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We consider the Navier problem

−Δ2
k,pu(x) = 𝑓 (x,u(x),∇u(x),Δu(x)) in Ω, u |𝜕Ω = Δu| 𝜕Ω = 0,

driven by the sign-changing (degenerate) Kirchhoff type p(x)-biharmonic oper-
ator, and involving a (∇u,Δu)-dependent nonlinearity 𝑓 . We prove the existence
of solutions, in weak sense, defining an appropriate Nemitsky map for the non-
linearity. Then, the Brouwer fixed point theorem assessed for a Galerkin basis of
the Banach space W2,p(x)(Ω)∩W1,p(x)

0 (Ω) leads to the existence result. The case of
nondegenerate Kirchhoff type p(x)-biharmonic operator is also considered with
respect to the theory of pseudo-monotone operators, and an asymptotic analysis
is derived.
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1 INTRODUCTION

In this article we study equations whose main operator is a degenerate (sign-changing) Kirchhoff type p(x)-biharmonic
operator, namely, u → −Δ2

k,pu, for a function u given on a bounded domain Ω ⊆ RN with smooth boundary 𝜕Ω. The
appropriate setting to develop this study is the Banach space W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω), where W r,p(x)(Ω) (r ≥ 1) means the
generalized variable exponent Sobolev space, and W 1,p(x)

0 (Ω) is the closure of C∞
0 (Ω) in W 1,p(x)(Ω) (see Section 2 for the pre-

cise notion). Here, the exponent p leaves in C(Ω̄) and possesses sufficient regularities. The new operatorΔ2
k,p is constructed

over the p(x)-biharmonic operator Δ2
p(x) (of fourth order) whose formula links to the p(x)-Laplace operator. Indeed, for

a p(x)-Laplace operator Δp(x)u = div(|∇u|p(x)−2∇u) for all u ∈ W 1,p(x)
0 (Ω), we have the corresponding p(x)-biharmonic

operator Δ2
p(x)u = Δ(|Δu|p(x)−2Δu). Starting from the sign-changing Kirchhoff type weight defined by

K(p,Δu) = a − b∫
Ω

1
p(x)
|Δu|p(x)dx, with a, b > 0, (1)
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RĂDULESCU AND VETRO

we introduce the operator

Δ2
k,pu = K(p,Δu)Δ2

p(x)u =
⎛⎜⎜⎝a − b∫

Ω

1
p(x)
|Δu|p(x)dx

⎞⎟⎟⎠Δ2
p(x)u,

for all u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω), and consequently, we define the Navier problem

−Δ2
k,pu(x) = 𝑓 (x,u(x),∇u(x),Δu(x)) in Ω, u |𝜕Ω = Δu| 𝜕Ω = 0. (𝑃 )

We remark that the p(x)-Laplace operator, in contrast to the isotropic p-Laplacian (i.e., the case p(x) = p = constant),
is not homogeneous and this is a source of difficulties in the analysis of anisotropic problems. According to the relevant
literature on the variable exponents Sobolev spaces (see the book of Rădulescu and Repovš1), we assume that p ∈ C(Ω̄)
satisfies the bound condition

1 < p− = inf
x∈Ω

p(x) ≤ p(x) ≤ p+ = sup
x∈Ω

p(x) < +∞.

To complete the presentation of the problem, we point out that the nonlinearity is assumed of Carathéodory type (i.e., for
all (z, 𝑦, v) ∈ R×RN ×R, x → 𝑓 (x, z, 𝑦, v) is measurable and for almost all x ∈ Ω, (z, 𝑦, v) → 𝑓 (x, z, 𝑦, v) is continuous). The
∇u-dependence is appropriate to cover the physical situations where convective phenomena of fluid dynamics cannot be
neglected (and hence, there is energy transfer accomplished by particles motion). Moreover, we recall a classical direction
of research aimed to analyze situations when 𝑓 depends on the derivatives of u (see, e.g., Carrião et al,2 and the references
therein). These situations motivate our choice to consider a∇u-dependent nonlinearity. About Equation (1), we recall that
the Kirchhoff weight is a useful way to represent (in a physical model setting) how transverse vibrations imply changes
in length of a string/beam. In details, Kirchhoff3 provided a generalization of the D'Alembert wave equation

𝜌
𝜕2u
𝜕t2 −

⎛⎜⎜⎝
P0

h
+ E

2L

L

∫
0

||||𝜕u
𝜕x
||||2dx
⎞⎟⎟⎠ 𝜕

2u
𝜕x2 = 0,

with 𝜌,P0, h,E,L denoting physical parameters (i.e., mass density, initial tension, area of the cross-section, Young modulus
of the material, and length of the string), to describe the changes in string length subject to free vibrations. Referring to
the main equation in (P) in this setting, then u means the displacement, the coefficients a and b mean, respectively, the
intrinsic features and initial tension of the string, finally 𝑓 (x,u,∇u,Δu) represents the external force acting on it. On the
other hand, we recall that fourth-order elliptic type equations are useful to describe physical phenomena as diffusion on
solids, phase field models of multiphasic systems and others (see also Kefi and Rădulescu,4 Section 1). As we will say in
the sequel, there is an active literature on establishing the existence and nonexistence of solutions to this type of problems
under general conditions for the nonlinearity (see again Kefi and Rădulescu4) and adopting the techniques of the Calculus
of Variations (we remark that the nonexistence of a priori estimates, with respect to the norms of the gradient and the
Laplacian of solution, is the main difficulty in using variational techniques). Turning to the mathematical content of our
manuscript, we aim to obtain existence results of weak solutions to (P) (see Equation 5). Since the (∇u,Δu)-dependent
nonlinearity cannot be considered using variational methods, we adopt topological tools. Precisely, we center the proof on
fixed-point arguments, and the preparation work is made from two perspective: The introduction of a suitable Nemitsky
map linked to the nonlinearity 𝑓 (x,u,∇u,Δu) and a discretization of the Banach space W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) via the
definition of a Galerkin basis.

Some recent references supporting our strategy can be considered in respect of three categories:

(A) Problems with gradient and Laplacian dependent nonlinearities;
(B) Problems with weighted Kirchhoff terms;
(C) Problems with biharmonic operators.

For the category (A), we first mention the work of Carrião et al2 dealing with nonlinear biharmonic equations under
Navier boundary conditions. Using an iterative scheme of the mountain pass approximated solutions together with useful
truncations, the authors establish the existence of at least one solution. In Carrião et al,2 the nonlinearity 𝑓 depends
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on both the gradient and the Laplacian of u, and this is the first paper where we find the similar representation of 𝑓
as in our manuscript. Usually in the literature are considered the dependence by first and second order derivatives, and
the work of Carrião et al2 is the first case where we found the Laplacian dependence explicitly stated (at the best of
our knowledge). When 𝑓 does not depend on the Laplacian Δu, we recall the works of Bai et al.5 (nonhomogeneous
partial differential operator with Robin boundary condition) and of Papageorgiou et al.6 (constant exponent p-Laplacian
operator with Neumann boundary condition), where the authors use Leray–Schauder alternative principle, together with
truncation and comparison techniques. Both these works established the existence of smooth positive solutions, without
imposing any global growth condition on the reaction term. Finally, we mentioned the work of Ourraoui7 where the
Galerkin's approach, jointly with useful a priori estimates, is adopted to conclude the existence of solutions to a class of
elliptic problems. This time, the toy problem is driven by a p-Kirchhoff type operator with constant exponent p, Dirichlet
boundary condition, and a convection term.

For the category (B), we can mention the work of Vetro8 dealing with the variable exponent Lebesgue and Sobolev
spaces, in the case of a single p(x)-Kirchhoff type operator and a Dirichlet boundary condition. We point out that the
Kirchhoff weight in (1) was previously considered by Hamdani et al,9 and the related differential problem was approached
by variational methods, since the reaction therein is neither gradient dependent nor Laplacian dependent. At the basis of
the recent interest for boundary value problems with a Kirchhoff weight, there is the monography10 by Lions. However, we
usually find in the literature a positive restriction to the values of the Kirchhoff term (i.e., the form a+b∫Ω 1

p(x)
|Δu|p(x)dx >

0, with a, b > 0), which means a nondegenerate term. To enlarge the discussion over the sign of the Kirchhoff weight, we
mention the recent works of Figueiredo and Nascimento,11 Santos Júnior and Siciliano,12 where the involved Kirchhoff
terms can vanish in many different points. In all of them, existence and nonexistence of solutions are established via fixed
point theorems. Finally, we mention the work of Maia13 where the author studies a class of p(x)-Choquard equations with
a nonlocal and nondegenerate Kirchhof term, establishing a multiplicity of solutions, combining truncation arguments
with Krasnoselskii's genus.

For the category (C), we can mention the work of Guo et al,14 where the Kirchhoff type p(x)-biharmonic problem is
approached via mountain pass theorem and Ekeland's variational principle. The involved problem is not gradient depen-
dent in the reaction term. The similar problem (but without the Kirchhoff weight) and the same technique of proofs are
adopted by Mbarki.15 We also mention the work of Boureanu et al,16 where the authors consider a no-flux boundary condi-
tion (useful to cover the cases of surfaces being impermeable to certain contaminants). Finally, we cite the paper of Zhou17

where the author establishes existence, multiplicity and nonexistence results for a Navier p(x)-biharmonic problem with
a parametric reaction, involving variational methods too; see also Kefi and Rădulescu4 for a Navier p(x)-biharmonic
problem with singular weights.

Inspired by the above-mentioned works, we consider problem (P) under the combined effects of a sign-changing Kirch-
hoff weight (i.e., we deal with the degenerate case) and a principal p(x)-biharmonic operator, in the case of a gradient
and Laplacian dependent nonlinearity. The manuscript is organized as follows. In Section 2, we collect the basic facts on
variable exponent Lebesgue and Sobolev spaces, useful norm inequalities, properties of Banach spaces, and a Brouwer
type fixed point result. In Section 3, we give the main theorems and their proofs are shown in Section 4. In Section 5,
we briefly discuss the case of a nondegenerate Kirchhoff weight (i.e., we deal with a positive constant sign weight), with
respect to the theory of pseudo-monotone operators, and establish an asymptotic result assuming that the coefficient b in
the Kirchhoff term works as a parameter. A short Section 6 concludes the manuscript.

2 PRELIMINARIES

For a comprehensive coverage of the variable exponent Lebesgue and Sobolev spaces (which are special cases of general-
ized Orlicz spaces), we refer to the monographs of Diening et al18 and of Rădulescu & Repovš.1 In the sequel we assume
that p(x) > 1 for all x ∈ Ω̄, even when it is not explicitly stated. Given a bounded domain Ω ⊆ RN with smooth boundary
𝜕Ω, our study considers the Banach space W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω). Thus, we start recalling the definition of the variable
exponent Lebesgue space Lp(x)(Ω) as follows:

Lp(x)(Ω) =
⎧⎪⎨⎪⎩u ∈ M(Ω) ∶ ∫

Ω

|u(x)|p(x)dx < +∞
⎫⎪⎬⎪⎭ ,
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RĂDULESCU AND VETRO

with M(Ω) being the space of all measurable functions u ∶ Ω → R. Thus, we define the norm

||u||Lp(x)(Ω) = inf
{
𝜆 > 0 ∶ 𝜌p

(u
𝜆

) ≤ 1
}
,

for the modular
𝜌p(u) = ∫

Ω

|u(x)|p(x)dx for all u ∈ Lp(x)(Ω).

Different from the constant exponent Lp(Ω) (i.e., the case p(x) = p = constant), the variable exponent space is useful
in the analysis of boundary value problems with nonstandard growth conditions. However, even if the passage from the
constant setting to the variable one is natural, it is not trivial as some sources of difficulties occur (e.g., we recall that
Lp(x)(Ω) is not invariant to translations and the convolution is not in general continuous; see Kováčik & Rákosník19).
However, under additional hypotheses on the exponent p(·) we can recover the situation and obtain boundedness and
other properties useful to conclude the study. For reader convenience, we recall that (Lp(x)(Ω), || · ||Lp(x)(Ω)) is a separable,
reflexive and uniformly convex Banach space. Moreover || · ||Lp(x)(Ω) and 𝜌p(·) meet the following theorem.

Theorem 1 (Fan and Zhao,20 Theorem 1.3). For u ∈ Lp(x)(Ω) we get

(i) ||u||Lp(x)(Ω) < 1 (= 1, > 1) ⇐⇒ 𝜌p(u) < 1 (= 1, > 1);
(ii) if ||u||Lp(x)(Ω) > 1, then ||u||p−

Lp(x)(Ω) ≤ 𝜌p(u) ≤ ||u||p+

Lp(x)(Ω);

(iii) if ||u||Lp(x)(Ω) < 1, then ||u||p+

Lp(x)(Ω) ≤ 𝜌p(u) ≤ ||u||p−

Lp(x)(Ω).

Let p′ ∈ C(Ω̄) be the conjugate variable exponent to p(·); that is, the following formula holds:

1
p(x)

+ 1
p′(x)

= 1 for all x ∈ Ω̄.

Consequently, we denote the conjugate of Lp(x)(Ω) by Lp(x)(Ω)∗ = Lp′(x)(Ω), and in the case p− > 1, we get the Hölder
inequality

∫
Ω

uwdx ≤
(

1
p− + 1

(p′)−

) ||u||Lp(x)(Ω)||w||Lp′(x)(Ω) ≤ 2||u||Lp(x)(Ω)||w||Lp′ (x)(Ω),

for u ∈ Lp(x)(Ω), w ∈ Lp′(x)(Ω). This inequality leads us to the existence of embedding results. For example, Theorem
1.1120 ensures the continuity of the embedding Lp1(x)(Ω) → Lp2(x)(Ω), whenever p1, p2 ∈ C(Ω̄) with p1(x) ≥ p2(x) > 1 for
all x ∈ Ω̄. Using the variable exponent Lebesgue space, for every integer r > 0 and fixed multi-index 𝛼 = (𝛼1, … , 𝛼N), we
can define the variable exponent generalized Sobolev space

W r,p(x)(Ω) = {u ∈ Lp(x)(Ω) ∶ D𝛼u ∈ Lp(x)(Ω), 1 ≤ |𝛼| ≤ r}, p ∈ C(Ω̄),

where |𝛼| = ∑n
i=1 𝛼i (i.e., the order) and D𝛼u = 𝜕|𝛼|u∕𝜕𝛼1 x1 · · · 𝜕𝛼N xN . As already mentioned in Section 1, by W r,p(x)

0 (Ω), we
denote the closure of C∞

0 (Ω) in W r,p(x)(Ω). Also, we consider the norm

||u||W r,p(x)(Ω) =
∑
|𝛼|≤r
||D𝛼u||Lp(x)(Ω).

From Fan and Zhao20 and Kováčik and Rákosník,19 we know that (W r,p(x)(Ω), || · ||W r,p(x)(Ω)) and (W r,p(x)
0 (Ω), || · ||W r,p(x)(Ω))

are separable and uniformly convex (hence reflexive) Banach spaces. Now, taking in mind the Poincaré inequality (for a
reference, consider Diening et al.18, Theorem 8.2.18)

||u||Lp(x)(Ω) ≤ c1||∇u||Lp(x)(Ω) for all u ∈ W 1,p(x)
0 (Ω), some c1 > 0,

where ||∇u||Lp(x)(Ω) = |||∇u|||Lp(x)(Ω), we recall that the norms ||u||W1,p(x)(Ω) and ||∇u||Lp(x)(Ω) are equivalent on W 1,p(x)
0 (Ω).

According to Zang and Fu,21, Definition 4.3 we recall that for a couple of Banach spaces, namely, X1 and X2, we define the
norm on the space X = X1 ∩ X2 by
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RĂDULESCU AND VETRO

||u||X = ||u||X1 + ||u||X2 .

This remark is useful to our discussion, as we are interested to work on the Banach space W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω). Hence,

we consider as ingredients, the two norms:

||u||W1,p(x)
0 (Ω) = ||u||Lp(x)(Ω) + ||∇u||Lp(x)(Ω)

and ||u||W2,p(x)(Ω) =
∑
|𝛼|=2
||D𝛼u||Lp(x)(Ω).

Consequently, we introduce the norm

||u|| = ||u||W2,p(x)(Ω)∩W1,p(x)
0 (Ω) = ||u||W2,p(x)(Ω) + ||u||W1,p(x)

0 (Ω)

for all u ∈ W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω). Moreover, from Zang and Fu,21 we know that the norm ||u|| is equivalent to ||Δu||Lp(x)(Ω)

in W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω). Indeed in Zang and Fu,21 we have the inequality

||Δu||Lp(x)(Ω) ≤ ||u|| ≤ c2||Δu||Lp(x)(Ω), (2)

for all u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω), where c2 > 0 is independent of u.

Next, for p ∈ C(Ω̄), we recall the formula of the critical Sobolev exponent p∗
r (·) given as

p∗
r (x) =

{ Np(x)
N−rp(x)

if rp(x) < N,

+∞ if N ≤ rp(x),
for all x ∈ Ω̄. (3)

From Kefi and Rădulescu,4 we recall the following Sobolev embeddings properties related to the Banach space
W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω).

Proposition 1. Given p, 𝛼 ∈ C(Ω̄) with p(x) > 1 and 1 < 𝛼(x) < p∗
2(x) for all x ∈ Ω̄, we have that (W 2,p(x)(Ω) ∩

W 1,p(x)
0 (Ω)) → L𝛼(x)(Ω) is a continuous and compact embedding.

On the other hand, we recall a general embedding result for Banach spaces (refer to Gasiński and Papageor-
giou22, Lemma 2.2.27).

Proposition 2. Let (X1,X2) be a couple of Banach spaces satisfying X1 ⊆ X2. Then, if X1 is dense in X2 and the embedding
is continuous, also the embedding X∗

2 ⊆ X∗
1 is continuous. Moreover, if X1 is reflexive, then X∗

2 is dense in X∗
1 .

To develop our arguments of proofs, we use the features of appropriate operators of monotone type. Precisely, we
are interested to pseudo-monotonicity. For reader convenience, we recall some well-known facts about the class of
pseudo-monotone operators.

Definition 1. Let ⟨· , ·⟩ be the duality pairing in Banach spaces and consider a reflexive Banach space X , with dual
space X∗. Thus, A ∶ X → X∗

(i) satisfies the (S+)-property if un
w
−→ u in X and lim supn→+∞⟨A(un),un − u⟩ ≤ 0 imply un → u in X ;

(ii) is pseudo-monotone if un
w
−→ u in X and lim supn→+∞⟨A(un),un − u⟩ ≤ 0 imply

lim inf
n→+∞

⟨A(un),un − v⟩ ≥ ⟨A(u),u − v⟩ for all v ∈ X;

(iii) is coercive if

lim||u||X→+∞

⟨A(u),u⟩||u||X = +∞.
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RĂDULESCU AND VETRO

Remark 1. For a bounded operator A ∶ X → X∗, Definition 1(ii) is equivalent to the following implication: un
w
−→ u in X

and lim supn→+∞⟨A(un),un −u⟩ ≤ 0 imply A(un)
w
−−→ A(u) and ⟨A(un),un⟩ → ⟨A(u),u⟩. We will use these convergence

in the sequel.

Pseudo-monotone operators lead to useful conditions for the existence of solutions to certain operator equations.
This depends on their surjectivity properties, as stated in the following theorem (see also Papageorgiou and
Winkert23, Theorem 6.1.57); see also Papageorgiou et al24 for related abstract results.

Theorem 2. If A ∶ X → X∗ is a pseudo-monotone, bounded, and coercive operator, defined on a real and reflexive
Banach space X. Then, the equation A(u) = b with b ∈ X∗, admits a solution.

Remaining focused on the problem of solutions to operator equations, we note the following byproduct of the Brouwer
fixed point theorem.

Proposition 3. Given a continuous map A ∶ X → X∗, with (X , || · ||X ) being a normed finite-dimensional space, then
we have the following:

If there exists some R > 0 such that

⟨A(w),w⟩ ≥ 0 for all w ∈ X with ||w||X = R,

then A(w) = 0 has a solution ŵ ∈ X satisfying the upper bound condition R ≥ ||ŵ||X .

3 ASSUMPTIONS AND RESULTS

In this section, we discuss the assumptions used in developing our study. Then, we present the obtained results. About
the exponent p ∈ C(Ω̄), we require the following condition involving the finite values p− and p+:

(A1) p ∈ C(Ω̄) is finite with p− > p+∕2.
The relevance in adopting such a condition can be easily clarified referring to Theorem 1.19 where the authors
provide sufficient conditions to obtain the existence of a weak solution to a degenerate (sign-changing) Kirchhoff
equation without convection term. Moreover, (A1) is adopted in Vetro8 in the case of convection. We complete the
set of assumptions, controlling the growth of the Carathéodory nonlinearity 𝑓 ∶ Ω ×R ×RN ×R → R, as follows:

(A2) there exist 𝜎 ∈ L𝛼′(x)(Ω), 𝛼 ∈ C(Ω̄) with 1 < 𝛼(x) < p∗
2(x) for all x ∈ Ω̄ and c > 0 such that

|𝑓 (x, z, 𝑦, v)| ≤ c(𝜎(x) + |z|𝛼(x)−1 + |𝑦| p(x)
𝛼′(x) + |v| p(x)

𝛼′(x) )

for a.a. x ∈ Ω, all z, v ∈ R, all 𝑦 ∈ RN ;
(A3) there exist 𝜎0 ∈ L1(Ω) and b1, b2, b3 ≥ 0 such that

|𝑓 (x, z, 𝑦, v)z| ≤ 𝜎0(x) + b1|z|p(x) + b2|𝑦|p(x) + b3|v|p(x)
for a.a. x ∈ Ω, all z, v ∈ R, all 𝑦 ∈ RN .

Assumptions (A2) and (A3) are dictated by the technical needs of our proofs and are useful to establish a priori bounds
to integral terms, and sign constraints to the involved operators (see Section 4). On the other hand, we note that in dealing
with practical situations (remaining into a physical context, we think to evolution systems and related problems), it is
natural to impose control constraints on the growth of involved terms. Using (A3), we can obtain the inequality

∫
Ω

|𝑓 (x,u,∇u,Δu)u|dx ≤ 𝜆∗||Δu||p+

Lp(x)(Ω) + ||𝜎0||L1(Ω),

≤ 𝜆∗||u||p+ + ||𝜎0||L1(Ω) (||u|| ≥ ||Δu||Lp(x)(Ω), by (2)),

(4)

466
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for all u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω) with ||Δu||Lp(x)(Ω) ≥ 1, where we set 𝜆∗ = (b1 + b2)c3 + b3, for some constant c3 > 0.

The relevance in getting such an estimate, follows immediately from the definition of weak solution to (P). We note that
u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) satisfying u = Δu = 0 on 𝜕Ω is a weak solution to (P) if

⟨−Δ2
k,pu,w⟩ = ∫

Ω

𝑓 (x,u,∇u,Δu)wdx, (5)

for all w ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω). Of course, u ≡ 0 such that (5) holds true is a trivial weak solution of (P).

Before presenting the results of this manuscript, we introduce the last ingredient of our strategy, namely the discrete
Galerkin approximation (i.e., Galerkin basis) of the separable Banach space W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω). That is, we introduce
a sequence {Vn}n∈N of vector subspaces of W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) with the following properties:

(i) each subspace is finite dimensional, that is, dim (Vn) < +∞ for all n ∈ N;
(ii) each previous subspace of the sequence is contained in the subsequent one, that is, Vn ⊆ Vn+1 for all n ∈ N;

(iii) the closure of the union of all subspaces is the vector space, that is, ∪n∈NVn = W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω).

The Galerkin basis above means an approximation sequence of a given Banach space, via finite-dimensional subspaces.
It is strongly related to the well-known Galerkin method for numerical approximation of solutions to continuous problems
by discrete finite-dimensional problems. This approach works well for operator equations in weak form as Equation (5),
and hence we establish the following result.

Proposition 4. Let {Vn}n∈N be a Galerkin basis of W2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω). If assumptions (A1)–(A3) hold, then for all

n ∈ N, we can find un ∈ Vn satisfying

⟨−Δ2
k,pun,w⟩ = ∫

Ω

𝑓 (x,un,∇un,Δun)wdx for all w ∈ Vn. (6)

Turning to the idea behind the Galerkin approximation method, our next step is to ensure suitable properties of the
approximation sequence of solutions originated in Proposition 4, namely, the sequence {un}n∈N ⊆ ∪∞

n=1Vn. Thus, the
boundedness in W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) of {un}n∈N is established in the following proposition.

Proposition 5. Let {un}n∈N ⊆ ∪∞
n=1Vn be the Galerkin sequence originated in Proposition 4. If assumptions (A1)–(A3)

hold, then {un}n∈N is bounded in W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω).

We note that we will use the Galerkin sequence {un}n∈N in working with a special class of maps, namely, the Nemitsky
maps. Thus, for the Carathéodory function 𝑓 , we introduce the Nemitsky map N∗

𝑓
∶ W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) ⊆ L𝛼(x)(Ω) →
L𝛼′(x)(Ω) given as

N∗
𝑓
(u)(·) = 𝑓 (·,u(·),∇u(·),Δu(·)) for all u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω). (7)

Referring to the works of Fan and Zhao20 and Kováčik and Rákosník,19 one can show that this map is well defined,
bounded, and continuous. We note that this characterization of N∗

𝑓
(·) follows directly by assumption (A2). Additionally

denote the dual space W(Ω) = (W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω))∗, we have that i∗ ∶ L𝛼′(x)(Ω) → W(Ω) is a continuous embedding

(recall Proposition 2). Consequently, the operator N𝑓 ∶ W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω) → W(Ω) defined by N𝑓 = i∗◦N∗

𝑓
is bounded

and continuous. Using this operator and referring to Proposition 3, we establish the following existence theorem.

Theorem 3. Let {un}n∈N ⊆ ∪∞
n=1Vn be the Galerkin sequence originated in Proposition 4. If

lim inf
n→+∞

|K(p,Δun)| > 0,

and the assumptions (A1)–(A3) hold, then problem (P) admits a weak solution u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω).
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We note that the additional assumption in Theorem 3 (i.e., the fact that the sequence {|K(p,Δun)|}n∈N admits a positive
inferior limit as n goes to infinity) is not so restrictive. Indeed, it means that

∫
Ω

1
p(x)
|Δun|p(x)dx ↛

a
b

for n → +∞,

{un}n∈N ⊆ ∪∞
n=1Vn.

This assumption does not avoid the weight degeneracy of the main operator Δ2
k,p but permits us to prove the result

for certain special sequences of type {un}n∈N ⊆ ∪∞
n=1Vn. This is coherent with the setting of approximation theory and

numerical analysis. Part of this strategy is dictated by the (S+)-property of operators (see Definition 1) and its involvement
in the proof of the theorem.

4 PROOFS OF RESULTS

We first establish the existence of an approximation sequence of solutions to the type Equation (6), for all n ∈ N. The
proof develops a bound from below for an appropriate operator (see Equation 8 of the proof), and then uses Proposition 3
to conclude. The arguments of proof are carried out in the finite dimensional space Vn (clearly that holds for each n ∈ N).

Proof of Proposition 4. Given n ∈ N, we introduce the operator An ∶ Vn → V∗
n defined by

⟨An(u),w⟩ = ⟨−Δ2
k,pu,w⟩ − ∫

Ω

𝑓 (x,u,∇u,Δu)wdx (8)

for all u,w ∈ Vn. Referring to the bound condition (4), if ||w|| ≥ ||Δw||Lp(x)(Ω) > 1, we have

⟨−An(w),w⟩ = ⎛⎜⎜⎝b∫Ω
1

p(x)
|Δw|p(x)dx − a

⎞⎟⎟⎠∫Ω |Δw|p(x)dx + ∫
Ω

𝑓 (x,w,∇w,Δw)wdx

≥
⎛⎜⎜⎝b∫Ω

1
p(x)
|Δw|p(x)dx − a

⎞⎟⎟⎠∫Ω |Δw|p(x)dx − ∫
Ω

|𝑓 (x,w,∇w,Δw)w|dx

≥ b
p+ ||Δw||2p−

Lp(x)(Ω) − a||Δw||p+

Lp(x)(Ω) − 𝜆∗||Δw||p+

Lp(x)(Ω) − ||𝜎0||L1(Ω)

(here we use (4))

≥ b
p+ ||Δw||2p−

Lp(x)(Ω) − (a + 𝜆∗)||Δw||p+

Lp(x)(Ω) − ||𝜎0||L1(Ω)

≥ b
p+ ||Δw||2p−

Lp(x)(Ω) − (a + 𝜆∗ + ||𝜎0||L1(Ω))||Δw||p+

Lp(x)(Ω)

(here we use ||Δw||Lp(x)(Ω) > 1)

≥ b
p+c2p−

2

||w||2p− − (a + 𝜆∗ + ||𝜎0||L1(Ω))||w||p+

(here we use (2)).

Summing up, we obtain the inequality

⟨−An(w),w⟩ ≥ ||w||p+

[
b

p+c2p−

2

||w||2p−−p+ − a − 𝜆∗ − ||𝜎0||L1(Ω)

]
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RĂDULESCU AND VETRO

for all w ∈ Vn. Thus, we deduce the non-negativity condition

⟨−An(w),w⟩ ≥ 0 if ||w|| ≥ [p+c2p−

2

b
(a + 𝜆∗ + ||𝜎0||L1(Ω))

]1∕(2p−−p+)

.

Next, we prepare the application of Proposition 3, and hence, we choose and fix a value

R > max
⎧⎪⎨⎪⎩
[

p+c2p−

2

b
(a + 𝜆∗ + ||𝜎0||L1(Ω))

]1∕(2p−−p+)

, 1
⎫⎪⎬⎪⎭ .

Consequently, for each element w of the generic subspace Vn, in the Galerkin sequence, satisfying ||w|| = R, we get

⟨−An(w),w⟩ ≥ 0.

These are the hypotheses of Proposition 3, and consequently the operator equation −An(w) = 0 is solved by a suitable
un ∈ Vn. Clearly, the same conclusion will hold for its opposite counterpart An(w) = 0, and hence Equation (6) is
established.

We remark that Proposition 4 gives us a sequence of solutions of problems in the form (P) but restricted to finite dimen-
sional spaces (viz., Vn for all n ∈ N). But these finite dimensional spaces are linked each others since they are elements
of the Galerkin basis {Vn}n∈N of W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω). Next proof is aimed to show the boundedness of the sequence
{un}n∈N ⊆ ∪∞

n=1Vn.

Proof of Proposition 5. The proof requires estimates of the quantity ||Δun||Lp(x)(Ω), in the form of bounds from above.
Precisely, we will show that

||Δun||Lp(x)(Ω) ≤ max

{[
p+

b
(a + 𝜆∗ + ||𝜎0||L1(Ω))

]1∕(2p−−p+)

, 1

}
for all n ∈ N. (9)

If ||Δun||Lp(x)(Ω) ≤ 1 for all n ∈ N, then the sequence {un}n∈N is bounded in W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω). Whenever||Δun||Lp(x)(Ω) > 1 (for some n ∈ N), we note that

||Δun||2p−−p+

Lp(x)(Ω) ≤ p+

b
(

a + 𝜆∗ + ||𝜎0||L1(Ω)
)
.

In fact, referring to Equation (6) (i.e., starting from the result of Proposition 4), for the choice w = un, we deduce that

b
p+ ||Δun||2p−

Lp(x)(Ω) ≤ a||Δun||p+

Lp(x)(Ω) − ∫
Ω

𝑓 (x,un,∇un,Δun)undx

≤ a||Δun||p+

Lp(x)(Ω) + ∫
Ω

|𝑓 (x,un,∇un,Δun)un|dx

≤ a||Δun||p+

Lp(x)(Ω) + 𝜆∗||Δun||p+

Lp(x)(Ω) + ||𝜎0||L1(Ω)

(here we use the estimate (4)).

We assumed before that ||Δun||Lp(x)(Ω) > 1, and hence, we have

b
p+ ||Δun||2p−

Lp(x)(Ω) ≤
(

a + 𝜆∗ + ||𝜎0||L1(Ω)
) ||Δun||p+

Lp(x)(Ω),
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and dividing both sides of the inequality by b
p+ ||Δun||p+

Lp(x)(Ω), we get

||Δun||2p−−p+

Lp(x)(Ω) ≤ p+

b
(

a + 𝜆∗ + ||𝜎0||L1(Ω)
)
.

But this implies that (9) holds true. Of course, it follows trivially that the Galerkin sequence {un}n∈N ⊆ ∪∞
n=1Vn is

bounded in the Banach space W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω).

We are ready for the proof of our convergence result.

Proof of Theorem 3. Starting from the boundedness of the approximation sequence {un}n∈N ⊆ ∪∞
n=1Vn in W 2,p(x)(Ω)∩

W 1,p(x)
0 (Ω) (as follows by Proposition 5), upon appealing to the reflexivity of this Banach space, we note that for some

u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω), we can assume

un
w
−→ u in W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) and un → u in L𝛼(x)(Ω). (10)

Referring to the boundedness of the Nemitsky map in (7), it follows that the sequence

{N𝑓 (un)}n∈N is bounded in W(Ω).

Additionally, the operator −Δ2
k,p ∶ W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) → W(Ω) is bounded too, and hence also the sequence

{−Δ2
k,pun − N𝑓 (un)}n∈N is bounded in W(Ω). (11)

If necessary, we can consider a relabeled subsequence of (11) to conclude that

−Δ2
k,pun − N𝑓 (un)

w
−→g in W(Ω), for some g ∈ W(Ω), (12)

this is an immediate consequence of the fact that the dual spaceW(Ω) is reflexive. Moreover, we can select w in∪∞
n=1Vn,

so that there exists an index n(w) ∈ N satisfying w ∈ Vn(w). Of course, Proposition 4 says us that equation (6) remains
true for each n ≥ n(w). We pass n to infinity in the same (6) to get

⟨g,w⟩ = 0 for all w ∈ ∪∞
n=1Vn.

Referring to the properties of the Galerkin basis {Vn}n∈N (see Section 3), we know that ∪∞
n=1Vn is dense in W 2,p(x)(Ω)∩

W 1,p(x)
0 (Ω). Therefore, this leads to the conclusion g = 0, and using (12), we get

−Δ2
k,pun − N𝑓 (un)

w
−→ 0 in W(Ω). (13)

Turning to Equation (6), we consider w = un and obtain

⟨−Δ2
k,pun − N𝑓 (un),un⟩ = 0 for all n ∈ N. (14)

By (13), we have ⟨−Δ2
k,pun − N𝑓 (un),u⟩ → 0 as n → +∞,

and using (14), we get
lim

n→+∞
⟨−Δ2

k,pun − N𝑓 (un),un − u⟩ = 0. (15)
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Since {un}n∈N is bounded, then {N∗
𝑓
(un)}n∈N is bounded too. Using this fact along with Hölder's inequality and the

compact embedding W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω) → L𝛼(x)(Ω) (see Proposition 1), we get

|||||||∫Ω 𝑓 (x,un,∇un,Δun)(un − u)dx
||||||| ≤ 2||N∗

𝑓
(un)||L𝛼′(x)(Ω)||u − un||L𝛼(x)(Ω)

≤ 2
(
sup
n∈N
||N∗

𝑓
(un)||L𝛼′ (x)(Ω)

) ||u − un||L𝛼(x)(Ω)

→ 0 as n → +∞.

It follows that
lim

n→+∞
⟨−Δ2

k,pun,un − u⟩ = 0 (recall (15)). (16)

Combining (10), (13), and (16), we conclude that u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω) is an approximated solution to (P), in

the sense that u is the weak limit of the Galerkin (approximation) sequence {un}n∈N ⊆ ∪∞
n=1Vn. Without any loss of

generality, from the assumption
lim inf

n→+∞
|K(p,Δun)| > 0,

we can consider the case where
lim inf

n→+∞
K(p,Δun) > 0;

that is, we remove the absolute value above (however, the other case can be concluded in a similar fashion). Thus, we
can find a relabeled subsequence of {un}n∈N satisfying the limit condition

K(p,Δun) → K0 > 0 as n → +∞. (17)

Now, (16) jointly with (17) leads to the limit

lim
n→+∞

⟨−Δ2
p(x)un,un − u⟩ ≤ 0,

which gives us the (S)+-property of the p(x)-biharmonic operator (see Ayouji and El Amrouss,25 Proposition 4.2 (iii)),
provided that un → u in W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω), as n goes to infinity. Using the convergence (13), we know that

−Δ2
k.pun − 𝑓 (x,un,∇un,Δun)

w
−→ 0 in W(Ω).

This means that the following equality occurs:

−Δ2
k,pu − 𝑓 (x,u,∇u,Δu) = 0.

Consequently, we get that u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω) solves problem (P), in the sense of weak solutions (viz., we

retrieve (5)). This completes the proof.

Example 1. Consider 𝑓 ∶ Ω ×R ×RN ×R → R given as follows:

𝑓 (x,u,∇u,Δu) = 𝑓1(x,u) + 𝑓2(x,∇u) + 𝑓3(x,Δu),

where 𝑓1, 𝑓3 ∶ Ω × R → R and 𝑓2 ∶ Ω × RN → R are continuous functions, with 𝑓1 positive function that grows
slower than a suitable power of the unknown variable u, 𝑓2 bounded from above by a gradient term, and 𝑓3 bounded
from above by a Laplacian term. For these functions, we assume that we can find 𝜎i ∈ L𝛼′(x)(Ω)(i = 1, 2, 3), 𝛼 ∈ C(Ω̄)
with 1 < 𝛼(x) ≤ p(x) for all x ∈ Ω̄, such that:
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(H1) there exists b1 > 0 satisfying

0 < 𝑓1(x, z) ≤ 𝜎1(x) + b1|z|𝛼(x)−1 for a.a. x ∈ Ω, all z ∈ R;

(H2) there exists b2 ≥ 0 satisfying

0 ≤ 𝑓2(x, 𝑦) ≤ 𝜎2(x) + b2|𝑦| p(x)
𝛼′(x) for a.a. x ∈ Ω, all 𝑦 ∈ R

N ;

(H3) there exists b3 ≥ 0 satisfying

0 ≤ 𝑓3(x, v) ≤ 𝜎3(x) + b3|v| p(x)
𝛼′ (x) for a.a.x ∈ Ω, all v ∈ R.

It is clear that assumptions like (H1)–(H3) can be seen as an immediate way to decompose the effects of a global
reaction 𝑓 and identify its basic components (for example, this is of a certain interest in population models to bet-
ter control the dynamics of reaction-diffusion processes). On the other hand, combining assumptions (H1)–(H3), it
follows easily that 𝑓 satisfies (A2)–(A3).

Remark 2. In the case of positive nonlinearity (e.g., refer to the situation in Example 1, by assumption (H1)), Theorem
3 ensures the existence of a weak solution to problem (P), namely, u ∈ W2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) with u ≠ 0.

5 CASE OF NONDEGENERATE KIRCHHOFF TERM

In this section, we consider the case of a nondegenerate (constant sign) Kirchhoff term of the form

K+(p,Δu) = a + b∫
Ω

1
p(x)
|Δu|p(x)dx, for some a, b > 0, (18)

and hence, we assume
K+(p,Δu) ≥ a > 0 for all u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω).

This time, we consider the operator −Δ2,+
k,p ∶ W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) → W(Ω) defined by

⟨−Δ2,+
k,p u,w⟩ = K+(p,Δu)⟨−Δ2

p(x)u,w⟩ = K+(p,Δu)∫
Ω

|Δu|p(x)−2ΔuΔwdx

for all u,w ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω). Thus, we discuss the existence of weak solutions to the Navier problem

−Δ2,+
k,p u(x) = 𝑓 (x,u(x),∇u(x),Δu(x)) in Ω, u |𝜕Ω = Δu| 𝜕Ω = 0. (19)

We derive the definition of weak solution to (19) as follows:
u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) is a weak solution to (19) if

⟨−Δ2,+
k,p u,w⟩ = ∫

Ω

𝑓 (x,u,∇u,Δu)wdx

for all w ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω), and u = Δu = 0 on 𝜕Ω.

We note that −Δ2
p(x) is continuous, bounded, strictly monotone, and of type (S)+. Thus, the new operator −Δ2,+

k,p is also
bounded, continuous, and satisfies the property (S)+ (recall that based on the assumption K+(p,Δu) ≥ a > 0, the last
operator −Δ2,+

k,p can be considered as positive-weight version of the variable exponent p(x)-biharmonic operator). Since
gradient and Laplacian dependencies are again a main feature of our nonlinearity, clearly we cannot adopt variational
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RĂDULESCU AND VETRO

tools. Thus, we revisit the theory of pseudo-monotone operators to develop a topological approach. For the Nemitsky map
N𝑓 ∶ W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) → W(Ω), we consider the operator A ∶ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω) → W(Ω) given as

A(u) = −Δ2,+
k,p u − N𝑓 (u) for all u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω). (20)

Clearly, this operator is bounded and continuous. Additionally, we show that (20) is coercive and pseudo-monotone.
Starting from the coercivity proof, using assumption (A3), for all u ∈ W 2,p(x)(Ω)∩W 1,p(x)

0 (Ω) with ||Δu||Lp(x)(Ω) > 1, we get

⟨A(u),u⟩ = ⎛⎜⎜⎝a + b∫
Ω

1
p(x)
|Δu|p(x)dx

⎞⎟⎟⎠∫Ω |Δu|p(x)dx − ∫
Ω

𝑓 (x,u,∇u,Δu)udx

≥ b
p+ ||Δu||2p−

Lp(x)(Ω) − (a + 𝜆∗ + ||𝜎0||L1(Ω))||Δu||p+

Lp(x)(Ω)

≥ b
p+c2p−

2

||u||2p− − c4||u||p+ for some c4 > 0

(here we use the inequality (2)).

Therefore, the coercivity of (20) follows immediately since p+ < 2p−.
Next, we conclude the pseudo-monotonicity of (20), using the following arguments. Let {un}n∈N ⊆ W 2,p(x)(Ω) ∩

W 1,p(x)
0 (Ω) satisfy

un
w
−→u in W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) and lim sup
n→+∞

⟨A(un),un − u⟩ ≤ 0. (21)

On the other hand, requirement (21) implies that

lim sup
n→+∞

⎡⎢⎢⎣⟨−Δ2,+
k,p un,un − u⟩ − ∫

Ω

𝑓 (x,un,∇un,Δun)(un − u)dx
⎤⎥⎥⎦ ≤ 0. (22)

Moreover, we note that {un}n∈N converges weakly in W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω) and it is bounded. Then, we deduce that the

sequence {N∗
𝑓
(un)}n∈N is bounded too. An application of Hölder's inequality, jointly with compactness of the embedding

W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω) → L𝛼(x)(Ω) (we refer to Proposition 1), are sufficient enough to conclude that

∫
Ω

𝑓 (x,un,∇un,Δun)(un − u)dx → 0 as n → +∞. (23)

By (22), we derive the (strong) convergence of {un}n∈N as follows:

lim sup
n→+∞

⟨−Δ2,+
k,p un,un − u⟩ ≤ 0,

⇒ un → u in W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω)

(since − Δ2,+
k,p has the (S)+ − property).

(24)

The convergence in (24) and the fact that the operator (20) is continuous give us

A(un) → A(u), ⟨A(un),un⟩→ ⟨A(u),u⟩,
and therefore (20) is pseudo-monotone.

Based on the above properties of the operator (20) we establish the following existence theorem.

Theorem 4. If assumptions (A1)–(A3) hold, then (19) admits at least a weak solution.
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RĂDULESCU AND VETRO

The proof of Theorem 4 is a consequence of the application of Theorem 2 to the operator (20). Indeed, Theorem 2
ensures that the pseudo-monotone, bounded and coercive operator (20) defined on the real and reflexive Banach space
W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) is such that the equation

A(û) = 0 (here, for the special choice b = 0 ∈ W(Ω))

admits a solution û ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω). Of course, such a û ∈ W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) is a weak solution to (19).

Remark 3. It is obvious that Theorem 4 can be seen as a byproduct of Theorem 3, but this time, the proof does not use
the approximation arguments and can be developed just adapting the theory of operators of monotone type in Banach
spaces.

As a special case of nonlinearity 𝑓 ∶ Ω × R ×RN × R → R, one can consider the following function:

𝑓 (x,u,∇u,Δu) = 𝑓1(x,u,∇u,Δu) − 𝑓2(x,u,∇u,Δu),

which means a gradient and Laplacian dependent logistic-type nonlinearity. To recover our framework, we suppose that
𝑓1, 𝑓2 ∶ Ω × R ×RN ×R → R are Carathéodory functions satisfying the following assumptions:

(L1) 𝑓1(x, z, 𝑦, v) − 𝑓2(x, z, 𝑦, v) ≥ 0 for a.a. x ∈ Ω, all z ∈ R, all 𝑦 ∈ RN , all v ∈ R;
(L2) 𝑓i(x, z, 𝑦, v) = 0 for a.a. x ∈ Ω (i = 1, 2), all z ≤ 0, all 𝑦 ∈ RN , all v ∈ R, and there exist 𝜎i ∈ L∞ (i = 1, 2) and

𝛼 ∈ C(Ω̄) with 1 < 𝛼(x) ≤ p(x) for all x ∈ Ω̄ such that

|𝑓i(x, z, 𝑦, v)| ≤ 𝜎i(x)(1 + |z|𝛼(x)−1 + |𝑦| p(x)
𝛼′(x) + |v| p(x)

𝛼′(x) )

for a.a. x ∈ Ω, all z ≥ 0, all 𝑦 ∈ RN , all v ∈ R.

In the following example, we remove the gradient and Laplacian dependencies in the nonlinearity.

Example 2. Consider 𝑓 ∶ Ω ×R → R given as follows:

𝑓 (x, z) = 𝑓1(x, z) − 𝑓2(x, z),

where 𝑓1, 𝑓2 ∶ Ω ×R → [0,+∞) are defined by

𝑓1(x, z) =

{
z𝛽(x)−1 for z > 0,
0 for z ≤ 0,

and

𝑓2(x, z) =
⎧⎪⎨⎪⎩

z𝛽(x)−1 ln z for z > 1,
z𝛽(x)−1 for z ∈ (0, 1],
0 for z ≤ 0,

with 𝛽 ∈ C(Ω̄) bounded away from 1. If 1 < 𝛽(x) < 𝛼(x) ≤ p(x) for all x ∈ Ω̄, then we have

|𝑓 (x, z, 𝑦, v)| ≤ b0z𝛼(x)−1 and |𝑓 (x, z, 𝑦, v)|z ≤ b1zp(x),

for a.a. x ∈ Ω, all z ≥ 0, all 𝑦 ∈ RN , all v ∈ R, some b0, b1 > 0.

In the next example, we depict a situation where we deal with a Laplacian term competing against a gradient
dependent term.

Example 3. Consider 𝑓 ∶ Ω ×R ×RN ×R → R given as follows:

𝑓 (x,u,∇u,Δu) = 𝜆|Δu| p(x)−𝛼′ (x)
𝛼′(x) Δu − h(x,u,∇u), 𝜆 > 0,
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where 𝛼 ∈ C(Ω̄) with 1 < 𝛼(x) ≤ p(x) for all x ∈ Ω̄, and h ∶ Ω ×R ×RN → R is the following continuous function:

h(x, z, 𝑦) = b1|z|p(x)−2z − b2|𝑦| 𝛼(x)𝛼′ (x) , b1 ≥ 0, b2 > 0.

We remark that |h(x, z, 𝑦)| ≤ b1|z|𝛼(x)−1 + b2|𝑦| 𝛼(x)𝛼′(x) and |h(x, z, 𝑦)z| ≤ c5(|z|𝛼(x) + |𝑦|p(x)),
for all x ∈ Ω, all z ∈ R, all 𝑦 ∈ RN , some c5 = c5(b1, b2, 𝛼

−, (𝛼′)−) > 0. Then, the assumptions (A2)–(A3) hold true
easily.

In the above examples we linked the exponents 𝛼, 𝛽 ∈ C(Ω̄) directly to p ∈ C(Ω̄) instead than to the critical Sobolev
exponent p∗

2(·) (recall definition (3)). Adopting a similar setting in our assumptions, we are able to perform an asymptotic
analysis of our problem. Thus, we revise assumption (A3) as follows:

(A3)′ there exist 𝜎0 ∈ L1(Ω), 𝛽 ∈ C(Ω̄) with 1 < 𝛽(x) ≤ 𝛽+ < p− ≤ p(x) for all x ∈ Ω̄ and b1, b2, b3 ≥ 0 such that

|𝑓 (x, z, 𝑦, v)z| ≤ 𝜎0(x) + b1|z|𝛽(x) + b2|𝑦|𝛽(x) + b3|v|p(x)
for a.a. x ∈ Ω, all z, v ∈ R, all 𝑦 ∈ RN .

Clearly, Theorem 4 remains true if we change assumption (A3) by (A3)′, as assumption (A3)′ implies (A3).
Referring to the presence of the nonlocal term b ∫

Ω

1
p(x)
|Δu|p(x)dx (b > 0), which changes the geometry of problem (19)

respect to the case where b = 0 in (18), we note that it is interesting to regard b as a parameter and investigate the
asymptotic behavior of weak solutions to (19) as b ↓ 0. The similar idea and convergence study are proposed in Shuai26

and in a series of subsequent papers. To prepare the setting, we introduce the sets

Sb = solution set to (19), as b ≥ 0 is fixed,

S = ∪b≥0 Sb = solution set to (19).

If assumptions (A1), (A2) and (A3)′ hold, we note that Sb and S are bounded in W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω), provided that a > b3

(recall (18)). Fixed b ≥ 0, without loss of generality, we choose a solution u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω) of (19) satisfying the

norm inequality ||u|| > 1. Since u is a weak solution, for a test function w = u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω), we obtain the

estimates

a∫
Ω

|Δu|p(x)dx ≤ ⟨−Δ2,+
k,p u,u⟩

= ∫
Ω

|𝑓 (x,u,∇u,Δu)u|dx

≤ ∫
Ω

(
𝜎0(x) + b1|u|𝛽(x) + b2|∇u|𝛽(x) + b3|Δu|p(x)) dx

(here we use (A3)′)

≤ ||𝜎0||L1(Ω) + (𝜆∗ − b3)||Δu||𝛽+Lp(x)(Ω) + b3 ∫
Ω

|Δu|p(x)dx,

(recall 𝜆∗ = (b1 + b2)c3 + b3, for some c3 > 0),

⇒ ∫
Ω

|Δu|p(x)dx ≤ ||𝜎0||L1(Ω) + (𝜆∗ − b3)||Δu||𝛽+Lp(x)(Ω)

a − b3
.

Summing up, we deduce that

||Δu||p−

Lp(x)(Ω) ≤
||𝜎0||L1(Ω) + (𝜆∗ − b3)||Δu||𝛽+Lp(x)(Ω)

a − b3
,
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and hence ||u||p− ≤ cp−

2
||𝜎0||L1(Ω) + (𝜆∗ − b3)||u||𝛽+

a − b3
. (25)

Since 𝛽+ < p− by (A3)′ we conclude that Sb is bounded in W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω). Next, we note that (25) does not

dependent on b, and hence this inequality can be established for every u ∈ S. It follows that the set S = ∪b≥0Sb is bounded
in W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω).
Based on the above properties (i.e., the boundedness of the sets S and Sb), we note that un ∈ Sbn for all n ∈ N implies

that the sequence {un}n∈N is bounded in W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω). Then, we establish the following convergence theorem

depicting the behavior of problem (19) in the case b ↓ 0.

Theorem 5. Let assumptions (A1), (A2) and (A3)′ with b3 < a hold. Given a sequence of parameters {bn}n∈N converging
to 0+, and a sequence {un}n∈N of solutions to (19) such that un ∈ Sbn for all n ∈ N, then there is a relabeled subsequence
of {un}n∈N such that un → u in W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) with u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω) solution to (19), whenever b = 0

in (18).

The proof of Theorem 5 uses the similar arguments in establishing that (20) is pseudo-monotone. Indeed, since {un}n∈N
is bounded in W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω), then we can find a relabeled subsequence of {un}n∈N such that
un

w
−→u in W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) and un → u in L𝛼(x)(Ω), for some u ∈ W 1,p(x)
0 (Ω).

Thus we get easily (refer to (23)) the convergence

∫
Ω

𝑓 (x,un,∇un,Δun)(un − u)dx → 0 as n → +∞,

whenever un → u in L𝛼(x)(Ω) (by assumption (A2)). Next, un ∈ Sbn for all n ∈ N, gives us

⟨−Δ2,+
k,p un,w⟩ = ∫

Ω

𝑓 (x,un,∇un,Δun)wdx (26)

for all w ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω). We choose w = un − u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)

0 (Ω) in (26), and hence we get

⟨−Δ2,+
k,p un,un − u⟩ = ∫

Ω

𝑓 (x,un,∇un,Δun)(un − u)dx for all n ∈ N. (27)

Letting n → +∞ in (27), since bn ↓ 0 we obtain

lim
n→+∞

a⟨−Δ2
p(x)un,un − u⟩ = 0,

⇒ un → u in W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω)

(since − Δ2
p(x) has the (S)+ –property).

From (A2), we know that N𝑓 ∶ W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) → W(Ω) defined by N𝑓 = i∗◦N∗

𝑓
is bounded and continuous (recall

the discussion about Equation (7)). Thus, we have

⟨N𝑓 (un),w⟩→ ⟨N𝑓 (u),w⟩ in W(Ω).

Since ⟨−Δ2
p(x)un,w⟩→ ⟨−Δ2

p(x)u,w⟩ in W(Ω) and

⎧⎪⎨⎪⎩∫Ω
1

p(x)
|Δun|p(x)dx ∫

Ω

|Δun|p(x)−2ΔunΔwdx
⎫⎪⎬⎪⎭n∈N

is bounded,
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then taking the limit in (26) for n → +∞, we deduce that u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω) is a weak solution to (19), whenever

b = 0 in (18). Such a u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω) is a weak solution to the Navier p(x)-biharmonic problem

−Δ2
p(x)u(x) =

1
a
𝑓 (x,u(x),∇u(x),Δu(x)) inΩ, u |𝜕Ω = Δu| 𝜕Ω = 0.

6 CONCLUSIONS

This manuscript proposed a topological approach in solving certain classes of boundary value problems. The new leading
operator in the elliptic equation is named Kirchhoff type p(x)-biharmonic operator. It merges the features of a fourth order
operator (viz., the biharmonic operator), constructed over the anisotropic p(x)-Laplace operator (in the case p ∈ C(Ω̄) is
bounded and bounded away from 1), and of a nonlocal term (viz., a Kirchhoff type term). The investigated toy problems
involve a Navier boundary condition, which gives us that the unknown variable and its Laplacian are null on the boundary
of the domain Ω (⊆ RN and bounded). The main results established the existence of at least a weak solution, following
two different strategies. The first one is originated by a Galerkin method for numerical approximation of solutions to
continuous problems by corresponding discrete finite-dimensional problems. The second one is originated by the classical
theory of pseudo-monotone operators and is applied to a more classical nondegenerate Kirchhoff term (i.e., bounded away
from a positive value). Summing up, we focused on the impact that a gradient and Laplacian dependent nonlinearity has
in the well-posedness of the problem and in the control of its growth via global a priori estimates. The similar results in
the paper apply to different boundary conditions, without the need to change the variable space framework W 2,p(x)(Ω) ∩
W 1,p(x)

0 (Ω). For example, we mention the well-known no-flux condition

u |𝜕Ω = constant, Δu| 𝜕Ω = 0,

∫
𝜕Ω

𝜕

𝜕𝜈
(|Δu|p(x)−2Δu)dS = 0.

This type of condition is useful to model practical situations of electrorheological and thermorheological fluids,
whenever the surfaces are impermeable to certain contaminants (see again Boureanu et al.16).
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How to cite this article: Rădulescu VD, Vetro C. Anisotropic Navier Kirchhoff problems with convection and
Laplacian dependence. Math Meth Appl Sci. 2023;46(1):461-478. doi:10.1002/mma.8521

478

info:doi/10.1002/mma.8521

	Anisotropic Navier Kirchhoff problems with convection and Laplacian dependence
	Abstract
	1 INTRODUCTION
	2 PRELIMINARIES
	3 ASSUMPTIONS AND RESULTS
	4 PROOFS OF RESULTS
	5 CASE OF NONDEGENERATE KIRCHHOFF TERM
	6 CONCLUSIONS
	REFERENCES



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


