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and Youpei Zhang

Abstract. We study double phase singular problems with strong singu-

larity and unbounded coefficient (that is, in the singular term u �→ g(z)
u(z)η ,

where η � 1 and g(·) is not bounded). First we deal with the purely
singular problem. We consider two distinct cases. In the first one, we
assume that η = 1 and the double phase operator ((p, q)-Laplacian with
weight) exhibits unbalanced growth. Using modular spaces we prove the
existence of a unique positive solution. The second case is when η > 1
and this is examined in the context of double phase problems with bal-
anced growth. Again we prove the existence of a unique positive solution.
Finally, for the second case, we introduce also a superlinear perturbation
of the singular term and we prove an existence theorem.
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1. Introduction

In this paper, we are concerned with the study of a nonlinear problem whose
features are the following:
(a) the presence of several differential operators with different growth, which

generates a double phase associated energy;
(b) the reaction combines the multiple effects generated by a singular term

and a nonlinearity with subcritical growth;
(c) we establish global existence properties, which describe an exhaustive

picture of strongly singular double phase problems.
Summarizing, this paper is concerned with the refined qualitative analysis of
solutions for a class of singular problems driven by differential operators with
unbalanced or balanced growth.

Let Ω ⊆ R
N be a bounded domain with Lipschitz boundary ∂Ω. The

aim of this paper is to study strongly singular double phase problems. The
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name “strongly singular”, refers to equations in which the singular part of
the reaction u �→ u−η has exponent η � 1. Weakly singular problems (that
is, the case 0 < η < 1), were studied recently in a general framework by
Papageorgiou et al. [23].

The problem under consideration is the following:
⎧
⎨

⎩

−Δa
pu(z) − Δqu(z) =

g(z)
u(z)η + f(z, u(z)) in Ω,

u|∂Ω = 0, u � 0, 1 < q < p, 1 � η.

⎫
⎬

⎭
(1)

In this problem, Δa
p denotes the weighted p-Laplacian defined by

Δa
pu = div (a(z)|Du|p−2Du) for all u ∈ W 1,p

0 (Ω).

We denote by Δq the usual q-Laplace differential operator, namely

Δqu = div (|Du|q−2Du) for all u ∈ W 1,q
0 (Ω).

In the reaction (right-hand side of (1)), the coefficient g(·) of the singular
term is not bounded and the perturbation f : Ω × R �→ R is a Carathéodory
function (that is, for all x ∈ R the mapping z �→ f(z, x) is measurable and
for a.a. z ∈ Ω the function x �→ f(z, x) is continuous), which exhibits (p−1)-
superlinear growth as x → +∞ but without satisfying the usual in such cases
Ambrosetti-Rabinowitz condition (the AR-condition for short).

First we will deal with the purely singular problem, that is, f ≡ 0 (no
perturbation). For this problem, we consider two distinct cases: (a) η = 1
and (b) η > 1. For the first case (η = 1), we assume that the coefficient
a ∈ C0,1(Ω), a(z) > 0 for all z ∈ Ω, but need not be bounded away from zero.
In this way, the differential operator u �→ −Δa

pu−Δqu, exhibits “unbalanced
growth”. More precisely, if we consider the integrated ξ : Ω × R+ �→ R+

associated with the energy functional of this operator, then we have

ξ(z, x) = a(z)xp + xq for all z ∈ Ω, all x � 0,

where the modulating coefficient a(z) � 0 dictates the geometry of the com-
posite made by two different materials, with hardening exponents p and q,
respectively.

This is a phase transition model and in the region where a is positive,
the p-material is present; otherwise the q-material is the only one making the
composite. The anisotropic case corresponds to a composite that changes its
hardening exponents according to the point; in this case, the exponents p and
q are no longer constant and they change their values for z ∈ Ω.

We observe that

xq � ξ(z, x) � c0(1 + xp) for all z ∈ Ω, all x � 0, some c0 > 0.

Integral functionals defined by such integrands, were first investigated by
Marcellini [19] and Zhikov [30,31] in connection with problems from nonlinear
elasticity theory. Recently, the interest for such problems was revived by
Mingione and his co-workers, who produced important local regularity results
for local minimizers (see Baroni et al. [3] and Colombo and Mingione [11,12]).
However, there are not yet any global regularity results for such problems and
as we will see, this prevents us from dealing with the cases η > 1 and f �≡ 0 in
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the context of unbalanced double phase equations. For recent developments
in problems with nonstandard growth and nonuniform ellipticity we refer to
Beck and Mingione [4] and Mingione and Rădulescu [20].

We mention that problems involving the sum of two differential opera-
tors of different nature (double phase problems), arise in many mathematical
models of physical processes. We already mentioned the problems in elastic-
ity theory (see [19,31]) and in addition we have the works of Bahrouni et al.
[2] (transonic flow problems), Benci et al. [5] (quantum physics), Cherfils and
Il’yasov [8] (reaction-diffusion systems).

Strongly singular problems, were first investigated by Lazer and
McKenna [17], who considered semilinear equations driven by the Laplace
operator. More precisely, they considered the following problem

−Δu(z) = u(z)−η in Ω, u|∂Ω = 0, u � 0, 0 < η.

They proved that this problem has a solution in H1
0 (Ω) if and only if

0 < η < 3. Moreover, the solution is not in C1
0 (Ω) if 1 < η. Extensions of their

work were obtained by Boccardo and Orsina [7], Coclite [9], Lair and Shaker
[16], and Pucci and Vitillaro [28]. More on semilinear singular problems and
a rich bibliography, can be found in the book of Ghergu and Rădulescu [14].
For double phase problems there are only the recent works of Papageorgiou
et al. [23] and Papageorgiou et al. [25]. Both papers deal with weakly singular
problems (that is, 0 < η < 1).

2. Mathematical Background

To treat the unbalanced growth case described in Sect. 1, we need to con-
sider Musielak–Orlicz–Sobolev spaces. So, let ξ : Ω × R+ → R+ be the
Carathéodory function defined by

ξ(z, x) = a(z)xp + xq for all z ∈ Ω, x � 0

(recall that a ∈ C0,1(Ω), a(z) > 0 for all z ∈ Ω). Then ξ(·, ·) is a generalized
N-function (see Musielak [21, p. 82]) and it satisfies

ξ(z, 2x) � 2pξ(z, x) for all z ∈ Ω, x � 0.

This is known as the (Δ2)-condition (see Musielak [21, p. 52]). Let M(Ω)
be the space of all measurable functions u : Ω �→ R. As always, we identify two
such functions which differ only on a Lebesgue-null set. The Musielak–Orlicz
space Lξ(Ω) is defined by

Lξ(Ω) =
{

u : u ∈ M(Ω),
∫

Ω

ξ(z, |u|)dz < +∞
}

.

This space is equipped with the so-called “Luxemburg norm” defined
by

‖u‖ξ = inf
{

λ > 0 :
∫

Ω

ξ

(

z,
|u|
λ

)

dz � 1
}

.
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Using Lξ(Ω), we can define the Musielak–Orlicz–Sobolev space W 1,ξ(Ω)
as follows

W 1,ξ(Ω) =
{
u : u ∈ Lξ(Ω), |Du| ∈ Lξ(Ω)

}
,

where D denotes the gradient in the weak sense. We furnish this space with
the norm

‖u‖1,ξ = ‖u‖ξ + ‖Du‖ξ.

Also, we set W 1,ξ
0 (Ω) = C∞

c (Ω)
‖·‖1,ξ . All these spaces (Lξ(Ω), W 1,ξ(Ω),

W 1,ξ
0 (Ω)) are separable and uniformly convex (thus, also reflexive) Banach

spaces. Moreover, if p
q < 1 + 1

N , then from Colasuonno and Squassina [10,
Proposition 2.18], we have that there exists c1 > 0 such that

‖u‖ξ � c1‖Du‖ξ for all u ∈ W 1,ξ
0 (Ω).

This is the “Poincaré inequality” for the space W 1,ξ
0 (Ω) and it implies

that on W 1,ξ
0 (Ω) we can use the equivalent norm

‖u‖ = ‖Du‖ξ for all u ∈ W 1,ξ
0 (Ω).

We have the following embeddings, which generalize the classical
Sobolev embedding theorem (see [10,21]):

(a) q �= N ⇒ W 1,ξ
0 (Ω) ↪→ Lr(Ω) for all 1 � r � q∗,

q∗ =

⎧
⎨

⎩

Nq

N − q
if q < N

+∞ if q � N
;

(b) q = N ⇒ W 1,ξ
0 (Ω) ↪→ Lr(Ω) for all 1 � r < +∞;

(c) q � N ⇒ W 1,ξ
0 (Ω) ↪→ Lr(Ω) compactly for all 1 � r < q∗;

(d) q > N ⇒ W 1,ξ
0 (Ω) ↪→ L∞(Ω) compactly;

(e) W 1,ξ
0 (Ω) ↪→ W 1,q

0 (Ω).
By Lp

a(Ω) we denote the weighted Lebesgue space defined by

Lp
a(Ω) =

{

u : u ∈ M(Ω),
∫

Ω

a(z)|u|pdz < +∞
}

.

The norm of this space is given by

‖u‖p,a =
(∫

Ω

a(z)|u|pdz

)1/p

.

We have

Lp(Ω) ↪→ Lξ(Ω) ↪→ Lp
a(Ω) ∩ Lq(Ω).

In the study of the Musielak–Orlicz and of the Musielak–Orlicz–Sobolev
spaces, the following modular function is important

ρξ(v) =
∫

Ω

ξ(z, |v|)dz =
∫

Ω

(a(z)|v|p + |v|q) dz.

This modular function is closely related to the norms of these spaces.

Proposition 1. (a) For v �= 0, ‖v‖ξ = λ if and only if ρξ

(
v
λ

)
= 1.
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(b) ‖v‖ξ < 1 (resp. = 1, > 1) if and only if ρξ(v) < 1 (resp. = 1, > 1).
(c) ‖v‖ξ < 1 ⇒ ‖v‖p

ξ � ρξ(v) � ‖v‖q
ξ.

(d) ‖v‖ξ > 1 ⇒ ‖v‖q
ξ � ρξ(v) � ‖v‖p

ξ .
(e) ‖v‖ξ → 0 ⇔ ρξ(v) → 0.
(f) ‖v‖ξ → +∞ ⇔ ρξ(v) → +∞.

Let 〈 ·, · 〉 denote the duality brackets for the pair (W 1,ξ
0 (Ω)∗,W 1,ξ

0 (Ω))
and let Aa

p : W 1,ξ
0 (Ω) �→ W 1,ξ

0 (Ω)∗ be the nonlinear map defined by

〈Aa
p(u), h〉 =

∫

Ω

a(z)|Du|p−2(Du,Dh)RN dz for all u, h ∈ W 1,ξ
0 (Ω).

Also let 〈·, ·〉1,q denote the duality brackets for the pair (W−1,q′
(Ω) =

W 1,q
0 (Ω)∗,W 1,q

0 (Ω))
(

1
q + 1

q′ = 1
)

and let Aq : W 1,q
0 (Ω) �→ W−1,q′

(Ω) be the
nonlinear map defined by

〈Aq(u), h〉1,q =
∫

Ω

|Du|q−2(Du,Dh)RN dz for all u, h ∈ W 1,q
0 (Ω).

We know that

〈Aq(u), h〉1,q = 〈Aq(u), h〉 for all u, h ∈ W 1,ξ
0 (Ω)

(recall that W 1,ξ
0 (Ω) ↪→ W 1,q

0 (Ω)). Both maps are bounded (that is, they map
bounded sets to bounded sets), continuous, strictly monotone (thus, maximal
monotone too) and of type (S)+. Recall that if X is a reflexive Banach space
and A : X �→ X∗, then we say that A(·) is of type (S)+ if it has the following
property:

“xn
w−→ x in X and lim sup

n→∞
〈A(xn), xn − x〉X � 0

⇓
xn → x in X as n → ∞′′

( see Definition 3.2.55(b) of Gasinski and Papageorgiou [13, p. 338] ).

Suppose ϕ ∈ C1(X). We say that ϕ(·) satisfies the “C-condition” if it
has the following property:

“Every sequence {xn}n∈N ⊆ X such that {ϕ(xn)}n∈N ⊆ R is bounded and
(1 + ‖xn‖X)ϕ′(xn) → 0 in X∗ as n → ∞, admits a strongly convergent

subsequence”.

This is a compactness type condition on the functional ϕ(·). Since the
ambient space X in most cases of interest is infinite dimensional, it is not
locally compact and so the burden of compactness is passed on the functional
ϕ(·), as it happens in the Leray–Schauder degree theory.

Given u ∈ M(Ω), we set u± = max{±u, 0}. We know that if u ∈
W 1,ξ

0 (Ω) then

u± ∈ W 1,ξ
0 (Ω), u = u+ − u− and |u| = u+ + u−.

We will also use the Banach space C1
0 (Ω) =

{
u ∈ C1(Ω) : u|∂Ω = 0

}
.

This is an ordered Banach space with positive cone C+ =
{
u ∈ C1

0 (Ω) :



   82 Page 6 of 21 N. S. Papageorgiou et al. MJOM

u(z) � 0 for all z ∈ Ω
}
. This cone has a nonempty interior given by

int C+ =
{

u ∈ C+ : u(z) > 0 for all z ∈ Ω,
∂u

∂n

∣
∣
∣
∂Ω

< 0
}

with n(·) being the outward unit normal on ∂Ω. Since ∂Ω is by hypothesis
Lipschitz, by Rademacher’s theorem, n(·) exists at almost all points of ∂Ω.

Given u, v ∈ M(Ω) with u � v, we define

[u, v] =
{

h ∈ W 1,ξ
0 (Ω) : u(z) � h(z) � v(z) for a.a. z ∈ Ω

}
.

Also by û∗
1(p) ∈ W 1,p

0 (Ω), we denote the positive, Lp-normalized (that
is, ‖û∗

1(p)‖p = 1) eigenfunction corresponding to the principal eigenvalue
λ̂1(p) > 0 of (−Δp,W

1,p
0 (Ω)). We know that û∗

1(p) ∈ int C+ (see Gasinski
and Papageorgiou [13, p. 739]).

Finally if p < N , then p∗ = Np
N−p (the critical Sobolev exponent cor-

responding to p) and if r ∈ (1,+∞), then r′ ∈ (1,+∞) is the conjugate
exponent corresponding to r, that is, 1

r + 1
r′ = 1.

3. Purely Singular Problem: Case η = 1

In this section we deal with the purely singular problem, with η = 1. So, the
problem under consideration is

⎧
⎨

⎩

−Δa
pu(z) − Δqu(z) =

g(z)
u(z)

in Ω,

u|∂Ω = 0, u � 0, 1 < q < p.

⎫
⎬

⎭
(2)

Our hypotheses on the data of this problem are the following.
H: a ∈ C0,1(Ω), a(z) > 0 for all z ∈ Ω, p

q < 1 + 1
N , g ∈ L1(Ω), g(z) � 0

for a.a. z ∈ Ω and g �≡ 0.

Remark 1. We stress that the coefficient g(·) is not bounded. Since the coef-
ficient g(·) is unbounded, following Boccardo and Orsina [7], we understand
by a positive solution of problem (2) a function u ∈ W 1,ξ

0 (Ω) such that

for all K ⊆ Ω compact, 0 < cK � u(z) for a.a. z ∈ K,

〈Aa
p(u), h〉 + 〈Aq(u), h〉 =

∫

Ω

g(z)
u(z)

hdz for all h ∈ C1
c (Ω).

Evidently, since h(·) has compact support, the right-hand side of the
last equation is well-defined.

For ε > 0, we define gε = min
{
g, 1

ε

}
. Evidently gε ∈ L∞(Ω). Then

given β ∈ Lq(Ω), we consider the following auxiliary Dirichlet problem

− Δa
pu(z) − Δqu(z) =

gε(z)
|β(z)| + ε

in Ω, u|∂Ω = 0, u � 0. (3)

Proposition 2. If hypotheses H hold, then problem (3) admits a unique solu-
tion uε ∈ W 1,ξ

0 (Ω), uε � 0, uε �= 0.
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Proof. We consider the operator V : W 1,ξ
0 (Ω) �→ W 1,ξ

0 (Ω)∗ defined by

V (u) = Aa
p(u) + Aq(u) for all u ∈ W 1,ξ

0 (Ω).

This operator is continuous, strictly monotone (hence maximal mono-
tone, too) and coercive. It follows that it is surjective (see Corollary 2.8.7 of
Papageorgiou et al. [22, p. 135]). Since gε(·)

|β(·)|+ε ∈ L∞(Ω) ↪→ W 1,ξ
0 (Ω)∗, we

can find uε ∈ W 1,ξ
0 (Ω) such that

V (uε) =
gε(·)

|β(·)| + ε
.

The strict monotonicity of V (·) implies that this solution is unique.
Finally, acting with −u−

ε ∈ W 1,ξ
0 (Ω) we obtain

ρε(Du−
ε ) = 0,

⇒ uε � 0, uε �= 0 (see Proposition 1).

This proof is now complete. �

So, we can define the solution map σε : Lq(Ω) �→ Lq(Ω) for problem (3)
by

σε(β) = uε (recall that W 1,ξ
0 (Ω) ↪→ Lq(Ω)).

Clearly this map is continuous.
Next, we consider the following truncation-perturbation of problem (2):

⎧
⎨

⎩

−Δa
pu(z) − Δqu(z) =

gε(z)
u(z) + ε

in Ω,

u|∂Ω = 0, u � 0, 1 < q < p.

⎫
⎬

⎭
(4)

Proposition 3. If hypotheses H hold, then problem (4) admits a unique solu-
tion ûε ∈ W 1,ξ

0 (Ω).

Proof. Note that the fixed points of σε(·) are solutions of problem (4).
We know that σε(·) is continuous. Also, if uε = σε(β), then we have

〈Aa
p(uε), h〉 + 〈Aq(uε), h〉 =

∫

Ω

gεh

|β| + ε
dz for all h ∈ W 1,ξ

0 (Ω). (5)

In (5) we choose h = uε ∈ W 1,ξ
0 (Ω). Then

ρε(Duε) =
∫

Ω

gεuε

|β| + ε
dz � c2

ε2
‖uε‖ for some c2 > 0,

⇒ σε(Lq(Ω)) ⊆ W 1,ξ
0 (Ω) is a bounded set (see Proposition 1).

Recall that W 1,ξ
0 (Ω) ↪→ Lq(Ω) compactly. So, we can use the Schauder-

Tychonov fixed point theorem (see Theorem 4.3.21 of Papageorgiou et al. [22,
p. 298]) and produce ûε ∈ W 1,ξ

0 (Ω) such that

σε(ûε) = ûε.

Evidently ûε ∈ W 1,ξ
0 (Ω) is a solution of problem (4) and ûε �= 0.
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We show that this solution is unique. Suppose that v̂ε ∈ W 1,ξ
0 (Ω) is

another solution of problem (4). We have

0 � 〈Aa
p(ûε) − Aa

p(v̂ε), ûε − v̂ε〉 + 〈Aq(ûε) − Aq(v̂ε), ûε − v̂ε〉

=
∫

Ω

gε(z)
(

1
ûε + ε

− 1
v̂ε + ε

)

(ûε − v̂ε)dz � 0,

⇒ ûε = v̂ε (on account of the strict monotonicity of u �→ V (u)

= Aa
p(u) + Aq(u)).

This proof is now complete. �

From the maximum principle for unbalanced double phase problems of
Papageorgiou et al. [26, Proposition 2.4]), we know that for every K ⊆ Ω
compact subset, we have

0 < cK � ûε(z) for a.a. z ∈ K. (6)

Proposition 4. If hypotheses H hold, then {ûε}ε∈(0,1] ⊆ W 1,ξ
0 (Ω) is nonin-

creasing.

Proof. Suppose that 0 < ε′ < ε � 1. We have

− Δa
pûε′ − Δqûε′ =

gε′

ûε′ + ε′ � gε

ûε′ + ε
in Ω. (7)

We introduce the Carathéodory function kε : Ω × R �→ R defined by

kε(z, x) =

{
gε(z)
x++ε if x � ûε′(z),

gε(z)
ûε′ (z)+ε if ûε′(z) < x

(8)

(recall that x+ = max{x, 0}). We set Kε(z, x) =
∫ x

0
kε(z, s)ds and consider

the C1-functional Ψε : W 1,ξ
0 (Ω) �→ R defined by

Ψε(u)=
1
p

∫

Ω

a(z)|Du|pdz +
1
q
‖Du‖q

q −
∫

Ω

Kε(z, u)dz for all u ∈ W 1,ξ
0 (Ω).

Note that

Ψε(u) � 1
p
ρε(Du) − c3 for some c3 > 0, all u ∈ W 1,ξ

0 (Ω)

(see (8) and recall that q < p),

⇒ Ψε(·) is a coercive (see Proposition 1).

Also, Ψε(·) is sequentially weakly lower semicontinuous. Therefore by
the Weierstrass–Tonelli theorem, we can find ũε ∈ W 1,ξ

0 (Ω) such that

Ψε(ũε) = min
{

Ψε(u) : u ∈ W 1,ξ
0 (Ω)

}
. (9)

Let u ∈ intC+. On account of (8) we see that for t ∈ (0, 1) small, we
have

Ψε(tu) < 0,

⇒ Ψε(ũε) < 0 = Ψε(0) (see (9)),

⇒ ũε �= 0.
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From (9) we have

Ψ′
ε(ũε) = 0,

⇒ 〈Aa
p(ũε), h〉 + 〈Aq(ũε), h〉 =

∫

Ω

kε(z, ũε)hdz for all h ∈ W 1,ξ
0 (Ω).

(10)

First we test (10) with h = −ũ−
ε ∈ W 1,ξ

0 (Ω). Then

ρε(Dũ−
ε ) � 0 (see (8)),

⇒ ũε � 0, ũε �= 0 (see Proposition 1).

Next, we test (10) with h = (ũε − ûε′)+ ∈ W 1,ξ
0 (Ω). We have

〈Aa
p(ũε), (ũε − ûε′)+〉 + 〈Aq(ũε), (ũε − ûε′)+〉

=
∫

Ω

gε

ûε + ε
(ũε − ûε′)+dz (see (8))

� 〈Aa
p(ûε′), (ũε − ûε′)+〉 + 〈Aq(ûε′), (ũε − ûε′)+〉 (see (7)),

⇒ ũε � ûε′ .

So, we have proved that

ũε ∈ [0, ûε′ ], ũε �= 0. (11)

From (11), (8), (10) and Proposition 3, we infer that

ũε = ûε,

⇒ ûε � ûε′ (see (11)).

This proof is now complete. �
Now we are ready to produce a positive solution for problem (2) (purely

singular, double phase unbalanced growth case).

Theorem 5. If hypotheses H hold, then problem (2) admits a unique positive
solution u0 ∈ W 1,ξ

0 (Ω).

Proof. Let εn = 1
n and ûn = ûεn

∈ W 1,ξ
0 (Ω) be the unique positive solution

of problem (3) (with ε = 1
n ), see Proposition 3. We have

〈Aa
p(ûn), h〉 + 〈Aq(ûn), h〉 =

∫

Ω

gn

ûn + 1
n

hdz (12)

for every h ∈ W 1,ξ
0 (Ω), all n ∈ N (recall that gn = gεn

= min {g, n} ∈ L∞(Ω),
gn � 0, gn �= 0 for all n ∈ N). In (12) we choose h = ûn ∈ W 1,ξ

0 (Ω) and obtain

ρε(Dûn) =
∫

Ω

gnûn

ûn + 1
n

dz �
∫

Ω

gndz � ‖g‖1,

⇒ {ûn}n∈N
⊆ W 1,ξ

0 (Ω) is bounded.

So, by passing to suitable subsequence if necessary, we may assume that
⎧
⎨

⎩

ûn
w−→ û in W 1,ξ

0 (Ω), ûn → û in Lp(Ω) (by hypotheses H, p < q∗),
ûn(z) → û(z) for a.a. z ∈ Ω,
0 � ûn(z) � γ(z) for a.a. z ∈ Ω, all n ∈ N and with γ ∈ Lp(Ω).

⎫
⎬

⎭
(13)
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Consider a test function h ∈ C1
c (Ω) and let K = supph ⊆ Ω. Using

Proposition 4 and (6), we have

0 < cK � û1(z) � ûn(z) for a.a. z ∈ K, all n ∈ N. (14)

We have

0 � gn(z)ûn(z)|h(z)|
ûn(z) + 1

n

� gn(z)|h(z)| � g(z)‖h‖∞

for a.a. z ∈ Ω, all n ∈ N.
We see that gn(z) → g(z) for a.a. z ∈ Ω. So, we have

gn(z)ûn(z)h(z)
ûn(z) + 1

n

→ g(z)û(z)h(z)
û(z)

for a.a. z ∈ Ω (see (13)).

Then using the Lebesgue dominated convergence theorem, we obtain

gnûnh

ûn + 1
n

→ gûh

û
in L1(Ω) as n → ∞. (15)

Moreover, from (13) and Theorem 2.1 of Boccardo and Murat [6], we
know that we may assume that

Dûn(z) → Dû(z) in R
N for a.a. z ∈ Ω.

It follows that

a(z)|Dûn|p−2(Dûn,Dh)RN → a(z)|Dû|p−2(Dû,Dh)RN for a.a. z ∈ Ω.

(16)

From (13) we see that
{|Dûn|p−2(Dûn,Dh)RN

}

n∈N
⊆ Lp

a(Ω) is bounded (recall that h ∈ C1
c (Ω)),

⇒ {
a(·)|Dûn|p−2(Dûn,Dh)RN

}

n∈N
is uniformly integrable. (17)

From (16), (17) and Vitali’s theorem (see, for example, Theorem 2.3.44
of Papageorgiou and Winkert [27, p. 124]), we have that

∫

Ω

a(z)|Dûn|p−2(Dûn,Dh)RN dz →
∫

Ω

a(z)|Dû|p−2(Dû,Dh)RN dz. (18)

In a similar fashion, we show that
∫

Ω

|Dûn|q−2(Dûn,Dh)RN dz →
∫

Ω

|Dû|q−2(Dû,Dh)RN dz. (19)

We return to (12), pass to the limit as n → ∞ and use (15), (18) and
(19). We obtain

〈Aa
p(û), h〉 + 〈Aq(û), h〉 =

∫

Ω

gh

û
dz for all h ∈ C1

c (Ω),

⇒ u1 � û.

Therefore û ∈ W 1,p
0 (Ω) is a positive solution of problem (2) and this

solution is unique on account of the strict monotonicity of V (·).
This proof is now complete. �
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4. Purely Singular Problem: Case η > 1

In this section, we deal with the purely singular problem (that is, f ≡ 0) and
when the exponent satisfies η > 1. We will do this in the context of double
phase problems with balanced growth. It is an open problem whether we can
have such an existence result for the unbalanced growth case. As it will be
evident from the proof, the lack of a global regularity theory, prevents us
from extending the result to unbalanced growth equations.

So, now the problem under consideration is the following:
⎧
⎨

⎩

−Δa
pu(z) − Δqu(z) =

g(z)
u(z)η in Ω,

u|∂Ω = 0, u � 0, 1 < q < p, 1 < η.

⎫
⎬

⎭
(20)

Now we assume that ∂Ω is of class C2 and the following conditions hold:
Ĥ: a ∈ C0,1(Ω) with a(z) � ĉ > 0 for all z ∈ Ω, g ∈ Lθ(Ω), (p∗)′ < θ,

1 < η < 2 − 1
θ , g(z) � 0 for a.a. z ∈ Ω, g �≡ 0 and 1 < q < p < N .

The weight a(·) is bounded away from zero and so the differential opera-
tor of problem (20) exhibits balanced growth. Also we have restricted further
the coefficient g(·). So, in the present setting by a positive solution of problem
(20), we understand a function u ∈ W 1,p

0 (Ω) such that

for all K ⊆ Ω compact, 0 < cK � u(z) for a.a. z ∈ K,

〈Aa
p(u), h〉 + 〈Aq(u), h〉 =

∫

Ω

g(z)
u(z)η hdz for all h ∈ W 1,p

0 (Ω).

The conditions on g(·) imply that the right-hand side of this equation
is well defined. Note that now on account of the balanced growth of ξ(z, ·),
problem (20) will be studied on the classical Sobolev space W 1,p

0 (Ω).

Theorem 6. If hypotheses Ĥ hold, then problem (20) admits a unique positive
solution û ∈ W 1,p

0 (Ω).

Proof. As before (see Sect. 3), we generate a nondecreasing sequence
{ûn}n∈N ⊆ W 1,p

0 (Ω) consisting of solutions of problem (4) with ε = 1
n , n ∈ N.

In the present case on account of the hypothesis on the weight a(·) (see hy-
potheses Ĥ), using the nonlinear regularity theory of Lieberman [18] and the
nonlinear maximum principle of Papageorgiou et al. [26] (see also Papageor-
giou et al. [24], Proposition A2 and Zhang [29, Theorem 1.2]), we have that
ûn ∈ intC+ for all n ∈ N.

Consider the Banach space C0(Ω) =
{

u ∈ C(Ω) : u

d̂
∈ C(Ω)

}
, where

d̂(z) = d (z, ∂Ω) for all z ∈ Ω. This is an ordered Banach space with positive
cone

K+ =
{
u ∈ C0(Ω) : u(z) � 0 for all z ∈ Ω

}
.

This cone has a nonempty interior given by

int K+ =
{

u ∈ C0(Ω) : cud̂ � u for some cu > 0
}

.
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By Lemma 14.16 of Gilbarg and Trudinger [15, p. 355], there exists δ0 > 0
such that d̂ ∈ C2(Ωδ0) with Ωδ0 =

{
z ∈ Ω : d̂(z) < δ0

}
. It follows that d̂ ∈

intC+ and so by Proposition 4.1.22 of Papageorgiou et al. [22, p. 274], we
can find 0 < c3 < c4 such that

c3d̂ � û1 � c4d̂ (recall that û1 ∈ int C+),

⇒ (c3d̂)(η−1)θ′ � û
(η−1)θ′

1

(
1
θ

+
1
θ′ = 1

)

. (21)

Hypotheses Ĥ imply that (η − 1)θ′ < 1 and so it follows that d̂(η−1)θ′ ∈
intK+. Using again Proposition 4.1.22 of Papageorgiou et al. [22, p. 274], we
can find c5 > 0 such that

û∗
1(p)(η−1)θ′ � c5d̂

(η−1)θ′
,

⇒ d̂(1−η)θ′ � c6û
∗
1(p)(1−η)θ′

for some c6 > 0. (22)

Since (η − 1)θ′ < 1, using the Lemma in Lazer and McKenna [17], we
have

û∗
1(p)(1−η)θ′ ∈ L1(Ω),

⇒ d̂(1−η)θ′ ∈ L1(Ω) (see (22)),

⇒ û
(1−η)θ′

1 ∈ L1(Ω) (see (21)). (23)

We have that

〈Aa
p(ûn), h〉 + 〈Aq(ûn), h〉 =

∫

Ω

gnh
(
ûn + 1

n

)η dz (24)

for all h ∈ W 1,p
0 (Ω), all n ∈ N.

In (24) we choose h = ûn ∈ W 1,p
0 (Ω) and obtain

ĉ‖Dûn‖p
p �

∫

Ω

gnûn
(
ûn + 1

n

)η dz �
∫

Ω

gn

ûη−1
n

dz �
∫

Ω

gû1−η
1 dz

(recall that û1 � ûn for all n ∈ N).
From (23) we see that û1−η

1 ∈ Lθ′
(Ω). Hence using Hölder’s inequality,

we have

ĉ‖Dûn‖p
p � ‖g‖θ‖û1−η

n ‖θ′ for all n ∈ N,

⇒ {û}n∈N
⊆ W 1,p

0 (Ω) is bounded.

So, we may assume that

ûn
w−→ û in W 1,p

0 (Ω) and ûn → û in Lp(Ω). (25)

In (24) we choose h = ûn − û ∈ W 1,p
0 (Ω). Note that

0 � gn(ûn − û)
(
ûn + 1

n

)η � gn

ûη−1
n

� gû1−η
1 ∈ L1(Ω).
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So, by the dominated convergence theorem, we have
∫

Ω

gn(ûn − û)
(
ûn + 1

n

)η dz → 0 (see (25)),

⇒ lim
n→∞

[〈Aa
p(ûn), ûn − û〉 + 〈Aq(ûn), ûn − û〉] = 0,

⇒ lim sup
n→∞

[〈Aa
p(ûn), ûn − û〉 + 〈Aq(û), ûn − û〉] � 0

(since Aq(·) is monotone),
⇒ lim sup

n→∞
〈Aa

p(ûn), ûn − û〉 � 0 (see (25)),

⇒ ûn → û in W 1,p
0 (Ω) (since Aa

p(·) is of type (S)+). (26)

On account of the hypothesis on θ (see hypotheses Ĥ), we can find s > 1
big such that 1

θ + 1
p∗ + 1

s < 1. Since û1 ∈ intC+, we can find c7 > 0 such

that û∗
1(p)

1
sη2 � c7û1, hence û−η

1 � c8û
∗
1(p)− 1

sη . But since η > 1, û∗
1(p)− 1

sη ∈
Ls(Ω), hence û−η

1 ∈ Ls(Ω). Note that by the generalized Hölder inequality
(see Proposition 2.3.16 of Papageorgiou and Winkert [27, p. 115]), we have

0 � gn|h|
(
ûn + 1

n

)η � g|h|
ûη

1

∈ L1(Ω) for all h ∈ W 1,p
0 (Ω).

Therefore passing to the limit as n → ∞ in (24) and using the dominated
convergence theorem, we obtain

〈Aa
p(û), h〉 + 〈Aq(û), h〉 =

∫

Ω

gh

ûη
dz for all h ∈ W 1,p

0 (Ω),

⇒ û1 � û.

It follows that û ∈ W 1,p
0 (Ω) is a positive solution of problem (20). The

strict monotonicity of V (·) implies the uniqueness of this positive solution.
This proof is now complete. �

5. Superlinear Perturbation

In this section we deal with the following parametric and perturbed version
of the purely singular problem:

⎧
⎨

⎩

−Δa
pu(z) − Δqu(z) =

λg(z)
u(z)η + f(z, u(z)) in Ω,

u|∂Ω = 0, u � 0, 1 < q < p, 1 < η, λ > 0.

⎫
⎬

⎭
(27)

In this problem, λ > 0 is the parameter and f(z, x) is the perturbation
of the singularity. We impose the following conditions on f(z, x).

H0: f : Ω × R �→ R is Carathéodory function, f(z, 0) = 0 for a.a. z ∈ Ω
and

(i) 0 � f(z, x) � a(z)
(
1 + xr−1

)
for a.a. z ∈ Ω, all x � 0, with a ∈ L∞(Ω),

p < r < p∗;
(ii) if F (z, x) =

∫ x

0
f(z, s)ds, then limx→+∞

F (z,x)
xp = +∞ uniformly for a.a.

z ∈ Ω;
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(iii) there exists τ ∈
(
(r − p)N

p , p∗
)

such that

0 < β̂0 � lim inf
x→+∞

f(z, x)x − pF (z, x)
xτ

uniformly for a.a. z ∈ Ω;

(iv) limx→0+
f(z,x)
xq−1 = 0 uniformly for a.a. z ∈ Ω.

Remark 2. Since we are looking for positive solutions and the above hy-
potheses concern the positive semiaxis R+ = [0,+∞), without any loss of
generality, we may assume that

f(z, x) = 0 for a.a. z ∈ Ω, all x � 0. (28)

Hypotheses H0(ii), (iii) imply that f(z, ·) is (p − 1)-superlinear, that is,
we have

lim
x→+∞

f(z, x)
xp−1

= +∞ uniformly for a.a. z ∈ Ω.

However, f(z, x) need not satisfy the AR-condition (see [1]), which is
common in the literature, when we study superlinear problems. For example,
consider the function f(x) = xp−1 ln(1+x) for all x � 0 (for the sake of sim-
plicity of have dropped the z-dependence). This function satisfies hypotheses
H0 but fails to satisfy the AR-condition.

As before, by a positive solution of problem (27) we understand a func-
tion u ∈ W 1,p

0 (Ω) such that

for all K ⊆ Ω compact, 0 < cK � u(z) for a.a. z ∈ K,

〈Aa
p(u), h〉 + 〈Aq(u), h〉 =

∫

Ω

g(z)h

uη
dz +

∫

Ω

f(z, u)hdz for all h ∈ W 1,p
0 (Ω).

Under hypotheses Ĥ, the first integral of the right-hand side is well
defined. Similarly, hypotheses H0 imply that the second integral of the right-
hand side is well defined.

Theorem 7. If hypotheses Ĥ, H0 hold, then for all λ > 0 problem (27) admits
a positive solution.

Proof. First we consider the following auxiliary purely singular problem
⎧
⎨

⎩

−Δa
pu(z) − Δqu(z) = λ

g(z)
u(z)η in Ω,

u|∂Ω = 0, u � 0, 1 < q < p, 1 < η, λ > 0.

⎫
⎬

⎭

According to Theorem 6, for every λ > 0 this problem admits a unique
positive solution ûλ ∈ W 1,p

0 (Ω) such that

vλ � ûλ with vλ ∈ int C+. (29)

As in the proof Theorem 6, we can find s > 1 big such that

vλ
−η ∈ Ls(Ω)

and then via the generalized Hölder inequality, we have

gvλ
−η ∈ Lp′

(Ω). (30)
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We introduce the Carathéodory function jλ : Ω × R �→ R defined by

jλ(z, x) =

{
λg(z)vλ(z)−η + f(z, x) if x � vλ(z)
λg(z)x−η + f(z, x) if vλ(z) < x

(see (28)). (31)

We set Jλ(z, x) =
∫ x

0
jλ(z, s)ds and consider the functional

ϕλ : W 1,p
0 (Ω) → R defined by

ϕλ(u) =
1
p

∫

Ω

a(z)|Du|pdz +
1
q
‖Du‖q −

∫

Ω

Jλ(z, u)dz

for all u ∈ W 1,p
0 (Ω).

On account of (30), we have that ϕλ ∈ C1(W 1,p
0 (Ω),R).

Hypotheses H0(i), (iv) imply that given ε > 0, we can find c9 = c9(ε) >
0 such that

F (z, x) � ε

q
xq + c9x

r for a.a. z ∈ Ω, all x ∈ R (see (28)). (32)

From (30) we see that

λ

∫

Ω

gvλ
−ηudz � λc10‖u‖ for some c10 > 0, all u ∈ W 1,p

0 (Ω). (33)

Using (31), (32) and (33), we have that

ϕλ(u) � ĉ

p
‖Du‖p

p +
1
q

(‖Du‖q
q − ε‖u‖q

q

) − c11 (‖u‖r + λ‖u‖) (34)

for some c11 > 0.
Let λ̂1(q) > 0 be the principal eigenvalue of (−Δq,W

1,q
0 (Ω)). Then from

the variational characterization of λ̂1(q) > 0 (see Gasinski and Papageorgiou
[13, p. 732]), we have

‖Du‖q
q − ε‖u‖q

q �
(

1 − ε

λ̂1(q)

)

‖Du‖q
q.

Choosing ε ∈
(
0, λ̂1(q)

)
, from (34) we have

ϕλ(u) � ĉ

p
‖Du‖p

p − c11 (‖u‖r + λ‖u‖)

=
(

ĉ

p
− c11

(‖u‖r−p + λ‖u‖1−p
)
)

‖u‖p. (35)
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Consider the function γλ(t) = tr−p + λt1−p, t > 0. Since 1 < p < r, we
see that γλ(t) → +∞ as t → +∞. So, we can find t0 > 0 such that

γλ(t0) = min
t>0

γ(t),

⇒ γ′
λ(t0) = 0,

⇒ t0 =
(

λ(p − 1)
r − p

) 1
r−1

,

⇒ γλ(t0) = λ
r−p
r−1

(
p − 1
r − p

) r−p
r−1

+ λ
r−p
r−1

(
r − p

p − 1

) p−1
r−1

,

⇒ γλ(t0) → 0+ as λ → 0+ (recall that 1 < p < r).

So, we can find λ∗ > 0 such that

γλ(t0) <
ĉ

c11p
for all λ ∈ (0, λ∗). (36)

From (35) and (36) it follows that

ϕλ(0) = 0 < inf {ϕλ(u) : ‖u‖ = t0(λ) = ρλ} = mλ for all λ ∈ (0, λ∗).(37)

Let u ∈ int C+. Using hypothesis H0(ii), we deduce that

ϕλ(tu) → −∞ as t → +∞. (38)

Claim: ϕλ(·) satisfies the C-condition for every λ > 0.
We consider a sequence {un}n∈N ⊆ W 1,p

0 (Ω) such that

|ϕλ(un)| � c12 for some c12 > 0, all n ∈ N, (39)

(1 + ‖un‖)ϕ′
λ(un) → 0 in W−1,p′

(Ω) as n → ∞. (40)

From (40) we have
∣
∣
∣
∣〈Aa

p(un), h〉 + 〈Aq(un), h〉 −
∫

Ω

jλ(z, un)hdz

∣
∣
∣
∣ � εn‖h‖

1 + ‖un‖ (41)

for all h ∈ W 1,p
0 (Ω), with εn → 0+.

In (41) we choose h = −u−
n ∈ W 1,p

0 (Ω). Using (28), (30) and (31) we
obtain

ĉ‖Du−
n ‖p

p � c13 for some c13 > 0, all n ∈ N. (42)

From (39) and (42), we have
∫

Ω

a(z)|Du+
n |pdz +

p

q
‖Du+

n ‖q
q −

∫

{un�vλ}
pλg(z)vλ

−ηu+
n dz

− 1
1 − η

∫

{vλ<un}
pλg(z)u1−η

n dz

−
∫

Ω

pF (z, u+
n )dz � c14 (43)

for some c14 > 0, all n ∈ N.
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Also if in (41) we choose h = u+
n ∈ W 1,p

0 (Ω), then we have

−
∫

Ω

a(z)|Du+
n |pdz − ‖Du+

n ‖q
q +

∫

{un�vλ}
λg(z)vλ

−ηu+
n dz

+
∫

{vλ<un}
λg(z)u1−η

n dz

+
∫

Ω

f(z, u+
n )u+

n dz � εn for all n ∈ N. (44)

Adding (43) and (44) and recalling that q < p, 1 < η, we obtain
∫

Ω

(
f(z, u+

n )u+
n − pF (z, u+

n )
)
dz � c15 for some c15 > 0, all n ∈ N. (45)

On account of hypotheses H0(i), (iii), given β̂1 ∈
(
0, β̂0

)
, we can find

c16 = c16(β̂1) > 0 such that

β̂1x
τ − c16 � f(z, x)x − pF (z, x) for a.a. z ∈ Ω, all x � 0. (46)

Using (46) in (45), we obtain
{
u+

n

}

n∈N
⊆ Lτ (Ω) is bounded. (47)

From hypothesis H0(iii), it is clear that we can always assume that
τ < r < p∗. So, we can find t ∈ (0, 1) such that

1
r

=
1 − t

τ
+

t

p∗ . (48)

Invoking the interpolation inequality (see Proposition 2.3.17 of Papa-
georgiou and Winkert [27, p. 116]), we have

‖u+
n ‖r � ‖u+

n |1−t
τ ‖u+

n |tp∗ for all n ∈ N,

⇒ ‖u+
n ‖r

r � c17‖u+
n |tr for some c17 > 0, all n ∈ N. (49)

Note that hypothesis H0(i) implies that

0 � f(z, x)x � c18 (1 + xr) for a.a. z ∈ Ω, all x � 0, some c18 > 0. (50)

In (41) we choose h = u+
n ∈ W 1,p

0 (Ω) and obtain

ĉ‖Du+
n ‖p

p � c19 +
∫

Ω

f(z, u+
n )u+

n dz for some c19 > 0

� c20

(
1 + ‖u+

n ‖tr
)

for some c20 > 0, all n ∈ N (see (50), (49)),

⇒ ‖u+
n ‖p � c21

(
1 + ‖u+

n ‖tr
)

with c21 =
c20

ĉ
, all n ∈ N. (51)

From (48) and hypothesis H0(iii) it follows that

tr < p.

Therefore from (51) we infer that
{
u+

n

}

n∈N
⊆ W 1,p

0 (Ω) is bounded. (52)

From (42) and (52) we infer that

{un}n∈N
⊆ W 1,p

0 (Ω) is bounded.
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So, we may assume that

un
w−→ u in W 1,p

0 (Ω) and un → u in Lr(Ω). (53)

In (41) we choose h = un−u ∈ W 1,p
0 (Ω) and pass to the limit as n → ∞.

Then as in the proof of Theorem 6, using (53) and the (S)+-property of Aa
p(·),

we obtain that

un → u in W 1,p
0 (Ω),

⇒ ϕλ(·) satisfies the C-condition.

This proves the Claim.
Then (37), (38) and the Claim, permit the use of the mountain pass

theorem. So, there exists u0 ∈ W 1,p
0 (Ω) such that

ϕ′
λ(u0) = 0 and mλ � ϕλ(u0) for all λ ∈ (0, λ∗). (54)

From (54) and (37), we see that u0 �= 0 and

〈Aa
p(u0), h〉 + 〈Ap(u0), h〉 =

∫

Ω

jλ(z, u0)hdz for all h ∈ W 1,p
0 (Ω). (55)

In (55) we choose h = (vλ − u0)
+ ∈ W 1,p

0 (Ω). Then

〈Aa
p(u0), (vλ − u0)

+〉 + 〈Aq(u0), (vλ − u0)
+〉

=
∫

Ω

(
λg(z)vλ

−η + f(z, u0)
)
(vλ − u0)

+ dz (see (31))

�
∫

Ω

λg(z)vλ
−η (vλ − u0)

+ dz (since f � 0, see hypothesis H0(i))

= 〈Aa
p(vλ), (vλ − u0)

+〉 + 〈Aq(vλ), (vλ − u0)
+〉

(since vλ ∈ int C+ is a solution of problem (4)),
⇒ vλ � u0.

Therefore from (31) and (55) we conclude that u0 is a positive solution
of problem (20). The proof is now complete. �

Remark 3. In the unbalanced double phase case, due to the lack of a global
regularity theory, we do not control the integrability properties of the singular
term vλ

−η. Hence the technique of truncation at vλ(z) to bypass the singular-
ity, does not work. So, for unbalanced double phase problems with a superlin-
ear perturbation, the existence of positive solutions is an open problem. An-
other interesting open problem, is what can be said when η = 1. For this case,
may be a promising approach, is to consider a sequence {ηn}n∈N

⊆ (1,+∞)
such that ηn ↓ 1 and use the solution of the approximating problems to
produce in the limit as n → ∞, a solution of the original problem.
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