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Abstract. In this paper we prove a perturbation result for a new type of eigenvalue problem intro-
duced by D. Motreanu and P.D. Panagiotopoulos (1998). The perturbation is made in the nonsmooth
and nonconvex term of a double eigenvalue problem on a spherlike type manifold considered in
‘Multiple solutions for a double eigenvalue hemivariational inequality on a spherelike type manifold’
(to appear inNonlinear Analysis For our aim we use some techniques related to the Lusternik-
Schnirelman theory (including Krasnoselski's genus) and results proved by J.N. Corvellec et al.
(1993), M. Degiovanni and S. Lancelotti (1995), and V.CadRlescu and P.D. Panagiotopoulos
(1998). We apply these results in the study of some problems arising in Nonsmooth Mechanics.
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1. Introduction

The mathematical theory of hemivariational inequalities and their applications in
mechanics, engineering or economics, were introduced and developed by P.D.
Panagiotopoulos [17-23]. This theory may be considered as an extension of the
theory of variational inequalities studied by G. Fichera [6], J.L. Lions and G.
Stampacchia [8]. However, Hemivariational Inequalities are much more general,
in the sense that they are not equivalent to minimum problems, but give rise to
substationarity problems.

In this paper we deal with a new type of eigenvalue problem for hemivari-
ational inequalities, called ‘double eigenvalue problems’ which were introduced
by D. Motreanu and P.D. Panagiotopoulos [9]. By M.F. Bocea, D. Motreanu and
P.D. Pangiotopoulos [1] it is proved a multiplicity result concerning the solutions
belonging to a spherelike type manifold. Our aim is to study the effect induced
by an arbitrary perturbation made in the nonsmooth and nonconvex term of the
symmetric hemivariational inequality considered in [1].
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2. The abstract framework

Let V be a real Hilbert space, with the scalar product and the associated norm
denoted by, -)y and|| - ||y, respectively. We shall suppose tHéais densely and
compactly embedded ih”(; RM) for somep > 2, whereN > 1 andQ C

R™, m > 1, is a smooth, bounded domain. Throughout in this paper, we shall
denote by(-, -)y and (-, -) the duality products ofv andR", respectively. Let us
denote byC,(2) the constant of the (continuous, in particular) embedding
L?(22; RY) which means that

lvllLr < Cp(R2) - vy, forallv e V.

Letay, a; : V x V — R be two continuous symmetric bilinear forms &rand let
B1, B, : V — V be two bounded self-adjoint linear operators which are coercive
in the sense that

(Biv,v)y = b; - [v]|2, forallve V, i=12,

for some constants,, b, > 0. For fixed positive numbers, b, r we consider the
submanifoldS®? of V x V described as follows

S ={v2) € V X V 1 a(Bivg, v)y + b(Bavz, v2)y = r?).

We need to consider the tangent space associated to the manifold defined above,
which is

Turun Sy = {(v1,v2) € V x V 1 a(Byuy, v1)y + b(Bauz, v2)y = O}

Letj : @ x RY — R satisfy the following assumptions

(i) j(,y)is measurable i® for eachy € RY andj (-, 0) is essentially bounded
in Q;

(i7) j(x,-) is locally Lipschitz inR" for a.e.x € Q.

Throughout this paper we shall use the notatjﬁrlior Clarke’s generalized direc-
tional derivative (see [3]) of with respect to the second variablei.e.,

’

(x, ") — ilx,
Jdx. yi2) =|imSU|0](x WD Z W)
w—y A
210
with x € Q, y,z € R¥ andix € R. Accordingly, Clarke’s generalized gradient
dyj (x, y) of the locally Lipschitz mag (x, -) is defined by

dyj(x,y) ={& e RY : (£,2) < jP(x, :2), Yz € RV}

As Radulescu and Panagiotopoulos observed in [24], we may requegt $htis-
fies a slight more general growth condition than the classical one (see the hypoth-
esis(H,) in Motreanu and Panagiotopoulos [13])
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(H1) There exish e Lﬁ(sz) andp € R such that
|zl < O(x) + plylP 1)

fora.e.(x,y) € @ x R¥ and each € 9, (x, ).
Let us consider a real functiod : S*“* x V x V — R to which we impose
no continuity assumption. We are now prepared to consider the following double
eigenvalue problem : Fingy, u, € V andiq, A, € R such that

ai(u, v1) + azx(uz, v2) + C((ug, uz), v1, V2)+
+ [ 20, (u1 — u2)(x); (v1 — v2)(x))dx >
(Pl,) 3 = A(Buug, v1)y + ra(Bautz, v2)y, Y1, v2 € V,

a(Byuy, u1)y + b(Bauz, uz)y = r2.

We impose the following hypothesis
(Hp) There exist two locally Lipschitz map : V — R, bounded onr; (5¢%),
(i =1, 2) respectively, and such that the following inequality holds

C((u1, up), v1, v2) = fu1; v1) + f3(uz; v2), 2
Y (ug, up) € S“P andV (v, v2) € TuyupS»P.

In addition we suppose that the sets
fzeV* 1 zedfiu) u; € m(S"))

are relatively compact iv*, fori = 1, 2.
Define the mafAj, A) : V x V — V* x V* by the relation

((A1, A2)(ug, uz), (v1, v2))vxv = ar(uz, v1) + ax(uz, v2) (3

and the duality map\ : V x V — V* x V* given by

(A(ug, uz), (v1, v2))vxv = a(Byug, v1)y + b(Bauz, v2)y. 4)

We also assume
(Hs)  For every sequencu,, u?)} C S*° with u!, — u; weakly inV, for any
2, € 3f;(ul), with

a; (', ub) + (2, ul)y — o €R, (5)

i =1 2 and forallw € Lﬁ(Q; R™) which satisfies the relation
w(x) € dyj(x, (ug —uz)(x)) forae x € Q, (6)
such that

[(A1, A2) — Ao~ A] (ul, u?)

no
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converges ivV* x V*, where

ro=r (a1 +ay+ / (w(x), (u1 — uz)(x)) dx), ()
Q

there exists a convergent subsequencedbfu?) in V x V (thus, inS®?).

(Hs) j is even with respect to the second variable, i.e.,
j(x,—y) = j(x,y), forae x € Q, and anyy € R",
and f; is even onr; (S°) i.e.,

fi(=u;) = fi(u;), forall (uq,us) € S°°,i =1,2.

By assuming the hypothesé#l,), (H»), (Hz) and (Hy), it is proved in [1] that
the double eigenvalue proble(ﬁ’,}a,b) admits infinitely many pairs of solutions
(@i, u?), A1, 22)} c $*P x R2 Moreover, it is found the expression of the
eigenvalues.! andA2. The aim of this paper is to answer a natural question: what
happens if we pertuerfa’h) in a suitable manner? For proving our main result
we need some notions of Algebraic Topology which may be found in Spanier [26].
We recall now only some basic definitions.

Let X be a metric space and ¢ X. We saidthatamap : X — Ais a
retractionif it is continuous, surjective and fulfills, = Id. A retractionr is called
to be astrong deformation retractioif there exists a homotop¥ : X x[0, 1] — X
of i or andIdy such thatF'(x, r) = F(x, 0), for each(x, ) € A x [0, 1]. Herei
stands for the inclusion map dfin X. We call X to beweakly locally contractible,
if every point has a contractible neighbourhoodXinLet¢ : X — R be a locally
Lipschitz functional. Set, for every € R

[§ <al:={ue X;&§u) <a}.

Let us fixa, b € Rwith a < b. The pair([¢ < b], [§ < a]) is calledtrivial if, for
every neighbourhoodg: ', «"] of a and[b, b"] of b, there exist some closed sets
andB suchthafé <dlc Ac[E<d]l, [E<b]c BcCI[t<b]andsuch
that A is a strong deformation retract 8f

The next notion is essentialy due to M. Degiovanni and S. Lancelotti [5].

A real number is said to be amssential valueof ¢ if, for everye > 0, there
exista, b € (c — €, ¢ + €), with a < b and such that the paffé < b], [ < a]) is
not trivial.

Let us consider an arbitrary elemenin V* andg : @ x RY — R a Caratheo-
dory function which is locally Lipschitz with respect to the second variable and
such thatg(-, 0) € L1(Q). Let us consider the following non-symmetric perturbed
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double eigenvalue problem: fid:, u») € V x V and(i1, 12) € R? such that

ay(uz, v1) + ax(uz, v2) + C((u1, uz), v1, v2)+
+f9{j8(x, (1 — uz)(x); (v — v2)(x))+

8o(x, (1 — u2)(x); (v1 — v2) (x))}dx+

(Pfa,b) +<p,vi>y+ <P v2>y>

> A(Biug, v1)y + Ao(Bauz, v2)y, Y, v2 € V,

a(Byuz, u1)y + b(Baua, uz)y = r2.

Fix § > 0. We impose tq the growth condition
(Hs) There exisb; Lﬁ(sz) ands > 0 such that

|z < 61(x) + 8]y|” 1, (8)

fora.e.(x,y) € @ x RY and each € d,g(x, y).
Let us denote by and G the (locally Lipschitz, by hypothesggdi,) and (Hs) )
functionals fromL”(22; R") into R, defined by

J(u) = / Jx, u(x)dx and G(u) = / g(x,u(x))dx.
Q Q

We associate to the problerig’, ,) and(P?, ,) the energy functiongy, I : V x
V — R, defined by

I1(uy, uz) =% [ar(uy, ur) + az(uz, uz)] + 9)
+ fi(u) + fo(u2) + J (u1 — u2),
and
D(uy, up) = Ii(ug, uz) + G(ug — uz) + (¢, u1)y + (@, uz)v, (10)

forall uy,u, € V.

We denote byr the family of closed and symmetric with respect to the origin
Oy v, Subsets oSf’b. Let us denote, as usually, by S) the Krasnoselski's genus
of the setS € 7, that is, the smallest integére N U {+oc} for which there exists
an odd continuous mapping frosninto R\ {0}. For everyn > 1, set

M,={Scs8 :SeY, y®) >n)
Recall that the corresponding minimax valuedpbverTl,

ﬂl‘l = Inf Sup {Il(ul’ M2)}a

SCTn (ug,up)es

are critical values of; on $¢* (see [1, Theorem 1]).

3. Preliminary results

The first result of this section concerns the functiohal
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LEMMA 1. Lets := SURMLMZ)ES;;,};{I]_(M]_, u2)}. Then the supremum is not achieved
andlim,_, , B, = s. Moreover, there exists a sequen@eg) of essential values of
the restriction off; at $¢*, strictly increasing tc.

Proof. This result is essentially proved in [24] (see Lemma 1) by using the ideas
of M. Degiovanni and S. Lancelotti (see [5], Theorem 2.12). The only difference
is that now, we work not on a sphere but on the Riemannian manifb’fd Itis
sufficient to point out that this is a weakly locally contractible space as the usual
sphere inV is, and the fact thal; satisfies the Palais-Smale conditionsmb as
was proved in [1]. With these remarks, the proof of the Lemma 1 follows the same
steps with the one in [24]. O

For continuing, we need two aditional assumptions
(Hg) The following inequalities hold

164 2, <8, g O)ll2 < S andillv < 8. (11)
The second assumption is actually a variant of the compactness hypaitigsis

(H7) For every sequencgu?, u?)} c S* with u’, — u; weakly inV, for any
Zh € 3f;(ul), with
a; (ul, ul) + (zh, ufl>v + < ¢,u >y— a; €R, (12)

i =1,2andforallw, z € LPL—l(Q; RY) which satisfies the relations

w(x) € dyj(x, (U1 — uz)(x)), (13)
z2(x) € dy8(x, (u1 —up)(x)), forae x € Q,

such that
[(A1, A2) — Ao~ A] (ul, u?)

converges irv* x V*, where,
ro=r"2(a1+az+ / (w(x) + z(x), (w1 — uz)(x)) dx), (14)
Q

there exists a convergent subsequence:pfu?) in V x V.
The next result proves thatdf> 0 is sufficiently small in the hypothesé#ls)
and(Hs), thenl, is a small perturbation af; on S,

LEMMA 2. For everye > 0, there exist$g > 0 such that, for alls < 8o we have

sup  [I1(uq, u2) — Io(ug, uz)| < e.
(u1,u2)eSE?
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Proof. By using mainly the Lebourg’s mean value theorem for locally Lipschitz
functionals (see [3]) and the hypotheéks) we find

IG@)| < llgC, Ol + 161l e - llulize + Sllull7,.

Lpr-1

Taking into account the hypothesi&s) and the fact thatuq, up) € S** we derive
that

[I1(u1, up) — I(ug, uz)| =|Guy —u)+ < ¢, u1r >y + < d,up >y | <
<llgC, 0l + ||91||L#j_I ~Cp(Q) -1
11 ,
(o) e
.rp( 1 + 1 >p+5.r
JVaby  \/bb;

1 1
. + <€,
(vabl vbbz)

for § > 0 small enough. O

LEMMA 3. The functionall, satisfies the Palais-Smale condition §h".
Proof. For the beginning it is important to remark that the expression of the
generalized gradier&(lzmg,b) at the point(us, up) € S%? is given by the formula

O(Iygan) (1, uz) = (& — r2(&, (ur, u2))yxv - A, u) : & € dla(ua, up)},

whereA : V x V. — V* x V*is the appropriate duality map given in (4). Here,
the duality(-, -)y «v is taken for the norm

1, u)lly v = va(Byuy, ur)y + b(Bautz, uz)y, Y uy, uz € V.
Let us consider a sequence!, u?) C S“* such that

SUPI(Izlsa,b)(ui, u?)| < +o0

and such that there exists some sequehce V* x V* fulfilling the conditions
J, € Blz(ui, ui), n>1

and
Iy — r_Z(J,,, (ui, uﬁ))wv . A(ui, uﬁ) — 0, (15)

strongly inV* x V*. For concluding it suffices to prove thet!, u2)} contains a
convergent subsequence ihx V. Under hypothesigH,) the functionals/ and
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G are Lipschitz continuous on bounded setd.i(Q; R"Y) and their generalized
gradients satisfy (cf. Clarke [3], Theorem 2.7.5)

aJ(v) C / 0y j (x, v(x))dx
Q
and

3G (v) C /Qayg(x, v(x))dx, Yv e L (2 RY).
The density ofV into L7 (22; RY) allows us to apply Theorem 2.2 of Chang [2].
Thus, we obtain

I(Jy)(v) C aJ(v),
and

(Gy)(v) CaG(v), YveV.

From J, € d1x(ul, u?) we derive that there exist € af;(u)(i = 1,2), w, €
() (ul —u?) andz, € 3(Gv)(ul — u?) such that

Jo = (a1, ) + 25 + ¢ az(uf, ) + 25 + @) + K*(w,) + K (20),
whereK : V x V — V is the map given by
K (v1, v2) = vy — vy.
By the above considerations we have that
W, (x) € 8y (x, (uy — u2)(x)
and
Zn(x) € dyg(x, (ut — u?)(x)), forae x € Q.
By the relation (15) we get

(al(ui—’ ) + Zy]l_ + ¢’ a2(uiv ) + Z,f + ¢) + K*(wn) + K*(Zn) -
—r 2 ([(ar(ul, ) + 2t + ¢, azu?, ) + 22 + @) + K*(w,) + K*(z,)],

ul, u®))y oy - Ak, u?) — 0, strongly inV* x V*.

Since the sequende?, «?) is contained inS“* and by the coercivity property of
B3 and B, it follows that each sequence!) and (u2) is bounded inv. So, up to a
subsequence, we may conclude that

u! — u;, weakly inV, for someu; € V, (i = 1, 2).
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The compactness assumptions in the hypoth@#$ implies that, again up to a
subsequence,

7t — z;, strongly inV*, for somez; € V* (i = 1, 2).

Also we have
w, € d(Jy) (Wt —u?) C 8J (ut — u?), 16
20 € A(Gp) Wt —u?) C Gt — u?).

The compactness of the embeddirig- L?(Q2; R") provides the convergences
u, — u;, strongly inL?(Q; RY), (i =1,2). (17)

SinceJ andG are locally Lipschitz or.?(2; RY), the above property ensures that
(w,) and (z,) are bounded ir.7-1(2; RM). By the reflexivity of L71(Q: RY)
and the compactness of the embeddlné(sz; RY) c V*, there existw, z €
L/_il(sz; R") such that, up to a subsequence,

w, — w strongly inV* and weakly inL 71 ($2; RY)
and
zn — z strongly inV* and weakly in 71 ($2; RY).
Proposition 2.1.5 in Clarke [3] and the relations (16) and (17) yield

w e dJ(uy — up), (18)
z € 0G (U1 — uy).

With the above remarks we may suppose that
a;(u’, ul) convergesim, i = 1,2,
and
([Gr+ ¢, 22+ ¢) + K" (wy) + K* @] (. ud)),

possesses a convergent subsequenée.ifrom (15) and taking into account the
convergences stated above we derive that
(a1(uy, ), az(uy, ) = ho - Ay, ul),

n’ n’>"n

converges strongly ilr* x V*, whereg is the one required i0H-). So, hypothesis
(H7) allows us to conclude that:}, u,f) has a convergent subsequenc&irx V,

so inS*?. Thus the Palais-Smale condition for the functiofabn S is satisfied
and the proof is now complete. O
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LEMMA 4. If u = (u1,uy) is a critical point Oflz‘sa,b then there exists a pair

(A1, A2) C R? such that((us, u), (A1, 22)) is a solution of the probleriP?, ,).
Proof. Sinceu is a critical point forIzlsa,b, it follows that

Ovxv € <312|Sa,b> (w1, uz) (19)

Taking into account the expression of the generalized gradient of the restriction of
I, at S**, we may conclude the existence of an elemenrtd I(u1, up) such that

£ —r (&, (ur, up))yy - Aur, up) =0 (20)

By the Clarke’s calculus and the inclusions stated in the proof of Lemma 3 we
derive

01o(uy, up)(v1, v2) C ay(ug, v1) +
+ ax(uz, v2) + df1(u)vy + df2(u2)vo

+ / 0y j (x, (w1 — u2)(x)) (v — v2)(x)dx +
Q

+ / 0yg(x, (u1 — u2)(x))(vy — v2)(x)dx
Q

+ <P, v1>y + <P, v2 >y,

for all v, v, € V. So, there exists some € df;(u;) (i = 1,2) andw,z €
L71(Q; RY) with

w(x) € dyj(x, (w1 —uz)(x)) forae x € Q,
and

z(x) € 3,g(x, (u1 — ux)(x)) forae x € Q,
such that

(€, (v1, V2))y vy =a1(u1, v1) + az(uz, vV2)+ < 21, V1 >y

+ <22, v2>y +/ < w(x), (v1 —v2)(x) > dx
Q

+/ < z(x), (v1 —v2)(x) > dx
Q

+ <p,v1>y + <P, v >y .
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From (20) it follows that
ar(u1, v1) + az(uz, v2)+ < 21, V1 >v + < 22, V2 >y
+/ < w(x), (v — V) > dx
Q

+ / < z(x), (v1 — V) (x) > dx
Q

+ <o, vy >y + <P, 2>y

,2[

—r lar(uy, u1) + ax(uz, u2)+ < z1,u1 >y + < 22, U2 >y

+/ < wx), (U1 — u)(x) > dx
Q

+/ < 2(0), (1 — u2)(x) > dx
Q

+ <¢,ur >y + < ¢, uzx >vl- (a(Brug, vy
+ b(Bouz, v2)y) =0,

for all vy, v, € V. Set
A =r~?lay(ug, uy) + az(uz, up)+ < z1,u1 >y + < 72, U2 >v
+/ < (w+2)(x), (ur —ux)(x) > dx+ < ¢, u1 >y + < ¢, uz >vyl.
Q

Let us now observe that we have

/Q (W + 2)(x), (v1 — V) (x))dx
< /Q maX{ (11, (v1 — v2) (X)); 1 € By j (x, (ug — u2)(x))}
+ /Q maX{ (12, (v1 — v2)(X)); 2 € dyg(x, (ug — uz)(x))}
= /Q 3O, (uy — u)(x); (v1 — v2)(x))dx
+ /Q gy(x, (u1 — u)(x); (v1 — v2)(x))dx.

In the above relation, the last equality holds because of Proposition 2.1.2 in [3].

Taking into account the choice of(i = 1, 2), z andw, it is easily to observe that

if we denoter; = Aa andi, = Ab, our hypothesigH,) and some simple calcu-

lation lead us to the desired conclusion claimed in the formulation of Lemma 4.
O
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4. The main result

With the preliminary results stated in Section 3 we are now prepared to prove our
perturbation result.

THEOREM 1. Assume that the hypothes@d;) — (H7) are fulfilled. Then, for
everyn > 1, there exists}, > 0 such that, for eacls < §,, the problem(PZ, ,)
admits at least distinct solutions.

Proof.Fixn > 1. By Lemma 4 it suffices to prove the existence éf a- 0 such
that, for everys < §,, the funcUonaIIz , has at least distinct critical values.

We may use now the conclusion of Lemma 1 and this implies that it is possible
to consider a sequengg,) of essential values oﬁl‘sm, strictly increasing tos.
Choose an arbitraryy < 2 5 Minii<n,-1(bit1 — b;i). We now apply Theorem 2.6
from [5] to the functlonalsllI andlz ,- Thus, for every 1< i < n — 1, there
existsn; > 0 such that the relation

sup  |Ii(ua, up) — I(uy, uz)| < n;
(u1.u2)eS"
implies the existence of an essential vatuef 12 , IN (b; — €0, b; +€0). By taking

€ = min{eg, N1, -+ , Nu_1} in Lemma 2, we derlve the existence of,a> 0 such
that

sup  [I1(ug, up) — Ix(u, uz)| < e,
(up.up)esy”
providedsé < 4, in (Hs) and(Hg). So, the functlonallz , has at least distinct

essential values, co, - -+ , ¢, In (—00, b, +¢€). Forconcludlng our proof it suffices
to show thatc; - - - , ¢, are critical values oﬁ'z . The first step is to prove that

there existg > 0 such thatlz , has no crltlcal value ifc; — €, ¢; + €). Indeed,
if this is not the case, there eX|sts a sequefak¢ of critical values oflz , With

d, — ¢; asn — oo. The fact thatd, are critical values for the restrlctlon @ at
Se implies that for every: > 1, there existgu?, u?) € S** such that

L(u* u )_d andi* (un, )= 0,

n’

whereli* is the lower semicontinuous functional defined by
A7 (ug, uz) := min{|[(§1, E2)lvexv=; (51, §2) € 01y ga0 (U1, uz)}.

Thus, passing eventually to a subsequetigg, u?) — (u1,uz) € S“?, strongly
in V x V. The continuity ofl, and the lower semicontinuity af* implies that

Io(uy, up) = ¢; andr™(ug, up) =0
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which contradicts the initial conditions @p Let us fixc;—€ < a < b < ¢;+¢€. By
Lemma 3,/, satisfies the Palais-Smale condition §f*. So, for every point ¢
[a, b1, (PS). holds. We have fulfilled the set of conditions which allow us to apply
the ‘Noncritical Interval Theorem’ due to J.- N. Corvellec, M. Degiovanni and M.
Marzocchi (see Theorem 2.15 in [4]), on the complete metric spﬂc’e d(, -)) ,
where byd(-, -) we have denoted the geodesic distancesgjh that is, for every
pointsx, y € S%?, d(x, y) is equal to the infimum of the lengths of all pathsSrf
joining x andy. We obtain that there exists a continuous maps®* x [0, 1] —
S such that, for eactu = (u1, up), 1) € $* x [0, 1], are satisfied the conditions

(@) n(u,0) = u,

(b) L(n(u, 1)) < Ix(u),

(c) (w) < b= L(nu,1) <a

(d) L(w) <a = nu,t) = u.
By the above conditions, it follows that the map

(1 , b]aur—>77(ul)e[ gb]

IS5
is a retraction. Let us define the map: [Iz‘sa,b < bl x[0,1] — [I» 2,0 < b] by
the relation ' ’

W(u,t) =n(u,t).

Since for every: [IZW’ < b], we have

Y(u,0 =u, YV(u,l) =nu,l),

and for eachu, t) € [12 g0 < b] x [0, 1], the equality¥ (u, r) = ¥ (u, 0) holds, it
follows thatW is [12 < b]— homotopic to the identity o[flz < b]. Thus,¥
is a strong deformatlon retraction which implies that the palr

(2,0 <BLIL,, <al)
Is¢ Is¢

is trivial. With this argument, we get that is not an essential value of the restric-
tion of I, at S:*. This is the contradiction which concludes our proof. O

5. Applications

In many problems arising in Mechanics and Engineering the cost or the weight of
the structure may be expressed as a linear function of the norm of the unknown
function. Thus the constraint that we have impoged, = r( or, equivalently,
allu]|® + blluzl|?> = r?) means that we have a system with prescribed cost or
weight, or in some cases energy consumption. The stability analysis of such a
system involving honconvex nonsmooth potential functions (called also nonconvex
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superpotential) leads to the treatment of a double eigenvalue problem for hemivari-
ational inequalities on a spherelike manifold. We begin with two mathematical
examples and then we shall give some applications from Mechanics.

5.1. PERTURBATIONS OF A COUPLED SEMILINEAR POISSON EQUATION

First, we consider the case of the problény, ,) in whichC = 0, By = B, =
idy, a = b = 1. Moreoveray, a» are coercive, in the sense that

a;(v,v) > a3, Yoe V,i=1,2,

for some constant®,;, a; > 0 andj : R — R is the primitive

t
J (@) =/ p(tydr, 1t €R,
0

with ¢ : R — R even, locally bounded, measurable and satisfying the subcritical
growth condition : for some X p < 2% if m > 3 (1< p < +o0, if m =1, 2),
we have
lp()] < 1+ colt|”h, Vi eR.
It is known that
9j (1) Cle@), 9@, Vi €R,

where

(1) = (!imoessinf{q;(s) ;e —s| < 8}

and

o) = (!imoesssump(s) plt—s| < 8)

(see [2]). Suppose further the sign condition of Chang [2]
@) >0ift <O0andp(r) <0ifr > 0.

Let us consider that the superpotentialgives rise to a very irregular graph
[£, 0/ (&)] (i.e. the graph ofj has many zig - zag etc.). Then we consider the eigen-
value probIem(Pfa,b), wheregg is appropriately chosen in order to “smoother a
little bit” the graph[&, 9/ (£)], i.e. the graphé&, 95 (§) + dg(&)] has a smaller num-
ber of irregularities than the graph, 9; (£)]. In the present case we may consider
that

3j (1) + dg(1) C [p(1) + ¢ (1), §(1) + 9X(D)], Vi € R.
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In fact, we consider
t
g(®) =/ p'(v)dt, t €R,
0

whereg! : R — R is locally bounded, measurable and satisfies the subcritical
growth condition

()] < ez +calt|P™t, Ve € R

Note that we do not need to imposegbthat it is even, as we have assumedgon
Obviously, Theorem 1 applies on every sphigrgl|2 + [|v2||2 = r2 of V x V, with
a sufficiently smallr > 0. More precisely, for every > 1, there existss, > 0
such that ifc3 andc, are chosen smaller thap, then the perturbed proble®?, )
admits at least distinct solutions.

As a specific example of application of Theorem 1, we consider the coupled
semilinear Poisson equations on a bounded domamR" with a smooth bound-
ary 92 in the double eigenvalue problem

Auy+ Mug € [pui(x) — uz(x)), @ui(x) —uz(x))] forae x € Q
Aug + doutp € [—@(ug(x) — uz(x)), —p(ui(x) — uz(x))] for ae x € @

Ui =up, =00n0Q.

Here)q, 22 € R are the eigenvalueg;, u, are the corresponding eigenfunctions
and ¢, ¢ are determined above for the functign: R — R. We chooseV =

HA(Q),

ar(u,v) = ax(u,v) = / Vu - Vvdx, Yu,v € Hol(Q),
Q

(Biu, U)Hé = (Bou, U)Hol = /Qu -vdx, Yu,v € Hol(Q),

j : R — R being equal to the primitive op as we considered above and, for
simplicity, C = 0. Notice that each eigensolution of the hemivariational inequality
appearing in the probletP?, ,) represents a weak solution of the Dirichlet system
above. Under the growth condition fgras above and the assumptions from the
section 2 onj, Theorem 1 in [1] implies the existence of infinitely many double
eigenfunctions(u?, u?) € $*°, with ul, u? € H}(2) N H*(Q) for the foregoing
Dirichlet problem.

Further, we consider the perturbed eigenvalue problem

Auy + Auy € [pur(x) — uz(x)) + ¢ (ur(x) — uz(x)),
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Pua(x) — uza(x)) + @ua(x) — uz(x))] for ae x € Q
Auz + dauz € [—@(ur(x) — uz(x)) + @ (ua(x) — uz(x)),

—@(u1(x) — ua(x)) + pHua(x) — up(x))] for ae. x €

ui1 =up, =00n0Q,

whereg! is chosen as in the previous example and satisfies the conditions therein.
Then, our Theorem 1 applies and we obtain that the perturbed Dirichlet problem

considered above admits infinitely many distinct solutions. Notice ¢handc,

must be sufficiently small, in the same sense as in the first case considered in this
section.

5.2. ADHESIVELY CONNECTED VON KARMAN PLATES BUCKLING FOR GIVEN
COST OR WEIGHT

In the framework of the theory of elastic von Karman plates, i.e. of plates having
large deflections, we consider two or more such plates connected with an adhesive
material. The behaviour of the adhesive material may be described by a relation of
the form

—f € 9j(ur—up), (21)

(cf. Panagiotopoulos [22], p. 109).The grapH 6fu, —u»>} may be a zig-zag graph

with complete vertical branches in the most general case. Concerning the derivation
and study of the corresponding hemivariational inequalities we refer to [16], [22].
We assume that we have two pla®@s and 2., Q; ¢ R?,i = 1,2, which are
adhesively connected aR C Q;,i = 1,2 The plates have the boundariEg

and T, respectively and2 N T'; = @,i = 1, 2. The boundaries are assumed to

be Lipschitzian and are not subjected to any loading2erand 2, vertical to the
middle plate plane or parallel to it. We assume that= 2, as subsets oR?

and we denote botf; and 2, by Q. The plates are only subjected along their
boundaried™; andTI'; to continuously distributed compressive forces, i.e.

Uaﬂinai = )‘iga,- a’ ,3 = l’ 2’ l - 17 27

whereo = {o,s} denotes the stress tensor for the in-plane action of the plate,
n = {n,} is the outher unit normal vector 1, or toI'y, g; = {g1,. g2, } is a given
force distribution, which is self equilibrated, i.e. for each plate

/ 8o, ds =0, / (x182, — 81,x2)ds =0, i =12
r; T
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Herek;,i = 1, 2, is a real number which measures the magnitude of the compres-
sive forces having the directiogy,i = 1, 2, along the boundaries of the plates.
These compressive forces may cause buckling of the composite plate with partial
debonding of the adhesive material. As in [15], p. 455 and in [21] p. 234, where the
analogous buckling problem for variational inequalities is formulated, the notion of
‘reduced variational solution’ is introduced and we obtain the following eigenvalue
problem: Findu1, u, € V andiq, A € R such that

ay(uy, v1) + az(uz, v2) + (C1(ur), v1)y + (C2(u2), v2)y
+ / 3O, (uy — u) (x); (v1 — v2)(x))dx
Q

2 M (Byug, v1)y + A2 (Bauz, v2)y ,

for all v, vo € V. HereV is the real Sobolev spadé¢?(Q2) with inner product
(-, v, a(u;, v;) is the bending energy of the plate(C;(«;), v;), with C;(-) a
nonlinear compact operator, is the bending energy of the pldtie to the stretch-
ing of the same platgi®(x, u1 — u; v1 — v,) denotes the directional derivative in
the sense of Clarke at the state — u,)(x) and in the directiorfv; — v2)(x) atx,
and(B;u;, v;) is given by the relation (7.2.13) of [21], i.e.

(B,'u,', U,’) = — > / hioo?ﬁiui,avi,ﬁdx Vu,», V; € V,

1

for i = 1,2 Hereh; denotes the thickness of the platand aB? the stress
field in the plane of the platécaused by the forceg, (o, 8 = 1,2, i = 1,2).
Moreover we note that ofi;, concerning the plate bending, boundary conditions
which guarantee the coercivity of the bilinear form¢, -),i = 1, 2, are assumed
to hold. For instance the built-in boundary conditions= %in =0,i=12 or
the simple support boundary conditioms= 0, M;(u;) = 0,i = 1, 2, whereM;
denotes the bending element of theth plate. Further we shall not need for the
operatorsB; the property thatB;u;, v;) > 0V u; € V,u; # 0, as itis the case in
the corresponding theory (see Naumann and Wenk [15] ) of eigenvalue problems
for variational inequalities but the stronger property of coercivity (this property is
a consequence of the assumption that the stress vector on the boundary of each
subdomair2y, of 2, i = 1, 2, is directed outside df2q,, i.e. that each subdomain
of the plate is subjected to compressive forces, (cf. Naumann and Wenk [15], p.
457)). Further we express the total cost or weight of the structure by the form
Zle a; (Bju;,v;) = r?, wherea; are given positive constants. We get that for
the arising double eigenvalue problem for hemivariational inequaﬁﬁ’ég’b) the
hypotheses are satisfied and the multiplicity result of Theorem 1 in [1] holds.
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5.2.1. Perturbations of the buckling problem of a sandwich beam of prescribed
weight

Let us now consider the perturbed hemivariational inequality : kFind, € V and
A1, A2 € R such that

a(uy, v1) + ax(uz, v2) + (C1(u1), v1)y + (Ca(u2), v2)y
+/U&Lwrwmuxwrﬂ@u»
Q

+g3(x, (u1 — uz)(x); (v1 — v2) (x))}dx
2 h1 (Baua, v1)y + A2 (Bauz, v2)y ,

for all v1, v, € V. One can assume that the grdgha; (¢) + dg(£)] is much more
regular than the graplg, dj (¢)]. Further one can assume that the greptd; (§) +

dg(&)] is monotone, a fact which in the framework of a numerical calculation is
beneficial. Moreover, in the monotone case one can consider the corresponding
variational inequality - eigenvalue problem and get some useful comparison results
(especially in the case of simple eigenvalue problems for which there exist certain
results for variational inequalities (see Le and Schmitt [7]).

5.2.2. Fuzzy effects superimposed on an adhesive contact law

Let us put ourselves in the framework of the previous example of adhesively con-
nected plates and let us consider the following interface law (see Panagiotopoulos
[22], p. 77)

—f(x) € 9j([ul(x)) + dg(u(x)), (22)

where dg describes the fuzzy effects. We recall thatesults in the following
manner (see Rockafellar [25])

Let! be an open subset of the real liReand letM be a measurable subseti/of
such that for every open and nonempty sulisett/, mes/ N ({ — M)) is> 0. Let

| Ab i ux) e M
rlux)) = { —by if u(x) ¢ M

andg(u) = [y r(u*)du*. Theng is Lipschitzian and
dg () = [—b2, b1], Yu(x) € l.

Thusdg(u(-)) has an infinite number of jumps inwhere each jump is identified

with the interval[—b5, b1]. In the composite law (22), the zero of this interval
lies on the graph of¢, j(&£)] and the zong—b,, b;] around this graph describes

the fuzzy nature of the adhesive contact law. Note that existence results related to
fuzzy effects have been studied by Naniewicz and Panagiotopoulos in [14] p. 132.
Here we can apply our results to the perturbed promeﬁ);)b), i.e. to the system
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related to the interface law (22). Our Lemma 2 shows that if the fuzzy effect tends to
disappear then the energy of the perturbed problem tends to the energy of the initial
nonfuzzy problem. On the other hand, by Theorem 1, the number of solutions of
the perturbed problem tends to infinity if the perturbation given by the fuzzy effect
tends to zero. We also remark that our results hold if the fuzzy effect is linked to a
subcritical growth, but is arbitrary, in the sense that it has no symmetry.
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