @;’;k Xn. Then we can state the fountain theorem under the Cerami condition
as follows.

Proposition 3.1. Let X be a real reflexive Banach space, I € C}(X, R) satisfies the (C).-condition for any ¢ > 0, and I is even. If for
each sufficiently large k € N, there exist pj, > 1, > 0 such that the following conditions hold:

M) ap =max{I(w): u € Yy, llullx = pp} < 0 and
(2) b =inf{l(w): u € Z, llullx =g} = 0 as k — oo,

then the functional I has an unbounded sequence of critical values, i.e., there exists a sequence {uy }n C X such that I'(u,) = 0 and I(u,)
— 00 dSNn — oo,

Proof of Theorem 1.1. Obviously, I, is an even functional and satisfies the (C).-condition by Lemma 3.1. Note that E is
a separable and reflexive Banach space. According to Proposition 3.1 with X = E, and the same notation about Y, and
Z, (see Ref. 33, Appendix), it suffices to show that there exist p, > 1, > 0 such that (1) and (2) in Proposition 3.1 are
satisfied.

Denote
ap = sup (/ |u(x)|qu) J1<q<2;.
R?

ueZp;llullg=1
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Then we have a; — 0 as k — co. In fact, suppose to the contrary that there exist ¢p > 0 and the sequence {uy};, in Z; such that
lIugllg =1, /3 [u(x)|1dx > €
R

for all k > kg. Since the sequence {uy}, is bounded in E, there exists u € E such that u, — uin E as k - o and

fw = ,!ngi*’uw =0
fori=1,2,.... Hence we get u = 0 since f; # 0. Then we obtain

1 1 1
0< = slim/ — |y, xlqu:/ —Ju(x)|%dx = 0,
g =im f.g (%) e ()

which is a contradiction.

For any u € Zy, it follows from condition (M), (F2), and the Holder inequality that
Ly(u) = M([u]?)+ %/ V() [ul?dx + %/ pturdx - /l/ F(x, u)dx
R® R? R?
> IM(u2)+ 3 /3 V() ul2dx + 1 /3 pLudx — /1/3 lo(x)!luldx —/1/3 % [u(x)|1dx
R R R R
> JMQ@E)+ [ Veomider d [ ofurs
— Aol sy Ul 2 @3y ~ %IIO’(X)IILM(RS) /RS [u(x)|1dx

> %M([u]§)+%/ V(x)lulzdx+%/ ¢;u2dx—AC2||u||E—4C3/ [u(x)|9dx
R3 R? q R?

1 ; m 2
3 min{1, B b julZ - ACz ullg - ACsayl ullf .

(3.13)

I\

Set 1, = (44C3a;!/ min{1,mo/0})"/@9. Since 26 < q and aj, — 0 as k — oo, we assert that 1, — co as k — co. Hence, if u € Z, and
[lullg = 1, then we deduce that
min{1, % §jull - ACsay! [l - AC2|ullg
min{l, %}rﬁ —ACor, = 00 as k — oo,
which implies (2) of Proposition 3.1.
Assume that condition (1) in Proposition 3.1 does not hold for some k. Then there exists a sequence {uy }, in Y;, such that

lunllg > 1 and flupllg = o0 as n — co and I1(un) > 0. (3.14)

Let v, = ml‘T"HE Then |lvyllg = 1. Since dimY}, < o, there exists v € Y;\{0} such that, up to a subsequence,

lvn — vllg = 0 and vp(x) — v(x) for almost all x € R3asn - oo

Forx e Q:={x e R*: v(x) # 0}, we get [un(x)| — o as n — . Hence it follows from (M), (M), and (F3) that

lim _ F(o,un) _

oo M([unJ2)* [z V) lunPdx+ 3 fi3 6f, uldx
. F(x,un)

> —_—

= VILLTQ (MOD)lunlIZ+ 5 llunllf 315
. (3.15)

> lim — Fetn)

= n—oo (MO Iunllz+5 lunllz”

- lim 1 B 120 = oo,

noeo (MD*+3/2)  Junl?®

Since meas(Q) # 0, we get

: F(x,un)
A, /Q B s VP dr] o o, s 0% = (3.16)
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Therefore, we have
La(un) = 3M([unl?) + 3 /3 V() fun [2dx + 1 /3 ¢, uidx - /l/ F(x, un)dx
R R Q

< MRy fs VEunPderd fos o, uidx
. .

_ Flx,un)
[1 24 o M([unl)tfpa VOOIuPdxt 5 fo3 of, uidx dx]

— —00 as N — o,

which contradicts (3.14). This completes the proof. |

Proof of Theorem 1.2. By Lemma 3.2 and Proposition 3.1, although we replace (F4) with (Fs) in the assumption of Theorem 1.2,
we also get that problem (1.1) possesses an unbounded sequence of nontrivial weak solutions {uy }, in E such that I(up) - o asn
— 00, O

IV. THE CRITICAL CASE

In order to find nontrivial critical points of I, in the case that Af(x,u) = Ah(x)[ulP~?u + [u|>-2u,1 < p < 2, we will apply the
symmetric mountain pass lemma due to Kajikiya to prove Theorem 1.3. Let X be a Banach space and X be the class of subsets of
X\{0} which are closed and symmetric with respect to the origin. For A € X, we define the genus y(A) by

Y(A) =infin e N: 3¢ € C(A,R™\ (0)), 6(2) = ~6(-2)},
Ns(A) = {x € X: dist(x —A) < 6}, here dist(x — A) = inf{|lx - yllx : y € A}.
If there is no mapping as above for any n € N, then y(A) = +c0. Let =, denote the family of closed symmetric subsets A of X such

that O ¢ A and y(A) > n. We summarize the property of genus, which will be used in the proof of Theorem 1.3. We refer the readers
to Ref. 34 for the proof of the next lemma.

Proposition 4.1. Let A and B be closed symmetric subsets of X which do not contain the origin. Then the following conditions
hold.

(1) If there exists an odd continuous mapping from A to B, then y(A) < y(B).
(2) If there is an odd homeomorphism from A to B, then y(A) = y(B).

(3) If ¥(B) < oo, then y(A\ B) > y(A) - ¥(B).
(4) Then n-dimensional sphere S" has a genus of n +1by the Borsuk-Ulam Theorem.
(5) If Ais compact, theny(A) < co and there exists 6 > 0 such that Ns(A) c  and y(Ns(A)) = y(A), with Ns(A) = {x € X : dist(x,A) < §}.

The following version of the symmetric mountain-pass lemma was proposed by Kajikiya.??

Proposition 4.2. Let E be an infinite-dimensional space and J € C'(E, R) and suppose the following conditions hold.

(T1)  J(u) is even, bounded from below, J(0) = 0 and J(u) satisfies the local Palais-Smale condition, i.e., for some ¢ > 0, in the case
when every sequence {un}n in E satisfying r{im Jup)=c<cand 7{im 17 (un)llp = 0 has a convergent subsequence.

(J2) Foreachn € N, there exists an A, € =, such that sup J(u) < 0.
U€eA,

Then either (i) or (ii) below holds.

(i) There exists a sequence {uy }n such that J'(uy) = 0, J(un) < 0, and {uy }n converges to zero.
(it) There exist two sequences {un}n and {vn }n such that J'(up) = 0, J(u,) = 0, u, # 0, Yllimufn =0;J(vn) = 0, J(vn) <O, yllimJ(vn) =0;
and {vy }n converges to a non-zero limit.

Remark 4.1. In view of Proposition 4.2, we know that a sequence {u,}n of critical points satisfies Iy(un) < 0, un # 0, and
limy —eoUn = 0.

In order to get infinitely many solutions, we need to verify the compact condition.
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Lemma4.l Let O <s t <1, s > 3/4 Assume that (V1) and (V2), (My), (Mz), and Af(x,u) = Ah(x)|uP~2u + [u|%-2u hold. h(x) €
%
L%~ (RB),l < p < 2. Then there exists 1p > 0 such that the functional 1, satisfies the (PS).-condition for any A € (0, o).

Proof. Forc € R, fix any sequence {uy }, which is a (PS).-sequence in E, that is,

Ii(up) = ¢ and I'j(up) = 0 as n — co. 4.1)

In the following, we divide the proof into two parts.

e Case inf,.y |lunllg = d > 0. We first show that {uy }, is bounded. By (M;), and the assumptions that 6 < 2;/2and 1< p < 2,
we get
cton(Dliunlle > Li(un) = 5 (I (n), tn)

z(ﬁ—%) )t + (3 %) [, Vet
1 2 1 1 (42)
Z /¢w” dx - /15—2— / h(x) |un [Pdx

> (g - zi) min i, 1 fun I = A( 3 = & ) RGO,y o, Tun 1SS

This yields at once that {uy }, is bounded in E.

Next we show that I, satisfies the (PS) condition. Since {uy}, is bounded in E, then by Lemma 2.1, there exist u; € E and a
subsequence, still denoted by {un }n, such that

Uy — uy weakly in E, |lupllg — aa,
up — u,y weakly in LZ(R?),

Bu, — B, weakly in LZ%(R?),
un — uy a.e.in R°.

Thus, using Lemma 2.2, (2.4), and (2.5), we have

/R (@, un = B, ua)(un — wa)dx

1
< ([0t = ot uapax) ([ (1un- uaIZdX)
1 1
S[ / (|¢%um|2+|¢mw|2)dxr(/ (Iun—wlzdoc)2 4.3)
2 3
< €108, 1o un 1, g + 194 ey a2 g ) =10 s

< O lun (R + ||u/1||4Hl(R3)) lun —uanLZ(Rs) -0
asn — oo,

2
Since h € LZT*P(RS), for any € > 0, there exists R, > 0 such that

25
/ T (dx < e,
R”\Bg,

Also, for any measurable subset U c Bg_, we have

2 3 % e
(/ ) < c/ R (dx)
6] U

which implies that {h(x)|u, |P}» is equi-integrable in Bg,. By un, — u, a.e. in R?, we have h(x)un? — h(x)[u.| a.e. in R*. Then the
Vitali convergence theorem yields

/U R [unPdx < ( /U h%(x)dx)zz

/ n(X)| fun [P = [u [P1dx = 0.
Bgr,

Note that
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[ e — P
R
< / h() [un [P = |ua P|dx + /3 h(x) [un [P = Jua P 1dx
BRx R Z\*B,l;
< / ) [un [P — [ua P |dx + Ce % .
Bg,
Letting n — o and using the arbitrary of &, one has
lim / h(x)||un|P = lua|P|dx = 0. 4.4)
n—oo R3
This together with the following Brézis-Lieb lemma
lim / (lun P = Jun —u|P)dx :/ [ua [Pdx 4.5)
n—oo RS RS
yields that

lim / hx)|up —ualPdx = 0. (4.6)
n—oo ]RS

Note that for any measurable subset U c RR?, we have
2;—1
25-2 3
/ [un = unuadx < flunlly® uall z gy < Cliwallz g,
U S
which implies that {uy|%2unu, }n is equi-integrable in R®. Observe that

[ 1% 2upuy — Jug|® ace. in R3,

then the Vitali convergence theorem yields that as n — oo,

2:-2 2% . 1 3
[Un =" Upta — Jua ™ in LY(R7),

that is,
/3 [un 1% ~2upu dx = /3 [ua % dox + op(1). (4.7)
R R
The weak convergence of {up}n in E gives thatasn — o
(Ua, Un —u2)E — 0. (4.8)
Since {uy}n is bounded in E, we have for any v € E
(Un, V)E = (U, V) 4.9)

asm — oo. Since [} (un) — 0 as n — oo, we have (I} (un), ua) — 0. Then by (4.3), (4.6), and (4.8), we obtain
M(a?)[u]? +/ V() ug [dx +/ o uidx - ,1/ h(x)|ua [Pdx — / [ua|%dx = 0,
RS R3 A ]RS RS
which means that (I/

)

1 1 1 A 1 .
1oa0) = sMEDEE +5 [ Vemiaxs g [ abviax-2 [ heowirax - 5 [ i

(ua),uq) = 0. Here I, is defined as follows:

for any v € E. By the Brézis-Lieb lemma, one has

lim / (un)® = Jup —ua|%)dx = / [u, |5 dx, (4.10)
n—oo RS RS
% = llun = Il + a1 +on(D). (.11)
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Since {uy }n is a (PS) sequence, we deduce from (4.3), (4.6)-(4.8), (4.10), and (4.11) that
On(l) - <I (u’n) (1//. (u/l)vu’n - u/l)E
= M([unJ3)[unls - M([unl?) /R S8 Eun(-8)3udx - M(a?) /R SR Un(=8) (un — ua)dx
+/3 V() (un, — wa)?dx + /3(¢Lﬂun — @f, Ua)(un — uy)dx
R R
-4 /]R , RO (Iun P2 — [ [P~ ua)(un — wa)dx (412)
- /Rg(lunlzg‘zu»n = w572 0) (un — wa)dx
> min{M(a?), 1} llun — ua Il - /R3 [Un —uq 15 dx + on(1).
It follows from (4.12) that
lim min{M(a3), 1} llun - w4 lI2 = lim /3 [Un — Uy |%dx. (4.13)
n—oo n—-oo R

On the other hand, it follows from Lemma 2.1 (5) that
/ &% (uidx — / S (x)yu?dx. (4.14)
R R?

Therefore, by (M2), (4.4), (4.10), (4.11), and (4.14), we have
c+on(l) = Lu(un) — 55<I, , (Wa), Ua)
> L M@ + 25 / Viu2dx - 5 M(@2) Uil + 25 /R V2 dx

- % / ¢l widx - (5 - 55) / h(x)[ua|Pdx
/ (lun = ua [ + Juq |%)dx - —/ [ua % dx + 0n(1)
R® R3
> M@ - [wal) 2 [ Voot -
_/l(l - %) /RS h(x)|u Pdx — i/ [un —uy 15 dx + (ZL — Zi) /]R3 [ua 1% dx + on(1)

+

.N»—‘

M

p

zzimin{M(aﬁ),l}Hun u/lllE —/l——— / h(x)lu, |Pdx

——/ = wa % dx+(——%)/R3 fua 2 dx + 0y (1).

Thanks to the assumption 6 < 2;/2, we obtain by (4.13)

c +on(l)

> (29 )/ (|un—u,1| 5+ Jug |2 )dx /l(— - —)/ h(x)|u |Pdx. (4.15)

Combining the Holder inequality and the Young inequality, since 1 < p < 2 < 6, we have for any € > 0

/l(%—%)/RS h(x)u, Pdx < (g)zp (-—2 ) Il E .g%nuﬂngg

25-p

23

2* -p
2, = s
Sellually: +& % ”((% - %)”h(x)ﬂzg)
25-p

Taking € = 1/(20) — 1/2; in the above inequality and putting it in (4.15), we arrive at
c+op(l) = (% - %)/}Rs [un — uq|®dx

{34

% (4.16)

= Z-p
((% - %)Anh(x)l%)

g
2o
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Thus,
1 1 5
(53] o -
2

P s
1 1\ %1 1 %-»
“fagz) (G s ) oo

2; -p

which together with 1 < p < 2 and ¢ < 0 yields that

*
2
i

— 2 v X%
11 2 1 1) Epf(1_ 1 e
(E‘i)/Rs n — w2l < (55 - %) ((5‘%)”’1(’6)”2;) A%

2;‘ -p

Thus, we conclude that

lim li —uy|%dx = 0. 4.1
lim lim |, [un —up[*dx = 0 (4.17)
Then by (4.13), we get
lim lim {jun = walle = 0. (4.18)

This yields that u, — u, strongly in E as n — c and 1 — 0, i.e,, there exists 19 > 0 such that the functional I, satisfies the
(PS)c-condition for any A € (0, 1p).

e Case inf N llunllg = d > 0. If 0 is an isolated point for the real sequence {||un||g}n, then there is a subsequence {uy, };, such
that infi,cy llun, Il = d > 0, and we can proceed as before. Otherwise, 0 is an accumulation point of the sequence {||ux[|g }n, and so
there exists a subsequence {uy, } of {un}, such that u,, — 0 strongly in E as n — oco.

In conclusion, I, satisfies the (PS).-condition for any 2 € (0, 1) in E. i

We also need some technical lemmas. Let I,(u) be the functional defined as before, 1 < p < 2. Then, one has
Lw =3 M(up)+3; /IR ,V)lufPdx + § /]R , L) ul*dx

_1 25dyx — 4 p
% o [ul=dx — 5 /R3 h(x)|u|Pdx

%

v 2
> MO + 4 [, Ve = (STII) * = ihe 2 il

2% * )4
1 . 2 1 o= 2% -5
2 55 min{k, THullg - S llully - %IIh(X)II;;ZSS 2l
=

2 2%
> Cllullf - Callully — ACsullb.

Define
g(t) = Cit? — Cot® — ACstP.

Then, since 1 < p < 2, it is easy to see that there exists 1* > 0 so small that if 0 < 2 < A%, there exists 0 < ty < t; such that g(t) < 0
for0 <t<tp;g(t)>0forty <t<ty;and g(t) < 0 fort > t;.

Clearly, g(to) = 0 = g(t1). Following the same idea as in Ref. 4, we consider the truncated functional
Lw =3 M(u)+3 / V() lulPdx + § / L) lul?dx
R® R®
—zi;lp(u)/]RS [u|%dx - % /]R3 h(x)|u[Pdx,

where y(u) = 7(llullg) and 7 : R" - [0,1] is a non-increasing C* function such that 7(t) = 1if t < ty and 7(t) = 0 if t > t;. Obviously,
I1(u) is even. Thus, it follows from Lemma 4.1, and we can get the following result.

Lemma4.2. Letc<0Oand1<p < 2. Then

(1) T, eClandT, is bounded from below.

() If 1a(u) <0, then [lullg < to and [(w) = Liw).
(3) There exists 2* such that if 0 < A < A*, then I, satisfies (PS)c.
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Proof. Obviously, (1) and (2) are immediate. To prove (3), observe that all (PS). sequences for I; with ¢ < 0 must be bounded,
similar to the proof of Lemma 4.1, there exists a strong convergent subsequence in E. i

Remark 4.2. Denote K. = {u € E; T () = 0,Ta(u) = c}. If A are as in (3) above, then it follows from (PS). that Kc(c < 0) is compact.

Lemma 4.3. Denote Ti ={u e E;T’/l(u) 0,1 2(u) < c}. Given n € N, there exists e, < 0 such that
i) =y((u e E: Th(u) < &) 2 n.
Proof. Let X, be an n-dimensional subspace of E. For any u € Xy, u # 0, write u = ryw withw € Xy, |lw|lg = 1and thenr, = ||ullg.

From the assumptions h(x), it is easy to see that, for every w € X, with |w||g =1, there exists d, > 0 such that fps h(x)/w|Pdx > dy.
Thus for 0 < ry, < to, by the continuity of M, we have

T,w) =IM(w)+ / V(x)w|?dx + 1 / #L(x)Iw]>dx
—zi:z//(w)/]RS Jw|%dx — —/ h(x)|w|Pdx
< Ir2 M([w)?) + l/ V(x)lwlzdx— L% / [w|% dx——rp/ h(x)lw|Pdx
< G2 - Zirz /R3 [w(%dx — dyrh

= €.

Therefore we can choose 1, € (0, t) so small that T;(u) < e, < 0. Let

Sr, = {u € Xn: lullg = rn}. (4.19)

Then Sy, N X, c IS". Hence by Proposition 4.1,
() 2 ¥(Sr, NXn) =1

as desired. ]

According to Lemma 4.2, we denote X, = {A € Z: ¥(A) > n} and let

cn = inf sup,(u). (4.20)
€Xn yeA
Then
—o<C < <0 4.21)

because if{‘ € ¥, and I, is bounded from below.
Lemma 4.4. Let A be as in (3) of Lemma 4.2. Then all c,, [given by (4.20)] are critical values of 1, and ¢, — 0.

Proof. Since Zp.4 C Zy, it is clear that ¢, < cpa. By (4.21), we have ¢, < 0. Hence there isa ¢ < 0 such thatc, —» ¢ < 0.
Moreover, since that all ¢, are critical values of I; (see Ref. 34), we claim that ¢ = 0. If ¢ < 0, then by Remark 4.2, K; = {u €
E ¢ "W =0 ,11(u) = ¢} is compact and K; € T, then y(Kz) = ng < +oo, and there exists 6 > 0 such that y(Kz) = y(Ns(Kz)) = ng, where

( 5) = {x € X;llx - Kzll < &}. By the deformatlon lemma (see Ref 6, Theorem 3.4), there exist € > 0 (¢ + e < 0) and an odd
homeomorphism ;: E — E such that

Il o

n(5€ \ Ns(Ke)) c I5<.

Since ¢y, is increasing and converges to ¢, there exists n € N such that ¢, > € - € and cpin, < €. Choose A € Zy4p, such that
Sup,ea [2(u) < C+e€, thatis, A c I9¢. By the properties of y, we have

Y(A\Ns(Kz)) 2 ¥(A) - ¥(N5(Ke)) = n, y(7(A\Ns(Kg)) = n.
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Hence, we have n(A \ Ns(Kz)) € Z,. Consequently, sup 11(u) > ¢y > € — €, which is a contradiction; hence, ¢, — 0. i

uen(A\Ns(Kz))

Proof of Theorem 1.3. By Lemma 4.2 (2), [,(u) = I1(w) if 1;(u) < 0. Then, by Lemmas 4.2-4.4, one can see that all the assumptions
of the new version of symmetric mountain pass lemma proposed by Kajikiya?? are satisfied. Hence, the proof is complete. i

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referee for valuable comments and suggestions on improving the presenta-
tion of the manuscript. Wang Li was supported by the National Natural Science Foundation of China (Nos. 11561024 and 11701178).
Vicentiu D. Radulescu acknowledges the support through the Project MTM 2017-85449-P of the DGISPI (Spain). Binlin Zhang was
supported by the National Natural Science Foundation of China (No. 11871199).

REFERENCES

1G. Alberti, G. Bouchitté, and P. Seppecher, “Phase transition with the line-tension effect,” Arch. Ration. Mech. Anal. 144, 1-46 (1998).

2A. Ambrosetti and P. Rabinowiz, “Dual variational methods in critical point theory and applications,” J. Funct. Anal. 14, 349-381 (1973).

3V. Ambrosio, “An existence result for a fractional Kirchhoff-Schrodinger-Poisson system,” Z. Angew. Math. Phys. 69(2), 30 (2018).

#G. Autuori and P. Pucci, “Existence of entire solutions for a class of quasilinear elliptic equations,” Nonlinear Differ. Equations Appl. 20, 977-1009 (2013).

5T. Bartsch, “Infinitely many solutions of a symmetric Dirichlet problem,” Nonlinear Anal. 20, 1205-1216 (1993).

V. Benci, “On critical points theory for indefinite functionals in the presence of symmetries,” Trans. Am. Math. Soc. 274, 533-572 (1982).

7V. Benci and D. Fortunato, “An eigenvalue problem for the Schrédinger-Maxwell equations,” Topol. Methods Nonlinear Anal. 11, 283-293 (1998).

8V. Benci and D. Fortunato, “Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations,” Rev. Math. Phys. 14, 409-420 (2002).
°]. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics (Cambridge University Press, Cambridge, 1996), Vol. 121.

10Z. Binlin, A. Fiscella, and S. Liang, “Infinitely many solutions for critical degenerate Kirchhoff type equations involving the fractional p-Laplacian,” Appl.
Math. Optim. (published online, 2017).

117Z. Binlin, G. Molica Bisci, and R. Servadei, “Superlinear nonlocal fractional problems with infinitely many solutions,” Nonlinearity 28, 2247-2264 (2015).

121, Caffarelli, J.-M. Roquejoffre, and Y. Sire, “Variational problems for free boundaries for the fractional Laplacian,” J. Eur. Math. Soc. 12, 1151-1179 (2010).
131, Caffarelli, S. Salsa, and L. Silvestre, “Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian,”
[nvent. Math. 171, 425-461 (2008).

14G. Che, H. Chen, H. Shi, and Z. Wang, “Existence of nontrivial solutions for fractional Schrédinger-Poisson system with sign-changing potentials,” Math.
Methods Appl. Sci. 41, 5050-5064 (2018).

158.J. Chen and C.-L. Tang, “High energy solutions for the superlinear Schrodinger-Maxwell equations,” Nonlinear Anal. 71, 4927-4934 (2009).

T6R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall /CRC Financial Mathematics Series (Chapman & Hall /CRC, Boca Raton,
2004).

17E. Di Nezza, G. Palatucci, and E. Valdinoci, “Hitchhiker’s guide to the fractional Sobolev spaces,” Bull. Sci. Math. 136, 521-573 (2012).

18p. D'Ancona and S. Spagnolo, “Global solvability for the degenerate Kirchhoff equation with real analytic data,” Invent. Math. 108, 247-262 (1992).

19A. Fiscella, “Infinitely many solutions for a critical Kirchhoff type problem involving a fractional operator,” Differ. Integr. Equations 29, 513-530 (2016).

204, Fiscella and E. Valdinoci, “A critical Kirchhoff type problem involving a nonlocal operator,” Nonlinear Anal. 94, 156-170 (2014).

211, Jeanjean, “On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on RN,” Proc. - R. Soc. Edinburgh
129, 787-809 (1999).

22R. Kajikiya, “A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations,” J. Funct. Anal. 225, 352-370
(2005).

233. Kurihura, “Large-amplitude quasi-solitons in superfluid films,” J. Phys. Soc. Jpn. 50, 3262-3267 (1981).

24Q. Li, H. Su, and L. Wei, “Existence of infinitely many large solutions for the nonlinear Schrédinger-Maxwell equations,” Nonlinear Anal. 72, 4264-4270
(2010).

25D. Lij, “A note on Kirchhoff-type equations with Hartree-type nonlinearities,” Nonlinear Anal. 99, 35-48 (2014).

263, Liang and V. Radulescu, “Infinitely many solutions for degenerate Kirchhoff-type Schrodinger-Choquard equations,” Electron. J. Differ. Equations 2017,
1-17.

27X. Minggqi, G. Molica Bisci, G. Tian, and B. Zhang, “Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian,”
Nonlinearity 29, 357-374 (2016).

28G. Molica Bisci, “Sequences of weak solutions for fractional equations,” Math. Res. Lett. 21, 241-253 (2014).

29G. Molica Bisci, V. Radulescu, and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications
(Cambridge University Press, Cambridge, 2016), Vol. 162.

30G. Molica Bisci and D. Repovs, “Existence and localization of solutions for nonlocal fractional equations,” Asymptot. Anal. 90, 367-378 (2014).

31N. Nyamoradi and L. Zaidan, “Existence and multiplicity of solutions for fractional p-Laplacian Schrodinger-Kirchhoff type equations,” Complex Var. Elliptic
Equations 63, 346-359 (2018).

32P. Pucci, M. Xiang, and B. Zhang, “Multiple solutions for nonhomogeneous Schrédinger-Kirchhoff type equations involving the fractional p-Laplacian in
RN, ” Calculus Var. Partial Differ. Equations 54, 2785-2806 (2015).

33p. Pucci, M. Xiang, and B. Zhang, “Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations,” Adv. Nonlinear Anal. 5, 27-55 (2016).
34p. H. Rabinowitz, “Minimax methods in critical point theory with applications to differential equations,” in CBMS Regional Conference Series in Mathematics
(American Mathematical Society, Providence, RI, 1986), Vol. 65.

J. Math. Phys. 60, 011506 (2019); doi: 10.1063/1.5019677 60, 011506-17
Published under license by AIP Publishing


https://scitation.org/journal/jmp
https://doi.org/10.1007/s002050050111
https://doi.org/10.1016/0022-1236(73)90051-7
https://doi.org/10.1007/s00033-018-0921-1
https://doi.org/10.1007/s00030-012-0193-y
https://doi.org/10.1016/0362-546x(93)90151-h
https://doi.org/10.2307/1999120
https://doi.org/10.12775/tmna.1998.019
https://doi.org/10.1142/s0129055x02001168
https://doi.org/10.1007/s00245-017-9458-5
https://doi.org/10.1007/s00245-017-9458-5
https://doi.org/10.1088/0951-7715/28/7/2247
https://doi.org/10.4171/jems/226
https://doi.org/10.1007/s00222-007-0086-6
https://doi.org/10.1002/mma.4951
https://doi.org/10.1002/mma.4951
https://doi.org/10.1016/j.na.2009.03.050
https://doi.org/10.1016/j.bulsci.2011.12.004
https://doi.org/10.1007/bf02100605
https://doi.org/10.1016/j.na.2013.08.011
https://doi.org/10.1017/s0308210500013147
https://doi.org/10.1016/j.jfa.2005.04.005
https://doi.org/10.1143/jpsj.50.3262
https://doi.org/10.1016/j.na.2010.02.002
https://doi.org/10.1016/j.na.2013.12.022
https://doi.org/10.1088/0951-7715/29/2/357
https://doi.org/10.4310/mrl.2014.v21.n2.a3
https://doi.org/10.1080/17476933.2017.1310851
https://doi.org/10.1080/17476933.2017.1310851
https://doi.org/10.1007/s00526-015-0883-5
https://doi.org/10.1515/anona-2015-0102

Journal of

Mathematical Physics ARTICLE scitation.org/journal/jmp

350. Sanchez and J. Soler, “Long time dynamics of Schrodinger-Poisson-Slater systems,” J. Stat. Phys. 114, 179-204 (2004).

36L. Shen and X. Yao, “Least energy solutions for a class of fractional Schrédinger-Poisson systems,” J. Math. Phys. 59(8), 081501 (2018).

371, Silvestre, “Regularity of the obstacle problem for a fractional power of the Laplace operator,” Ph.D. thesis, The University of Texas at Austin, 2005, p. 95.
381, Silvestre, “On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion,” Adv. Math. 226, 2020-2039 (2011).
39]. Sun, “Infinitely many solutions for a class of sublinear Schrédinger-Maxwell equations,” J. Math. Anal. Appl. 390, 514-522 (2012).

40K. Teng, “Existence of ground state solutions for the nonlinear fractional Schrodinger-Poisson system with critical Sobolev exponent,” J. Differ. Equations
261, 3061-3106 (2016).

4TK. Teng and R. P. Agarwal, “Existence and concentration of positive ground state solutions for nonlinear fractional Schrédinger-Poisson system with critical
growth,” e-print arXiv:1702.05387v1.

421, Wang and B. Zhang, “Infinitely many solutions for Schrédinger-Kirchhoff type equations involving the fractional p-Laplacian and critical exponent,”
Electron. J. Differ. Equations 2016, 1-18.

437. Wei, “Existence of infinitely many solutions for the fractional Schrodinger-Maxwell equations,” e-print arXiv:1508.03088v1.

4*M. Xiang and F. Wang, “Fractional Schrédinger-Poisson-Kirchhoff type systems involving critical nonlinearities,” Nonlinear Anal. 164, 1-26 (2017).

45M. Xiang, B. Zhang, and X. Guo, “Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem,” Nonlinear Anal. 120, 299-313 (2015).
46M. Xiang, B. Zhang, and V. Radulescu, “Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian,” Nonlinearity
29, 3186-3205 (2016).

47G. Zhao, X. Zhy, and Y. Li, “Existence of infinitely many solutions to a class of Kirchhoff-Schrodinger-Poisson system,” Appl. Math. Comput. 256, 572-581
(2015).

48], Zhang, J. M. do O, and M. Squassina, “Fractional Schrédinger-Poisson systems with a general subcritical or critical nonlinearity,” Adv. Nonlinear Stud. 16,
15-30 (2016).

49X. Zhang, B. Zhang, and D. Repovs, “Existence and symmetry of solutions for critical fractional Schrodinger equations with bounded potentials,” Nonlinear
Anal. 142, 48-68 (2016).

50W. Zou, “Variant fountain theorems and their applications,” Manuscripta Math. 104, 343-358 (2001).

J. Math. Phys. 60, 011506 (2019); doi: 10.1063/1.5019677 60, 011506-18
Published under license by AIP Publishing


https://scitation.org/journal/jmp
https://doi.org/10.1023/b:joss.0000003109.97208.53
https://doi.org/10.1063/1.5047663
https://doi.org/10.1016/j.aim.2010.09.007
https://doi.org/10.1016/j.jmaa.2012.01.057
https://doi.org/10.1016/j.jde.2016.05.022
http://arxiv.org/abs/1702.05387v1
http://arxiv.org/abs/1508.03088v1
https://doi.org/10.1016/j.na.2017.07.012
https://doi.org/10.1016/j.na.2015.03.015
https://doi.org/10.1088/0951-7715/29/10/3186
https://doi.org/10.1016/j.amc.2015.01.038
https://doi.org/10.1515/ans-2015-5024
https://doi.org/10.1016/j.na.2016.04.012
https://doi.org/10.1016/j.na.2016.04.012
https://doi.org/10.1007/s002290170032

