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SUMMARY

We study a class of time-independent non-linear Schr�odinger-type equations on the whole space with
a repulsive singular potential in the divergence operator and we establish the existence of non-trivial
standing wave solutions for this problem in an appropriate weighted Sobolev space. Such equations
have been derived as models of several physical phenomena. Our proofs rely essentially on critical
point theory tools combined with the Ca�arelli–Kohn–Nirenberg inequality. Copyright ? 2003 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper is motivated by several works on non-linear Schr�odinger equations. Problems of
this type appear in the study of several physical phenomena: self-channelling of a high-power
ultra-short laser in matter [1–4], in the theory of Heisenberg ferromagnets and magnons [5–9]
in dissipative quantum mechanics [10] in condensed matter theory [11], in plasma physics
(e.g. the Kurihara super�uid �lm equation) [12–15], etc.
Consider the model problem

i˝ t = − ˝2
2m
� + V (x) − �| |p−1 in RN (1)

where p¡2∗. In the study of this equation Oh [16] supposed that the potential V is bounded
and possesses a non-degenerate critical point at x=0. More precisely, it is assumed that
V belongs to the class (Va) (for some a) introduced in Kato [17]. Taking �¿0 and ˝¿0
su�ciently small and using a Lyapunov–Schmidt-type reduction, Oh proved the existence of
a standing wave solution of (1), i.e. a solution of the form

 (x; t)= e−iEt=˝u(x) (2)
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Note that substituting the ansatz (2) into (1) leads to

−˝
2

2
�u+ (V (x)− E)u= |u|p−1u

The change of variable y=˝−1x (and replacing y by x) yields

−�u+ 2(V̋ (x)− E)u= |u|p−1u (3)

where V̋ (x)=V (˝x).
Our goal is to show how variational methods can be used to �nd existence results for

stationary non-linear Schr�odinger equations. In particular, some classes of highly oscillatory
potentials in the class (Va) are allowed. Our approach is based on the fact that many non-
linear problems such as those that naturally arise in the study of geodesics, minimal surfaces,
harmonic maps, conformal metrics with prescribed curvature, subharmonics of Hamiltonian
systems, solutions of boundary value problems and Yang–Mills �elds can all be characterized
as critical points u of some energy functional I on an appropriate manifold X , i.e. I ′(u)=0.
We study in this paper non-linear Schr�odinger equations of form (3), but with a degenerate

potential under the divergence operator. We point out that the study of degenerate elliptic
boundary value problems was initiated in Mikhlin [18,19] and many papers were devoted in
the past decades to the study of several questions related to these problems. We refer only to
Murthy–Stampacchia [20], Baouendi–Goulaouic [21], Stredulinsky [22] Caldiroli–Musina [28]
and the references therein.

2. THE MAIN RESULT

We are concerned with a problem on the existence of critical points and how they relate to
the (weak) solutions they represent for the corresponding Euler–Lagrange equations. More
precisely, we study the existence of non-trivial solutions to degenerate elliptic equations of
the type

−div(A(x)∇u)= g(x; u); x∈RN

where the weight A is a non-negative measurable function that is allowed to have ‘essential’
zeroes at some points or even to be unbounded. Problems of this type come from the con-
sideration of standing waves in anisotropic Schr�odinger equations. A model equation that we
consider in this paper is

−div(|x|�∇u)=f(x; u)− b(x)u; x∈RN

The main interest of this equation is the presence of the singular potential |x|� in the di-
vergence operator. Problems of this type arise in many areas of applied physics, including
nuclear physics, �eld theory, solid waves, and problems of false vacuum. These problems
are introduced as models for several physical phenomena related to equilibrium of continuous
media which may somewhere be ‘perfect’ insulators, cf. [23, p. 79]. These equations are
reduced to elliptic equations with Hardy singular potential. For example, the solutions of the
model problem

−div(|x|�∇u)= |x|�pup−1; u¿0 in RN
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are in one-to-one correspondence to solutions of the Schr�odinger-type equation with Hardy
potential

−div(|x|�∇v) +
�

|x|2+� v= |x|�pvp−1; u¿0 in RN

where

�=
√
(N − 2 + �)2 + 4�− N + 2

and

�= �− N − 2 + �
2

+

√(
N − 2 + �

2

)2
+ �

A straightforward computation shows that this correspondence is given by

u(x)= |x|(N−2+�)=2−
√
((N−2+�)=2)2+�v(x)

The starting point of the variational approach to problems of this type is the following
inequality which can be obtained essentially ‘interpolating’ between Sobolev’s and Hardy’s
inequalities [24].

Lemma 1 (Ca�arelli–Kohn–Nirenberg)
Let N¿2; �∈ (0; 2) and denote 2∗� =2N=(N − 2 + �). Then there exists C�¿0 such that(∫

RN
|’|2∗� dx

)2=2∗�
6C�

∫
RN

|x|�|∇’|2 dx

for every ’∈C∞
0 (R

N ).

Consider the problem

−div(|x|�∇u) + b(x)u=f(x; u) in RN (4)

where N¿3; 0¡�¡2. Suppose that b and f satisfy the hypotheses:

(b1) b∈L∞
loc(R

N\{0}) and there exists b0¿0 such that b(x)¿b0, for any x∈RN ;
(b2) lim|x|→∞ b(x)= lim|x|→0 b(x)=∞;
(f1) f∈C1(RN ×R); f=f(x; z), with f(x; 0)=0=fz(x; 0) for all x∈RN ;
(f2) there exist a1; a2¿0 and s∈ (1; (N + 2− �)=(N − 2 + �) such that

|fz(x; z)|6a1 + a2|z|s−1 ∀x∈RN ∀z ∈R
(f3) there exists �¿2 such that

0¡�F(x; z) :=�
∫ z

0
f(x; t) dt6zf(x; z) ∀x∈RN ∀z ∈R\{0}

The function b(x)= e|x|=|x| satis�es hypotheses (bl)–(b2), while the mapping f(x; z)=R(x)
zs satis�es assumptions (f1)–(f3) for s given in (f2) and R∈C1(RN )∩L∞(RN ) is a positive
function.
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We point out that problem (4) (for �=0) was studied in References [26,29] (see Reference
[25] for a non-smooth treatment of this problem). More precisely, under similar assumptions
on b and f, Rabinowitz shows that the problem

−�u+ b(x)u=f(x; u) x∈RN (5)

has a non-trivial solution u∈H 1(RN ).
Let E be the space de�ned as the completion of C∞

0 (R
N\{0}) with respect to the norm

‖u‖2 :=
∫
RN
(|x|�|∇u|2 + b(x)u2) dx

We denote by E∗ the dual space of E. We are seeking solutions in D1;2
� (RN ), which is de�ned

as the completion of C∞
0 (R

N ) with respect to the inner product

〈u; v〉� :=
∫
RN

|x|�∇u∇v dx

Recall that D1;2
� (RN ) is a Hilbert space with respect to the norm

‖u‖2� :=
∫
RN

|x|�|∇u|2 dx

We say that u∈D1;2
� (RN ) is a weak solution of (4) if∫

RN
(|x|�∇u∇v+ b(x)uv) dx −

∫
RN

f(x; u)v dx=0

for all v∈C∞
0 (R

N ).

Remark 1
Since D1;2

� (RN )=C∞
0 (RN\{0})‖·‖� (see Reference [27]) we deduce that E⊂D1;2

� (RN ).

Remark 2
If 	 is a bounded domain in RN and 0 =∈ 
	 then the embedding D1;2

� (	) ,→L2
∗
� (	) is compact

for �∈ (0; 2).
We prove

Theorem 1
Assume conditions (b1)–(b2) and (f1)–(f3) are ful�lled. Then (4) has a non-trivial weak
solution.

3. PROOF OF THEOREM 1

We �rst observe that the weak solutions of (4) correspond to the critical points of the energy
functional

I(u) :=
1
2

∫
RN
(|x|�|∇u|2 + b(x)|u|2) dx −

∫
RN

F(x; u) dx
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where u∈E⊂D1;2
� (RN ). A simple calculation based on Lemma 1, Remark 2 and the conditions

(f1)–(f3) on f shows that I is well de�ned on E and I ∈C1(E;R) with

〈I ′(u); v〉=
∫
RN
(|x|�∇u∇v+ b(x)uv) dx −

∫
RN

f(x; u)v dx

for all u; v∈E. We have denoted by 〈; 〉 the duality pairing between E and E∗.

Lemma 2
If (b1),(b2), (f1)–(f3) hold then there exist %¿0 and a¿0 such that for all u∈E with
‖u‖= %,

I(u)¿a¿0

Proof
Using (f1) we have

lim
z→0

F(x; z)
z2

= lim
z→0

f(x; z)
2z

= lim
z→0

1
2
fz(x; z)=0 (6)

for all x∈RN . From (f2) and (f3) we obtain

06F(x; z)6A1|z|2 + A2|z|s+1 (7)

where A1; A2 are positive constants. We conclude that

lim
z→∞

F(x; z)
z2∗�

=0 (8)

Using (6), (8), we deduce that for every �¿0, there exists �1; �2¿0 such that

F(x; z)¡�z2 for all z with |z|¡�1

F(x; z)¡�z2
∗
� for all z with |z|¿�2

Relation (7) implies that there exists a constant C¿0 such that

F(x; z)6C for all z with |z| ∈ [�1; �2]

We conclude that for all �¿0 there exists C�¿0 such that

F(x; z)6�|z|2 + C�|z|2∗� (9)

Using (9) and Lemma 1 we deduce that

I(u) =
1
2
‖u‖2 −

∫
RN

F(x; u) dx

¿
1
2
‖u‖2 − �

∫
RN

|u|2 dx − C�

∫
RN

|u|2∗� dx
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¿
1
2
‖u‖2 − �

b0

∫
RN

b(x)|u|2 dx − C�

∫
RN

|u|2∗� dx

¿ ‖u‖2
[(
1
2
− �

b0

)
− C�‖u‖2∗� −2

]
¿a¿0

for some �xed �∈ (0; 12 b0), where a and ‖u‖ are su�ciently small.
Lemma 3
Assume conditions (b1), (b2) and (f1)–(f3) hold true.
Then there exists e∈E with ‖e‖¿% (% given in Lemma 2) such that

I(e)¡0

Proof
Using (f3) we deduce that F(x; z)¿A3|z|�, for |z| large enough, where A3¿0 is a constant.
Let u∈E be �xed. Then, since �¿2, we have

I(tu)6
t2

2
‖u‖2 −

∫
{x;|tu|6�}

F(x; tu) dx − A3|t|�
∫
{x;|tu|¿�}

|u|� dx

6
t2

2
‖u‖2 − A3|t|�

∫
{x;|tu|¿�}

|u|� dx

Hence I(tu)→ −∞ as t→∞ which concludes our lemma.

Lemma 4
Suppose that the hypotheses of Lemmas 2 and 3 are ful�lled. Set

� := {�∈C([0; 1]; E); �(0)=0; �(1)= e}
where e is given in Lemma 3 and c := inf�∈� maxt∈[0;1] I(�(t)).
Then c¿0.

Proof
It is obvious that c¿0 because c¿ inf�∈� maxt∈{0;1} I(�(t)) and

�(0) = 0⇒ I(�(0))= I(0)=0

�(1) = e⇒ I(�(1))= I(1)= e¡0

By contradiction, assume that c=0. Then 0= inf�∈� maxt∈[0;1] I(�(t)). It follows that

(1) maxt∈[0;1] I(�(t))¿0, ∀�∈�;
(2) for all �¿0 there exists �� ∈� such that maxt∈[0;1] I(��(t))¡�.

Using a given by Lemma 2 we �x 0¡�¡a. We have ��(0)=0; ��(1)= e. Hence
‖��(0)‖=0; ‖��(1)‖= ‖e‖¿% (where % is given by Lemma 2). But the application
t 
→ ‖��(t)‖ is continuous and thus we conclude that there exists t� ∈ [0; 1] such that
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‖��(t�)‖= %. Then I(��(t�))¿a¿� and we thus obtain a contradiction with 2). We conclude that
c¿0 and our result follows.

Proof of Theorem 1
Using Lemma 4 and the Mountain Pass Theorem we �nd {un}⊂E such that

I(un)→ c; I ′(un)→ 0 (10)

We claim that {un} is bounded in E. Arguing by contradiction and passing eventually to a
subsequence, we have ‖un‖→∞. Using (f3) it follows that for n large enough,

c+ 1+ ‖un‖¿ I(un)− 1
�
〈I ′(un); un〉

=
(
1
2
− 1

�

)
‖un‖2 +

∫
RN

(
1
�
unf(x; un)− F(x; un)

)
dx

¿
(
1
2
− 1

�

)
‖un‖2

Now dividing by ‖un‖ and passing to limit we obtain a contradiction. Hence {un} is bounded
in E, say by M . So, up to a subsequence, {un} converges weakly in E to some u∈E, and
strongly in L2

∗
� (	), for all 	 bounded domains in RN with 0 =∈ 
	 (see Remark 2). If we prove

that

〈I ′(un); ’〉→ 〈I ′(u); ’〉 ∀’∈C∞
0 (R

N\{0})
then, by (10), u is a weak solution of (4). To do this, let ’∈C∞

0 (R
N\{0}) be �xed. We set

	= supp(’) (0 =∈ 
	). Since un → u in E it follows that

lim
n→∞

∫
RN
(|x|�∇un∇’+ b(x)un’) dx=

∫
RN
(|x|�∇u∇’+ b(x)u’) dx

Furthermore, by (f2) and the H�older inequality,∣∣∣∣
∫
	
(f(x; un)− f(x; u))’(x) dx

∣∣∣∣6
∫
	
|f(x; un)− f(x; u)| · |’(x)| dx

6 ‖’‖L∞(	)

∫
	
|fz(x; vn)| · |un − u|dx

6 ‖’‖L∞(	)

∫
	
[a1 + a2|vn(x)|s−1] · |un(x)− u(x) dx

6 ‖’‖L∞(	)[a1‖un − u‖L1(	) + a2‖vn‖s−1Ls(	) · ‖un − u‖Ls(	)]

where vn(x)∈ [un(x); u(x)], for all x∈	 and for all n¿1. Taking into account that un → u
strongly in Li(	), for all i∈ [1; 2∗� ] and remarking that for all x∈	 and for all n¿1 there
exists �n(x)∈ [0; 1] such that vn(x)= �n(x)un(x) + [1− �n(x)]u(x) we deduce∫

	
|vn − u|s dx=

∫
	
|�n(x)|s|un − u|s dx6

∫
	
|un − u|s dx→ 0 as n→∞

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:897–906
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It follows that ∫
	
|vn|s dx→

∫
	
|u|s dx as n→∞

From the above considerations we obtain∣∣∣∣
∫
	
(f(x; un)− f(x; u))’(x) dx

∣∣∣∣ → 0 as n→∞

and we conclude that

〈I ′(un); ’〉→ 〈I ′(u); ’〉
for all ’∈C∞

0 (R
N\{0}). To end the proof of Theorem 1 it remains to show that u �≡ 0. For

n large enough, using (10), we have

c
2
6I(un)− 1

2
〈I ′(un); un〉=

∫
RN

[
1
2
f(x; un)un − F(x; un)

]
dx (11)

By (f2), it follows that

|f(x; z)|6B1|z|+ B2|z|s

for some constants B1; B2¿0. Hence

lim
z→∞

|f(x; z)|
|z|2∗� −1 = 0

Furthermore, by (f1),

lim
z→0

f(x; z)
z

= lim
z→0

fz(x; z)=fz(x; 0)=0

As in the proof of Lemma 2 we may state that for all �¿0, there exists some D�¿0 such
that

|f(x; z)|6�|z|2∗� −1 +D�|z| (12)

From (11) and (12) and Lemma 1 we obtain

c
2
6
∫
RN

[ �
2
|un|2∗� +D�|un|2

]
dx6

�
2
C�‖un‖2∗� +D�

∫
RN

|un|2 dx

Choose � such that
�
2
C�M 2∗�6

c
4

Then
c
4
6A‖un‖2L2(RN )
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where A¿0 is a constant. We suppose, by contradiction, that u≡ 0. From un → 0 in L2
∗
� (	)

for all bounded domain 	⊂RN with 0 =∈ 
	, it follows that un → 0 in L2(	). If 0¡r¡R we
set 	 :=BR(0)\ 
Br(0). Then there exists m0 =m0(r; R) such that for all n¿m0 we have

A‖un‖2L2(	)6
c
8

Therefore,

c
8
6 A‖un‖2L2(RN\	)

6
A

inf |x|¿R b(x)

(∫
|x|¿R

b(x)|un|2 dx
)
+

A
inf |x|6r b(x)

(∫
|x|6r

b(x)|un|2 dx
)

6 AM
[

1
inf |x|¿R b(x)

+
1

inf |x|6r b(x)

]

Now using (b2) we remark that R can be made so large and r can be taken so small so
that the right hand side of the last inequality becomes less than c=8, a contradiction. This
concludes our proof.
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