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Abstract. In this paper, we consider the Schrodinger equation involving the fractional
(p, p1,---, pm)-Laplacian as follows

m m
(A + Y (=) u+ V(ex) (ul N 722y 3 P2y = f(u) in RV,
i=1 i=1

where ¢ is a positive parameter, N = ps,s € (0,1),2 < p < p; < -+ < pm <
400, m > 1. The nonlinear function f has the exponential growth and potential function V
is continuous function satisfying some suitable conditions. Using the penalization method
and Ljusternik—Schnirelmann theory, we study the existence, multiplicity and concentration
of nontrivial nonnegative solutions for small values of the parameter. In our best knowledge,
it is the first time that the above problem is studied.

1. Introduction and main results

Let Q be a bounded, open domain of RN (N > 2). The standard Sobolev space
W(I){ "P(Q) is defined by the completion of CSO(Q) equipped with the norm

X 1/p

leellyyion gy = | Nell ey + DIV ull )
Jj=1
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The well-known Sobolev embedding theorem states that Wé "7 () embeds contin-
N
uously into LNP/(N=kp)(Q) for a positive integer k < N and 1 < p < e When

N
p= y the embedding Wg N/ k(Q) C L°°(R) fails. To overcome this difficulty,

Trudinger [55] proved that functions in W(}’N (£2) has property

Wi @) c lue L) : Epu) = /eﬂ‘“'N”N’”dx < 400} forany B < 0.
Q

Furthermore, the function Eg is continuous on WOI’N (2).In 1970, Moser [41] gave
the optimal § and proved that § < ay = N a)llv/g’_ 1), where wy 1 is the area of the
surface of the unit ball. From this work, many works are done and made the research
direction about Trudinger—Moser type inequality and applications. Special, In 2007,
Adimurthi-Sandeep [2] extended the work of Trudinger—Moser for singular case
on bounded domain. When €2 is unbounded, Adachi and Tanach [1] and do O [23]
gave a subcritical Trudinger—Moser-type inequality as follows: For 0 < o < ay,
there exists a positive constant Cp such that

sup / @ (a|u(x)|N/<N*‘>) dx < Cy / lu()|Vdx,
uEWl»N(RN),R{V |Vu|Ndx§1RN BV
' N2 ! . .
where ®(1) = e' — ) ;1 o Moreover, the constant oy is sharp in the sense
i

that if « > ay, the supremuni will become infinite. In 2010, Adimurthi-Yang [3]
extended the result of Adachi and Tanach [1] and do O [23] for singular case. In
2019, Parini and Ruf [43] extended the result of Trudinger—Moser to fractional
Sobolev-Slobodeckij spaces and obtained the following result: Let €2 be a bounded
open domain of RV, (N > 2) with Lipschitz boundary, and lets € (0, 1), N = ps.
Then there exists an exponent ¢ of the fractional Trudinger—Moser inequality such
that

sup fexp(a|u|N/(N_s))dx < +o00.
ueWo' " (Q).[ulys.p @ny <1 5
Set
oy = ax(s, Q)
=supia: sup /exp(a|u|N/(N*"))dx < +00

ueWy (Q).[ulys.p vy <15

*

« N> Where

Moreover, oy <

s/(N—=s)
. 2Non)T(p+ 1) X (N +k - 1)! 1

agy =N >
5, N! k! (N + 2k)P

k=0
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By replacing the norm [u]yys.p (RN) by |[|u||yys, P(RNY Tula [33] proved that the result
of Parini and Ruf is still true in R. In 2019, Zhang [61] has been extended the
that result of Parini and Ruf, and Tula to RY and get a fractional Trudinger-Moser
type imequality. Using that result, Zhang studied the existence of weak solution to
Schrodinger equation involving the fractional p-Laplacian. For some more results
and the applications of Trudinger—Moser inequality and fractional Trudinger—
Moser type inequality, we refer the readers to [4,24-27,31,36,37,39,45,59] and the
references therein for more details. On singular Trudinger—Moser type inequality
in fractional Sobolev space and its application, we recommend the readers to [52]
for more details.

Using the fractional Trudinger—Moser type inequality, in this paper, we study
the existence and concentration of nontrivial nonnegative solution for the following
Schrddinger equation involving fractional (p, p1, ..., pm)-Laplacian:

N

(— Ay st (@) + Y (=AY u+ V@) (ul s u
i=1

+) Py = f@) inRY, (P (1.1)
i=1

where ¢ is small positive parameter, 0 < s < 1,2 < p < p; < -+ < py <
+oo,m > 1, N = ps, the potential V is bounded below by Vj > 0, the nonlin-
earity f has exponential critical growth, and (—A)] (t € {p, p1, ..., pm}) is the

fractional #-Laplace operator which may be defined along a function ¢ € C§° RN
(up to a normalization constant) as

s , lp(x) — oM 2(p(x) — ()
(o =2 1im [ e dy

RN\ B (x)

for x € RV, where B, (x) is a ball with center x and radius ¢.

Assume that the continuous function V verifies the following conditions:
(V1) There exists Vo > 0 such that V (x) > Vy for all x € RV;
(V») There exists a bounded set A C RY such that

Vo = min V(x) < min V(x).
XEA xX€IA
Observe that
M:={xeA:Vx) =W} #0.

Moreover, we assume that the nonlinear function f satisfying the following con-
ditions:

(f1) The nonlinearity f € CL(R) such that f () = Oforallz € (—o0, 0], f(t) >0
for all # > 0 and there exist constants oo € (0, o), b1, by > 0 such that for any
t eR,

|F ()] < bi]t]P =1 4 bolt|P iy (ot |V N,
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-2y s .
where O ((y) = — Z,{l:o L',jp =min{j € N: j > p}and o <] 5 (see

Lemma 1).
(f2) There exists u > pj, such that

fOr—pF@) =0

forall t € R, where F(t) = ftf(r)dr.
0
(f3)
f0 _,

m
(—0+ tPm—1

(f1) There exists y; > 0 large enough such that F'(t) > y|¢|* forall r > 0.
f@)
(f5) Py
Recently, Alves—Ambrosio—Isernia [7], Ambrosio—Radulescu [8] studied the
fractional (p, g)-Laplacian as follows:

is a strictly increasing function in R™.

(=AY u+ (A u+ V(Eex)(ul”Pu+ ul??u) = f@) inRY,  (12)

N
where ¢ > 0 is a parameter, s € (0, 1), 1 < p < g < — and f has the subcritical
S

growth and satisfies some suitable conditions. For more results on fractional (p, g)-
Laplace or (p, ¢)-Laplace, we refer the readers to [9—11]. When s — 17!, the
Eq. (1.2) becomes the following equation

—Apu — Agu 4V (Eex)(ul”"2u + [u?%u) = f(u) in RV, (1.3)

where A,u = div(|Vu|"~>Vu), r € {p, q}. The study of Eq. (1.3) is connected to
more general reaction-diffusion equation

ur = div((|VulP~2 + |[Vul"2)V@)) + c(x, u) (1.4)

which has many applications in biophysics, physics of plasmas and chemical reac-
tion design [13,21]. In that equation, c(x, «) is related to source and loss process.
The multiple phases quation is motivated from the following Born-Infeld equation
[18-20] that appears in electromagnetism, electrostatics and electrodynamics as a
model based on a modification of Maxwell’s Lagrangian density

. Vu . N
_d1v<m> =h(u) in R™.
We refer the readers to the work of Zhang—Tang—Radulescu [62] for more infor-
mation and motivation as well as application of double-phases equation.

In 2021, Ambrosio—Repovs [12] have been studied the problem (1.3) when
l <p<gq<N,V:R¥Y - Ris a continuous function satisfying the global
Rabinowitz condition, and f : R — R is a continuous function with subcritical
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growth. Using suitable variational arguments and Ljusternik—Schnirelmann cate-
gory theory, they study the relation between the number of positive solutions and
the topology of the set where V attains its minimum for small e.

When p = g and ¢ = 1, the Eq. (1.2) becomes

(—A);u + V(ex)|ulP"2u = g(x,u) in RV, (1.5)

where V and f satisfy some suitable assumptions. Many works were achieved on
that equation such as [14-16,25,28,29]. In particular, when p = 2, the Eq. (1.5)
becomes

(=AY u + V(ex)|ulP2u = g(x,u) n RY, (1.6)

which has been proposed by Laskin [34,35] as a result of expanding the Feynman
path integral, from the Brownian like to the Lévy quantum mechanical paths. We
refer the readers to [5,6,30,49-51] for more results about Eq. (1.6). Recently, many
authors studied the existence of multiple solution to (1.5) in subcritical growth,
exponential growth and Kirchhoff type problem involving fractional p-Laplace
such as Xiang, Zhang and [58], Zhang, Fiscella and Liang [60], Wang and Xiang
[63]. In that works, they use Krasnoselskii’s genus theory to study their problems.
Motivate by above works, we study the problem (1.1) with exponential growth.
We point out that as far as we know, in the literature appears only few papers on
fractional (p, ¢)-Laplace problems, and there are no results on the multiplicity and
concentration of solutions to the problem (1.1). So the aim of this work is to give the
first result in this direction. We use the Ljusternik—Schnirelmann category theory
instead of Krasnoselskii’s genus theory as in some previous works.

Before starting our results, we recall some useful notations. Suppose that N =
psor N > ps. The fractional Sobolev space W*? (R") is defined by

WP RY) := {u e LP(RY) : [uly,, < 00},
where [u];, , denotes by the seminorm Gagliardo, that is

lu(x) — u(y)|?
[u]s,p = ( mdxc{)})

R2N

I/p

WSP(RN)is a uniformly convex Banach space (similar to [46]) with norm
1/p
lull = (Il gy +1185)
Set n > 0, we denote another norm on W*?(R") as follows
_ p p \/P
il iy = (el gy + 1012, )

Then |.|| and [[.], ys.prn) are two norms equivalent on W*7 (RM). For each
e > 0, let W, denote by the completion of CgO(RN ), with respect to the norm

1/p
lallyger ey = (0 + lallf )l = / V(ex)u(0)| dx.
RN
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Then W‘A}’f; (RN is uniformly convex Banach space (similar to [46], Lemma 10),
and then Wy, 7 (R") is a reflexive space. By the condition (V) and Theorem 6.9
[42], we have the embedding from W\Y,Iel (RY) into LY (RY) is continuous for any

N )

v € [—, 400). Similarly, we can define the space W‘S,"Z’ @®RMY,i=1,...,m. We
s .

denote W, = W‘S,’f; ®RY) NN, W‘s,”’;i (R™) endowed with the norm

m

leellw, = leellygr gy + D el g,

i=1
Then W, is uniformly convex Banach space (similar to [46], Lemma 10) and we
have the embeddings

W, = WP @®RY)y n i, wi P RY) — Wi PRY) — LU(RY)
. N .
are continuous for any v € [—, 4-00). Hence, there exists a best constant S, o > 0
s

N
forall v € [—, +00) as follows:
S

|ullw,
Sve = .
u#0,uecW, ||u||LU(RN)
This implies
ullpe@yy < S;;||u||w‘E forall u € W,. (1.7)

Definition 1. We say that u € W, is a weak solution of problem (1.1) if
N 2
lu(x) —u()| s (ux) —u(y)(px) —¢(y))
dxdy

lx — y|2N

R2N

|x _ y|N+p,'s
N

m _ i—2 _ _
n Z Ju(x) — u ()P (u(x) — u(y))(e(x) w(y))dxdy
l—le

N
+ / V(ex)(u@)] s

RN

2
u(x)

+ 3 @) P u@)p(x)dx = / FuG)g)dx
RN

i=1
for any ¢ € We.

We denote catp(A) by the category of A with respect to B, namely the least
integer k such that A C A; U --- U Ay, where A; (i = 1,...,k) is closed and
contractible in B. We set catp(J) = 0 and catp(A) = +o0 if there is no integer
with above property. We refer the reader to [57] for more details on Ljusternik—
Schnirelmann theory. Now, we state the main result in this paper.
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Theorem 2. Let (V1), (V2) and (f1) — (f5) hold. Then for any 6 > 0 such that
Ms = {x € R : dist(x, M) < 8} C A,

there exists e5 > 0 such that problem (Pg) has at least caty;(M) nontrivial non-
negative weak solutions for any 0 < ¢ < g5. Moreover, if u. denotes one of these
solutions and n; is its global maximum, then

lim V() = Vo.
e—0t

Remark 3. We use the Nehari manifold, penalization method, concentration com-
pactness principle and Ljusternik—Schnirelmann theory to prove the main result.
There are some difficulties in proving our theorem. The first difficulty is that the
nonlinearity f has exponential critical growth. The second is that the fractional
Sobolev embedding is the lack of compactness. Furthermore, our problem can-
not transfer to local problem via to Caffarelli-Silvestre’s method. Compare with
subcritical case due to Ambrosio—Radulescu [8] as m = 1, we need estimate the
Mountain pass level due to the Trudinger—Moser nonlinearity and all our steps
need focus it. Then our duties are complex and they are not the same in the work
of Ambrosio—Radulescu. We emphase that the work Ambrosio—Radulescu studied
the Eq. (1.1) whenm = 1 and 0 < N < ps. In this case we have the continuous
embedding from W* 7 (Q) into LNP/N=5P)(Q). In our work, N = ps, then we do
not have the previous embedding. Hence, our work is independent with work of
Ambrosio—Radulescu [8]. Furthermore, our problem is more complicated than the
problem in [8] due to many phases, not only double phases.

The paper is organized as follows. In Sect. 2, we study the autonomous problem
associated. In Sect. 3, we study the modified problem. We prove the Palais-Smale
condition for the energy functional and provide some tools which are useful to
establish a multiplicity result. This allows us to show that the modified problem
has multiple solutions. In Sect. 4, we prove the existence of ground state solution
to modified problem. In the final part of this paper, we complete the paper with the
proof of Theorem 2.

2. Autonomous problem

In this section, we study the autonomous problem associated to (1.1) as following
m E—Z m
(D)t Y (=AY u+n | uls ut Y julPu | = fa@ inRY, (P
i=1

i=1

(2.1)

where > 0 is a constant. Set W = WN/S(RV) N N, WP (RN). We denote
Jy : W — R by the corresponding energy functional for problem (2.1)

1 AN _
_ p § - Di _
]n(u) = p”an,W&vP(RN) + - Di ||u||n,W‘v'pi(RN) / F(u)dx
1= RN
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From the condition ( f3), there exist T > 0 and § > O such that for all || < 4,
we have

lf()] < it 2.2)

.. . . . N
Moreover from the condition ( /1) and f is a continuous function, foreachg > —,
s

we can find a constant C = C(q, §) > 0 such that

|£ ()] < Clt197 Dy s (arolt| VNV (2.3)
for all |¢| > §. Combine (2.2) and (2.3), we get
|F O] < tlt]Pm ! 4 Cle|7 Dy s (eolt] VTN T) (2.4)
forall + > 0 and
t
|F(t)] < f | £(5)lds < T]t|Pm + Clt|? Dy g (erolt N/ V) (2.5)
0

forall¢t > 0.
Definition 4. We said that u € W is a weak solution of (2.1) if
N
/ lu(x) —u( s () —u()(ekx) — <p(y))dxdy

lx — y2N

R2N

n i / () = (P2 x) —u(@) (@) = (p(y))dxdy

|x — y|NFpis

ileZN
N
+/n(|u(x)| §

RN

B m
(@) + Y ()P 2u(x)p(x)dx = / F()gdx
RN

i=1
forany ¢ € W.
In order to prove the result in this paper, we need the following result:

Lemma 1. ([61]) Let s € (0, 1) and sp = N. Then for every 0 < o < oy < a;N,
the following inequality holds:

sup /@N,s(a|u|N/(N_s))dx < 400,
ueWs P®N).lullys pn, <10y
‘ ip=2 v L .
where Oy (1) = e’ — > ;7 - Jp = min{j € N : j > p}. Moreover, for
J!
o>y,
sup CDN,S(a|u|N/(N7S))dx = +00.

”GWS’p(RN)»”“‘|w&P(]RN)§1RN
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Remark 5. From Lemma 1, if we use the norm ||.[[,, on WSN/s(RN), then we have
(max {1, n}) ™ P Jull, wer@yy < Hullys.pyy < @@ind1, gD ™2 [ull, wsp@y).

then we get

sup /CDN,S(a|u|N/(N*S))dx < 400

ueWS-P(lRN),IIM\\,,,Wx,p(RN)s(min{l,n})S/NRN
forall0 < a < ay 50‘:1\#
Using Lemma 1 and note that C§° (RV) is a density subspace of W*?(RV) N

N Wi (RN), we see that Jy, is well defined on wsN/S@RNYN N WePi (RM).
Furthermore, we have

N
—2
T W= lu(x) —u| s (wx) —u(y)(plx) — (p(y))a’xa’y
1 x — |2V
R2N
“ lu(x) — u(P 2 (x) — u())(ex) — p(»))
- Z |x — y|Ntpis drdy
l:lRZN
E 2 m
+n/ lu| s u—}—ZIuI”"*zu pdx — / fwedx.
RN i=1 RN

We know that W is uniformly convex with norm

m
Nullw = allys.ogmy + D ullwsri -

i=1

Another norm is

m
el w = l1aelly wo.o @y + D Nl weri gvy-
i=1

By Theorem 6.9 [42], we have the embedding from W* /s (RV) into L"(RY)
N

is continuous for any v € [—, +00) and W = WSP(RN) N N We-Pi (RN) is
s

continuously embedded into W*-? (RN ). Hence, W is continuously embedded into

. . N .
LV(RV) is continuous for any v € [—, +-00). Then there exists a best constant
y
S

N
Ay, > O0forallv € [—, +00) as follows:
s

Il w

Ay = W
u#0,ueW ||u||LU(RN)
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This implies
Hullpvwny < A, ,7||u||,, w forallu e W. (2.6)

We can check that J), satisfies the geometry condition of Mountain Pass Theo-
rem. Indeed, we have the following result:

Lemma 2. Suppose that (f1) and (f3) hold. Then there exist constants positive
to, po such that J,(u) > po for allu € W, with ||ul|, w = to.

Proof. From (2.4), for some ¢ > p,,, we have
|F(0)] < tlt|Pm + Clt|9 Dy s (aolt|V/ V7))

for all # € R. Then we get

s N/ ;
Jn<u)=ﬁ||u||,7,(;x,p(RN)+Z Nl RN)—/F<u)dx

N N/S Pm
> Nnuunyws,p(RNﬁZ ||u||,7W”,,(RN)—r/|u| dx

- cf |9 Dy g (crglu| N N =) dx. 2.7)
RN

Using Holder inequality, we have
f Jul? s (ol N N dx

RN
1/t

t
< | [ (onsteot™ =) ax | il

N

Lat' ®NY’ (2.8)

1 1
where ¢t > 1,¢ > 1 such that " + - = 1. By Lemma 2.3 [38], for any b > 1,
there exist a constant C(b) > 0 such that
t
(P @olul™ V=) < CO)P (Betolu N/ V) (2.9)

on RY. Denote by 0 = min{1, }, we get

t
[ (@nateo V) ax < o) [ @n.stoanul Vs

RN RN
N/(N s
= C(b) / .5 (bergd ™ Nl 1700 10N o oy Y )
RN

(2.10)
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We know that [[u],, ys.pwyy < [lully,w, then [[u]],, w is small enough implies that
]l ws.p ny 1s also small enough. Therefore, when b near 7, we have

—s/(N—s) N/(N—s)
b0 ||u||7],WSvf’(RN) < Oy, 2.11)

by Remark 5, (2.10) and (2.11), there exists a constant D > 0 such that
1/t
t
f (®w.sCeoluM =) ax | < D.

N

Since the embedding from W — L4 (RV) is continuous, we get

/ ul? @ s (olulV/N"dx < DA [lull?, < +oo. (2.12)
RN
From (2.6), we have
Nl L om mivy < A;,i,n”””’?’w forallu € W. (2.13)
Note that the function f(¢) = P is convex, then
(al +"'+am+]>Pm - a{’m ++ar[;lm
m+1 m+1

foralla; > 0,i = 1,...,m + 1. Hence apply above inequality, combine (2.7),
(2.12) and (2.13), when ||u||,,w is small enough, we obtain

(m + 1) =Pn 3
) = =l wor ey + D Nully weri @)™
m i=1
— T Ap il — CDA L Hlull?

[<(m + 1)lpm

m

—TAR) = DAL ] @14

— Pm
= |jull™, p

(m + 1)!=Pn —p
We see ———— — 1A,y > 0 for  small enough. Let
Dm

(m + 1)1_pm —Pm —-q —Pm
h(t) = p—m —TAp, ) — CDqu’,ntq Pm ot > (.

: L 1 (m+ 1) =Pn
We now prove there exists 7o > 0 small satisfying h(ty) > 5(— —
Pm
tA;,,f%). We see that / is continuous function on [0, +00) and lim;_, o+ A(f) =
4+ 1l=pm B ) H1=Pm
u —TA pf "n» then there exists fy such that h(z) > u —
Pm Pm
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tA;,ff';? — ¢y forall 0 <t < 19, ty is small enough such that [|u||,, w = to satisfies

l=pm
(2.11). If we choose ¢] = z(u [,m ,,) we have
Pm
1=pm
h(t) > 3 (% rA;:";,)
Pm
forall 0 <t < 1y. Especialy,
1 1=pm
h(t) > (% Apnfj",g) . (2.15)
m

From (2.14) and (2.15), for ||u|], w = t9, we have

th (m + 1)17pm o
Ty () = 07 : <p— — AP ) = po.
m
0

Lemma 3. Suppose that ( f4) holds. Then there exists a functionv € Cg° RN with
[lly,w > to, such that J,(v) < 0, where ty > 0 is the number given in Lemma 3.

Proof. For all u € CSO(RN) with [|u||,,w = 1, from the condition (f4) and all
t > 0, we obtain

Ty (tu)

N/s i
u n,(;s,p(RNﬁZ ||u||”va,(RN) f F(1u)dx
RN

N
N Z oy — 10" [ GV
RN

SIN/S

IA

— —ylt“/|u(x)|“dx

N
By (2.6), for all v > —, we have
K

Ul

0< =
Ayyt+e Ayyt+e

—1 —1
< Jull oy < Ay bllullyw = Ayl < 400,
where ¢ > 0. Since ¢ > p;;, we have J,(tu) — —oo ast — +oo. Taking
v = piu, p1 > to > 0 large enough, we have J,(v) < 0, ||v||,,w > fo. |

Using the version of Mountain Pass Theorem without the Palais-Smale condi-
tion, we get a sequence {u,} C W such that

Jy(un) = ¢y and Jy (up) — 0 asn — oo,
where the level ¢, is characterized by

= inf Jy(y(t
Cy ;relrtn?g%] (¥ ()

and T = {y € C([0,1], W) : y(0) = 0, J,(y (1)) < 0}.
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Lemma 4. Let {u,} be (PS)., sequence for J,. Then there exists a constant Cy,
such that po < cy < Cy,.

Proof. We choose a function w € W\{0} suchthat||w||Lﬂ(RN) = land||wl];w <
Ay .y + € for some ¢ > 0 small enough. We see that

¢ <max J,(tw
= ma p(tw)

stN/s N/s m ¢Pi N . .
- rtnfé({ N U e vy + ) Wl ey vy = 712" [ Tw(x)] dx}
- i=1 Pi BN
N/s4N/s m Di +Di
< max Sy + )71 Ay TR th. (2.16)
= =0 N i V1
- i=1 !
Apn+ PP s(Ayy +e)NstlN/s
Setg(r) =YiL, Ao o ) + (A N) — y1t* on [0, +00). We
have l
¢ < max g(t) + max g(t). 2.17)
1€[0,1] =1

When ¢ € [0, 1], we get

2 (Apg+ ol s(Au,+e)Ns al
g <hn)=() o+ = 1S — oyt
1

i=1

A g)N/s A &)Pi
We denote a = % + Zf": 1 (“n——i_) b = y1. Compute directly,
pi
we have l
t)y<h@®,)=0C,, 2.18
tIErEg,)i]g( ) < h( yl) Y1 ( )
where

o ( aN )S/(MS—N) -
" sy -

aN
as y; = — = y*. Compute directly, we get
Sp

N aN N/(pus—N)
Cy, =h(by,) =a (1 — ;) (ﬁ) ) (2.19)

We see that limy, 1006y, = 0, then limy, 1o 7(6),,) = 0. By arguments as
above, for all > 1, we get

m

A +8 Pi s A +€ N/S
g(t) < h*(t) — (Z ( M;'}p. ) + ( ILJ]N ) tp’" . J/ltl‘L
i=1 !
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apm 1/(M7Pm)
and h has uniqueness local maximum pointat 8,, = ( —) on (0, +00).

Yl
Note that if we choose y; > y,, where y, satisfies

1 —Fm
<apm) /(= pm) -
Vx4 -

we deduce

i (Apy+ el N s(Apy +e)N/s

1) < hy(l) = — Y.
I}l;;ig( ) < hy(1) 2z o N Y1
m Aug TP s(Auy +N°
Set Yux = 3 1 o + N . We have
L
lpgfg(t) < Oforall y; > max{yx, Vix}- (2.20)
Combine (2.17), (2.18), (2.19) and (2.20), we obtain
N aN N/(us—N)
c<Cyp=all—— )| — (2.21)
" S bsu

for y1 > max{y*, s, Y««}. Therefore, the Mountain Pass level ¢ is small enough
when y is large enough, which will be used later. Combine Lemma 2, (2.16) and
(2.21), we get po < ¢ < Cy,. |

The following result is a version of Lions’s result:

Lemma 5. ([54]) If {u,} is a bounded sequence in WSN/$ (RN ) n AL, W Pi (RV)
and

lim sup /|un(x)|’dx=0
n—oo
yeRY
Br(y)

N
for some R > 0,t > —, then u, — 0 strongly in LY(RN) for all ¢ € (t, +00).
s

Lemma 6. Let {u,} be a sequence in W converging weakly to O verifying

) _ . 0%/ (N=9)
11msup||un||nN()[(,N O
n—o00 ’ [Wo )
. . . AQ)
where ¢ > 1isasuitable constant and assume that ( f1) holds andlim,_, o+ Pt
0. If there exists R > 0 such that liminf,_, o SUp RN f luy|Pmdx = 0, it

Br(y)
follows that

/ f(up)updx — 0 and / F(uy)dx — 0.

RN RN
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Proof. Sinceliminf, oo supyegy [ |up|Pmdx =0, by Lemma 5, we getu, —

Br(y)
0 strongly in L’ (RN forall ¢ € ( Pm, +00). From the condition ( f1) and
t
m LD o
t—0t tPm—1

then for any ¢ > 0 and ¢ > p,,, there exists C(q, €) > 0 such that
|f | < elun|P" + C(g, &)unl? @ s (@olun ™/ V). (222)

1 1
Fort > 1,¢ > 1 and ¢ near 1 such that " + = = 1, using Holder inequality, we
get

f PRI SORENPRLILEOIY

RN
1/t 1/t

< / |un |9 dx / (D5 (aolun| N/ V=) dx : (2.23)

N N

Then by Lemma 2.3 [38], for any ¢ > ¢’ and near ¢/, there exist a constant C(c) > 0
such that

t/
(@ns@olun VN < COBy,s (caroluaVN) 224)
on R" and all n. We have

f .o (carplitn |V V) dx

RN
0| N/(N—s)
— u
- / D5 | corgd ™V a0 9N dx.
m ) ||”n||;7,wx-p(]RN)

RN
(2.25)

Since [[unl,) ws.rwyy < llully,w, from Remark 5, we get

sup,, / s (cog |y |V N dx < 400. (2.26)
RN

Combine (2.23)-(2.26) and the fact that u,, — 0 in L9' (RY), we obtain

/ f (n)ttnldx < 6 / lunlPrdx + C(q. ) f 9D 3 (@0litn ¥/ V) dx — 0

RN RN RN
(2.27)

as n — oo since {u,} is a bounded sequence in LP! (RY). Similarly as (2.27), we
also get [ |F(up)ldx — 0asn — oco. i
RN
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Proposition 1. Assume that the conditions ( f1) — (fs) satisfies. Then problem (2.1)
admits a nontrivial nonnegative weak solution.

Proof. From Lemma 2, Lemma 3 and a version of Mountain Pass Theorem without
the Palais—Smale condition [47,57], we get a sequence {u, } C W such that

Jy(un) = ¢y and Jy (up) — 0 asn — oo,
where the level ¢, is characterized by

0 = inf Jo(y ().
<y ;rértrer%g}] 2 (v (1)

By the assumption (f5), using the idea in [43] and Lemma 3.2 [7], we can get

= uelxi}{{()} ?Egl p(tu) = 1nf Jy (),

where N, » 18 Nehari manifold for J,.
Note that {u,} is a (PS) sequence with level ¢;, € R in W. This means

Jy(up) = cyand  sup | < J,;(un), p>]—0 (2.28)
lellyw=1

as n — oo. We show that the sequence {u,} is bounded in W. From (2.28), we
have

] (un), ———— >=0,(1) and Jn(un) =cp+ on(1)
[u n||17 W

when 7 large enough. It implies

1
Iy (un) — L Ty (), un >= ¢y + 0p (1) + 0 (D ltn 1y, w, (2.29)

where u is a parameter in the condition ( f>). We have

1 N/s
Jn(un) - ; < J;;(“n)a Up >= — ||un|| n, WP (RN)
+ Z ||Mn||,7 WS-Pi (RN) / F(uy)dx
RN
1 N/s
- ;[nunnn,(;i,N/A(RN) + Z [E A / f(un>undx]

RN

= (= D)l
AN /T I W ®Y)

m
1 1 ) 1
+y (; - ;)Hunug’jws,pi o / (f Gty — WF () dx.
i=1 RN

]
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Therefore, we have
1 /
Jn(un) -—— < J,](Mn), Up >
"
= (2 = L)l +Z( )||u Iis (2.30)
“\N u "y, Weep (RN) "y, wePi(RN) ’
Combine (2.29) and (2.30), we get
(= )+ 2 G = )l
N ; ||Mn||n’Ws,p(]RN) ||”n|| 7, WSPi (RN)
< cp + 0n (1) + 0 (Dllunlln,w. (2.31)

Note that

lim

axV/s byl by
X—+00,x] —>+00 B

+00,
..... Xm—>+00 X+)C1+'-'+xm
where a > 0, by > 0, .

,..., b, > 0. Then from (2.31), we conclude that the
sequence {u,} is bounded in W. Since

1
Jy(un) — ; < J,é(u,,), Up >— Cy

as n — 0o, then

] Cy,
hr?lsolép ||u,,||’7 WA pEN) S T = i (2.32)
N u N n
and
C
lim sup |1ty || n,WSPi RNy = 71 & 1 = 1 n 1 (2.33)
n—oo o o
Pi 1% Pi 1%
foralli =1,..., m. Hence, we deduce
1
s/N —
c " c b
limsupllugllpw < | —" | +> [1+7| - (2.34)
n—oo I =1 -
N pi M

Moreover, we claim that there exists R > 0, § > 0 and a sequence {y,} C R" such
that

lim inf / luy|Prdx > 6.
n—oo

BR(YM)

(2.35)
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If the above inequality doesnot hold, it means that

liminf sup [ [, |Pmdx =0
n—00 yeRN
Br(y)

for some R > 0, then from (2.21) and (2.34), when y; large enough, we get

) _ .05/ (N=9)
lim sup [[uy || 4 < =

n—o00 cxQ

Using Lemma 6, we have lim,,_, f f(up)uy,dx — 0asn — oo. Then
RN

m
o(1) =< Jyun)stn >= lltnll} oy vy + D el sy vy = / [ un)updx
i=1
RN

m
= ||u"||Z,W°VP(]RN) + Z ||Mn||gfwx,pi (RN) +o(1)
i=1

as n — oo. Hence u, — 0 strongly in W. It implies that

1
Jy(un) =

m
1 )
;Hul’l”g’ws,p(RN) + § p_||un||5jwvm(RN) - / F(Mn)dx —0
i=1

RN

as n — o0. It contradicts with ¢;, > 0. Therefore (2.35) holds. We denote v, (x) =
un(x + yp), then from (2.35) we get

/ loa|Pmdx > §/2. (2.36)
Br(0)

Because J; and J,’) are both invariant by the translation, it implies that

Jy(vn) = ¢y and J; (v,) — 0in W™,

Because ||v,||;,w = [lunlly,w, then {v,} is also bounded in W, then exists v € W
such that v, — v weakin W, v, — vin L] (RY) (g € (pn, +00)) and v, (x) —

v(x) almost everywhere in RY. From (2.36), we get f lv|Pmdx > §/2 > 0,
Br(0)

then v # 0. By arguments as in [53,54], we get J,; (v) = 0. Furthermore, from the

condition f(¢) = 0 forall r € (—o0, 0], we can get v > 0.
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By Fatou’s lemma, we have

1 /
cy < Jy(v) = J(v) — ; < J,)(v), v >

_ (s _1 P
- N - m ||v||77,W5'1’(RN)

m
1 1 ) 1
- _ - pi 1 -
* ; (Pi u) VI i ey + p l(f(v)v wF (v)dx
- R

L s 1 p A 1 pi
< hnrglo%f{ (ﬁ — ;) ||v”||n,WH’(RN) + IZI: p_ - ; ||U"||;7,WS’P1'(RN)

1 e 1 /
+ ; /(f(vn)vn — MF(v,,))dx} = lilrggéf {Jn(v,,) — ; < J,(vn), vy > } =cy.

RN

Hence v is a ground state solution to the problem (2.1). O

3. The modified problem

Now, we introduce a penalized function in the spirit of [44] which will be funda-
mental to get our main result. First of all, without loss of generality, we may assume
that

0e Aand V(0) = V.

Let us choose k > > 1 and a > 0 such that

— Pm
f@ Vo
abn=1 "k’
We define
. f@) ift <a
FO=1 Wity s o
k
and

g(x, 1) = xa () f(t) + (1 — xa(x)) f(¢) forall (x,7) € RN x R.
‘We show that if u, is a solution in W to
m m
(—A)u+ Y (A, u+ V(ex) <|u|p2u +y |u|Pi2u>

i=1 i=1
=g(ex,u)inRY (PF)  (2.37)

with ug(x) < a forall x € AS = R¥\A,, where A, := {RY : ex € A}, then
g(ex,uy) = f(ug). Hence u, is a solution of (1.1).
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Definition 6. We say that u € W, is a weak solution of problem (2.37) if

N

/ u(x) —u(y)| s (@) —u()(ekx) — qo(y))dxdy

Ix — yI?N

R2N

“ lu(x) — u(MP 2 ux) — u()) (@) — ()
+21: |x — y|NFpis ddy
= R2N

/ V(sx)<|u<x)| S a0+ Y @M 2u)g0dx
RN

i=1

:/g(ex,u(x))w(x)dx

RN
for any ¢ € We.

We have that g satisfies the following properties [40]:
(g1) g(x,1) =0forallr <0and g(x,#) > Oforall > 0 and x € RV;

t
(g2) lim,_, o+ g = 0 uniformly with respect to x € RV;

(g3) g(x,t) < f(t)forallt > 0and x € RN
(g4) 0 < uG(x,t) < g(x,t)t forall x € A and r > 0, where G(x,t) =
t

[ gx, v)dr;
0
v,
(25) 0 < pmG(x, 1) < g(x, 1)t < fﬂ’m forall x € A€ and 1 > 0.

1
(g6) for each x € A, the function 5; [(7)‘ _1)

glx, 1) . o . .
Py is a strictly increasing of ¢ in (0, a).
gx, 1) Vo

tPm -1 = 7 :
In order to study the Eq. (2.37), we consider the energy functional I, : W, — R

given by

is a strictly increasing of 7 in (0, +00);

(g7) for each x € A€, the function

Further, if ¢+ > a, we have

1 | .
L) = —|ul|’ ., + —lul|Ps e — / G(ex,u)dx.
‘ V4 WV/: ; Di WV,[s)

RN

By the condition (f1) and (g3), I is well defined on W, I, € C%(W,, R) and its
critical points are weak solution of problem (2.37). Associated to I, we consider
the Nehari manifold N; given by

Ne = {u € W\{0} :< I/ (), u >= 0},



Schrodinger equations with exponential growth 519

where
_ -2 _ _
g~ = () —uWIP2 @) —u @) = () | dy
|x — y|N+ps
RZN
= lu(x) — u)|P 2 u(x) — u()) (@) — o))
+2; |x — y|N+tpis dxdy

=IR2N

+/V(Sx)(|u|p_2u+Z|u|p’_2u)godx—/g(sx,u)godx

i=I BN

RN
for any u, ¢ € W,.
Proposition 2. There exists r, > 0 such that
llullw, = r« > O forallu € N;.
Proof. We are easy to get the inequality
el lws.pevy < ming1, Voy ™7 fullysr vy < min{l, Vo) ™7 llullw,. (2.38)

Then from Lemma 1 and (2.38), we have

sup / s (|ulN N dx < 400 (2.39)

weWe, lullw, <(min(1,Vo))*/¥ J,

and

sup / Oy s(alulV N dx < 400 (2.40)
DN S

u€Wy e RY). lullyys:p v, <(min{1, Vo
.E

for all 0 < @ < «ay. From the condition (f7), (f3) and (g3), for any ¢, > 0 and
q > pm. there exists Cy ., > 0 such that

lg(ex, 1] < | f(D1] < exlt]”" + Cqe, 119Dy s (atgt| ¥/ V=) (2.41)

for all # > 0. Combining (2.39) and (2.41), by arguments as Proposition 2 in [54],
we can get the result of Proposition 2. We omit the details at here. O

Lemma 7. The functional I, satisfies the following conditions:
(i) There existsa > 0, p > O such that I,(u) > o for allu € W, with |ullw, = p.
(ii) There exists e € W, with ||e||w, > p such that I;(e) < 0.

Proof. First we prove the statement (i). From (2.41), for any 7 > 0 and some
q > pm, there exists C > 0 such that

|G(ex, )| < |g(ex, t] < |f(D)1] < T|t|P" + Clt|9 D (|t |V N 7)
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for all # € R. Then for all u € W, such that [|u||w, € (0, 1), we have

1 21 .
L) = —|[ul|? s, + —uplx,i—/G(ex,u)dx
2 0) = ~llullye ;pin er
- o

1 1_[7m
L T —r/|u|f’mdx—cf l?® . (eolul V).
p &

m
RY R¥
(2.42)

Using Holder inequality, we have

1/t

t
/ @ (tolual /N yx < / (@ns ol V=) ax | il v,

RN N

(2.43)

1 1
where ¢t > 1,¢ > 1 such that " + P = 1. By Lemma 2.3 [38], for any b > 1,

there exist a constant C(b) > 0 such that

t
(Pns@olul™ V=) < COx B0l V) @44y
on RN . We get
t
f (@ns(aolu™ V=) < c (o) / @5 (baolu /N )dx
RN RN
= C(b) f @5 (batgd >/ Nl | Y N |V V) dx
RN
(2.45)

When ||u||w, is small enough and b near ¢, we have
bord =/ V= ju) |3/ N < (2.46)

From (2.45) and (2.46), there exists a constant D > 0 such that
1/t
t
f (®w.sCeolu™ =) ax | <D.

N

Since the embedding from W, — L7’ "(RV) is continuous, we get

[ it on ol < DSl <40, @47)

RN
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From (1.7), we have

Nl pom@y < S, g||u||WF for all u € We. (2.48)
Hence, combine (2.42), (2.47) and (2.48), we obtain
(m + l)l_pm m —Fm m
I (u) > —————lull{y" — S, e lully CDSqt/q [lae] I,
m
- (m —+ 1)1_pm P D
= ||“||lv)vg[(— — rs,,,,f;) cos, ! lullly” ] (2.49)
m
1 l_pm
We see mt D70 _ 8, > 0 for v small enough. Let
Pm
1l=pm _ _
h([) = u — TSpmp,VZ —CDS ;/Itqum’t > 0.
Pm a
. o 1 (m+1)!=pm
We now prove there exists #p > 0 small satisfying h(zp) > (— —
m

rS,;f,"g). We see that & is continuous function on [0, +00) and lim,_, o+ h(t) =

1! =pm _ 1! =pm
m+ o 8,7, then there exists 7o such that h(f) > m+ )
Pm Pm
S,,m — ¢ forall 0 <t < 1, o is small enough such that [|u]|w, = #o satisfies
(m + )1 Pm —p
(2.46). If we choose ¢] = —(— — 18, ¢), we have
2 Pm
1 ((m+1)l=pn _
hi)> - — — ¢S Pm
( ) =5 < P Pm,€
forall 0 <t < 1y. Especialy,
1 + 1l=pm _
W) = ~ (DT o) (2.50)
2 Pm ’

From (2.49) and (2.50), for ||u||w, = to, we have
Pm 1—
A L —
Ie(u) > 0 ( —‘L’Sp,f,g = 00-
2 Pm

Second, we prove the statement (ii). Setu € C§° (RN)\{0} such that supp(u) C
A¢. From the condition ( f1) and all # > 0, we obtain

m .
N tpt ;
I (1) = —|| g, + 22 e ey = / F(tudx
i=1 1 Ve
RN

| /\

m .
NNV AT ot n
|| ] j,,(RN)+'lepl_||u||Ww(RN) nt () dx.
1=

supp(u)

N

Since u > p,, > —, we have I, (fu) - —ooast — +oo. Taking v = pu, p; >
S

to > 0 large enough, we have I.(v) < 0, [[v]]; > to. O
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From Lemma 7 and the version of Mountain Pass Theorem, there exists a (P S).,
sequence {u,} C W, thatis,

Ie(up) — ¢ and I, (u,) — O,
where
ce = inf max I, t
e = Inf max (v (1))

and I' = {y € C([0, 1], W¢) : ¥ (0) = 0, [ (y (1)) < 0}.
The following result is the characteristic of Mountain Pass level which the
original idea comes from [43]:

Proposition 3. We have c; = inf,cw,\(0) Sup;> le (fu) = inf,enr, Le(u).

Proof. We denote c¢; = inf,ew,\(0} Sup,>o Ie (tu) and c¢;* = inf,cn; Ie(u). For
each u € N;\{0}, there exists a unique ¢(#) > 0 such that #(u)u € N; and the
maximum of I, (tu) for all # > 0 is achieved at + = #(u). Indeed, by Lemma 7,
hy(t) = I.(tu) > 0 when t > 0 is small enough and A, () = I.(tu) < 0 when
t > Oislarge enough. Then there exists # (u) > Osuchthath, (t (u)) = I.(t (w)u) =
max; >0l (tu). By Fermat’s Theorem, we have &/, (t (u)) = 0 iff r (u)u € N;. From
g(ex,t) =0forall ¢ <0, it follows that

P pi

ull? ),
ity Wy T CCT
= | ——dx

p
_ e _— u s, pm =
tPm—p + tPm—P1 + || ||WV{5‘ [pm_l
RN
L, gex, tu™)
- / Whyrm 8222 gy,
(tut)pm=

{xeRN:tu(x)>0}
We conisder the case m > 2, the case m = 1 is proved similarly. Arguing by a
contradiction, there exists two positive numbers #; > #» > 0 such that tju, thu €
N, from (gg), we get

1 1 1 1
- p - r
<t{1mp PmP) luls.p + (tpmp pmp> / V(ex)lulPdx +

t t
2 1 2 BN

1 1
_ Pm—1
+ Pm—Pm—1 Pm—Pm—1 [u]s‘pm_l
h )

1 1
— Pm—
+ (tpmpm—l tpmp,,,_]) / V(sx)|u| Ydx
1 2

RN
_ / (u+)pm[g(8x,t1u+) N g(sx,tzuﬂ]
RN

(tyut)pm=1 (tout)pm=1
g(ex, tiu™) g(ex, trou™)

— +\Pm
- / @™ |:(l1u+)1’m*1 (12M+)P/11*1 ]dx

RM\A,
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N / (u+)pm[g(£x, nut)  glex, t2u+)]
(t1u+)17m_1 (tzu+)pt71_1
Ag

on[8ex nut)  glex, pu™)
> f ") [(zlqu)Prn*l (Izuﬂpmq]dx. @.51)
RN\A

We have

—+\Pm g(S.x, t]bt+) . g(sx, t2u+)
N/ ™) [(t]u+)1’m_1 (aut)ypm—1 ]dx
RYAA¢
— / (u-‘,-)Pm I:g(ng tlu+) _ g(8x7 t2u+):|d.x

([1u+)Pnl*] (tzu‘l’)Pm*l

RN\ A )N{tru>a)

N / a4 nut)  glex, tzu+)] ”

(tlu‘i‘)pm*l (t2u+)pm71

R¥\A)N{tau<a<tiu}

f (u+)pm[g(£x,t1u+) glex,u

")
(tlu‘l’)Pm*l (tzu‘l’)[?m*l ]

+

RN\ A )N{tju<a)
=1+4+I11+1I1.

~ Vi
By the definition of g, we have I = 0. Since g(ex,t) = f(t) = fﬂ’m_l for all

x e Afandt > a, we get

Vi ex, bu™
Il = / (u+)Pm|:_0 _ g( 2U )]dx
k  (rut)pn=l
RM\A)N{tu=<a<tiu}

glex,ou™)  fou®) f@ Vo . f@)
= < = — since

(t2M+)pﬂ1_1 (t2u+)l7m_l apm_l k tl’m—l

function. Therefore /1 > 0.By the condition (g7) and tju™ > tou™, wehave I11 >

1

th*P - th*P < 0 and tpmfpi - th*Pi < Ofor

oh 2 1 2

alli =1,...,m— 1. Combine that property, (2.51)and I + 11+ 111 > 0, we get

a contradiction. Thus 7 () is uniqueness. Therefore, we see that

We have

is an increasing

0. Since t; > t,, then we have

sup I, (tu) = I (t(u)u)

>0
and 7 (u)u € N;. Itimplies that ¢} = ¢}*. On the other hand, for fixed u € W,\{0},
we have I (tu) < O when ¢ large enough. Then there exist 5 >> 0 such that
I.(tu) < O for all ¢+ > 9. We consider the curve g, : [0, 1] — W, such that
gu(t) = ttou for all t € [0, 1] and g, € I'. Hence, we obtain max,>o Io(fu) =
max;e(o,1] / (g (¢)) and it implies that

*= inf I.(tu) = inf I(g,(®)) > inf I1(y (1)) = c,.
C, ueé‘g\{of?;é( e (tu) ueé‘g\{o}ggﬁ] (gu())_yn;ﬁg%&ﬁ] (y (@) =ce
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Next we prove that ¢, > ¢*. Indeed, we only need show that every path y € T
has to cross N. Conversly, if y N N; = ¢, then < I/(y(1)),y() >> 0 or
< I'(e)(y (1)), y(t) >< Oforall ¢ € [0, 1]. We have

- f g(ex, y )y (t)dx.

m

< L@ @), 7@ ==y Ollfsr g, + DIy Ol
* i=1

RN

$,pj
V,sl (RN)

Using Trudinger—-Moser inequality we get
<Ly ®).y®)>>0

when ||y (¢)||w, is small enough. Then the case < I'(e)(y (¢)), y (t) >< 0 for all
t € [0, 1] is not true. Next, we prove that < I/(y (1)), y(¢) >> O forall 7 € [0, 1]
can not occur.

From the assumptions (g4) and (gs), we have

/g(ex,y(t))y(t)dx = fg(ex,V(t))y(t)dx+/g(8x,y(t))y(t)dx

RN Ag Ag
> ufG(ex, Y (1))dx +pmfG(ex, y()dx = pm / Gex. y(1))dx.
Ag Ag RN
Then, we get

0 << @) y®) >= Iy Ol v,
m

+ DY Ol o, = P / Gex, y(D)dx
V.e

i=1 RN

for all t € [0, 1]. By the definition of y, when ¢ near 1, we have I, (y(¢)) < 0 due
to the continuous of I, on W,. Then we get

1 = .
[ Ger v s < iyl e, + D IO )

RN

v ®Y)

V.e

1 1 _
< SO gy + 2 1Y Ol g, </G(ex,y(r)>dx.
€ i=1 1
RN

It is a contradiction. Hence y N N; # @ and then ¢, > ¢}*. O
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Lemma 8. Assume that {u,} C W is a (PS)q sequence for the functional I, and

k > .If0 < d and d satisfies the condition
— Pm
G-y
N pn
- -1 1 -1 1
- —— T qN/(N—:
+y (i_ l) Pi 4P +<L_l_ ! )pmdpm] /=)
— \pi M Pm M pmk
gt/
< —’
[Wo'7)
ifm>2and
L s/(N=5)
[(i _ l)_s/Nds/N N (L 1 L)Eda]’v/w—“ B
N pi W pik coo

ifm =1, then {u,} is a bounded sequence in W, and

s/(N—s)

tim sup [fu, [/ V7 < B

n—00 ’ coo

9

where ¢ > 1 is a suitable constant and 0, = min{1, Vy}.

Proof. We only consider the case m > 2. The case m = 1 is proved similarly as
m > 2. We omit the details. First, we see that

1 ’
d + o0n(1) + on(Dllunllw, = Le(un) — ; < L(un) tty >
11 oo |
“\r f - pi
. <p “) el e +2 (pi u) ety vy
1=
1
+ /(—g(ex, upun — G(ex, u,))dx
RV o
1 1 mo | |
b ’ - pi
) <p “) ety * Z; (Pi M) ”u"”WC’,'SWRN)
1=

+ / (lg(sx, upu, — Gex, un)> dx.
"

AC
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Therefore, we get

1
d+0n(])+0n(1)||un||W8 Z/(;g(gxsun)un_G(ex’un)>dx

A€

1 .
— - _ = pi _
> (53 ) AP(RN)+Z< )1, = [ Gox
AC
m
1 1 . Vo
)4 . Pi _ Pm
) ||u"||W‘j"g(RN) + ZI: < - M) HunllW;‘y‘Z"(RN) / kpm [t [P dx
i= Ae

m

1 1
P i N Pm
[ ||? &p(RN)+ El< M) etn]|? W @y T pmk/V(sx)lunl dx
i A€

l

1 (e
- N/s -2 pi
M)”unll YP(RN)_FZ([% M)Hun“W-‘?/«ﬁi(RN)

1 1
+(pm _;_ P k) Il ’ll YPW(RN)

Since k > , using the property
M — Pm
) ax? +aix{ 4+ amxn”
lim = 400,
X—~+00,x1—>—+00,...,X;—>+00 X+x1+--4+xn
where a > 0,a; > 0,...,a, > 0, we have {u,} is a bounded sequence in W,.
Then, we deduce
li Nt 1Y li lotn 7" <1
im sup ||u J < > Tim sup [[u[[]s.pi < —
n—>oop n p(RN) s 1 n—>oop e iy l B l
N pn pi M
foralli=1,...,m —1and
. d
B e e

From the assumption of d, we get

N/(N— N/(N—s)

tim sup [y /™ = tim sup (110l v, +Z||un||wsm(RN))
n—o0 n— oo i=1
. -1 1
—s/N _—
< [(i_l> N IN (L_l) Pi dpi

N u P B
-1 1

N/(N— s/(N—s)
+(L_l_ ! )pmdp ] B
Pm 18 Pmk cag



Schrodinger equations with exponential growth 527

Lemma 9. Let d > 0 and d satisfies the condition

-1 1
_s/N m—1 _
[(i_l> s/ ds/N+Z(i_l>pidpi
N n = \pi M
-1 1
— — . N/(N—
+(L_l_ 1 )pmdpm] )
Pm 1% Pk
/3* s/(N—s)
[Wo ) ’
ifm > 2 and
-1 1
_ s/(N—s)
[(i_l) S/Nds/N_I_(i_l_ ! )Pldpl]N/(N 5 ,30—
N pn P K pik o

ifm =1, and {u,} C Wy be a (PS)y sequence for I such that u, — 0 weak in
We. Then we have either:

(i) uy, — 0in W, or

(ii) there exists a sequence {y,} C RN and constants R > 0, > 0 such that

lim inf f lug|Pmdx > B > 0.

n—00
Br(yn)

Proof. Suppose that (ii) doesnot occur. By Lemma 8, we have
s/(N—s)

N/(N=s) _ Bs0

lim sup ||u
P llunllyrig) < ==

n— oo

Since the embeddings W, — WY N/ *(RN) — WS P(RY) are continuous, then we

can apply Lemma 5 and get u, — 0 in LY(RN) for g € (py, +00). By arguments
as Lemma 6, from the conditions (g2) and (g3), using the inequality (2.40), we
have lim, o [ f(un)updx = 0. Recalling that < I/(u,), u, >— 0asn — oo,

RN
then we deduce u,, — 0 strongly in W,. The proof of Lemma 9 is completed. O

Lemma 10. The number c, and cy, satisfy the following inequality

N aN N/(us—N)
limsupcgfcvofa<l——)< )
e—0t S Yispu

forall y1 > a,

_ S(Apy eV N z’”: (Apy + &)
N i=1 pi

for some g, > 0.
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Proof. First, we consider the case m > 2. Let ¢ € Cgo (R¥ [0, 17) be such that
¢ = 1 on Bs;»(0), supp(¢) C Bs(0) C A for some § > 0 and ¢ = 0 on
RN\ B;s(0). Foreach & > 0, let us define ve (x) = ¢ (ex)w(x), where w is a ground
state solution of the problem (Py,) given in Proposition 1. Then v — w strong in
weN/s RNy N WP (RN) (see Lemma 2.4 [14]). We see that support of v, is
contained in A, = {x € R : ex € A}. For each v,, there exists 7. > 0 such that
t:vs € N, and we have

[ e (x) —ve ()P

tl’
Ce < L(tevp) = — i —dxdy + = / V (ex)|ve (x)|Pdx
p lx — ¥l

]RN

[ |v (x) — ve( )|p ol '
+Z o ey y+?/v(”)|”£(x)'p'dx>
N

l

— / G(ex, tovg)dx

]RN
74 _ p /P
_ e Mdmw fe / V(ex) s () Pdx
P lx — ¥l P
RZN ]RN
i [ve (x) — ve (V)P thi »
+ Z ( dedy + o V (ex)|ve (x)| dx>
2N RN
— / F(tove)dx
]RN

Since t,v, € N, we have

m
||t£v£||€vi-1’(RN) + Z ||t£v£||€;3-pi (RM) = /g(8x7 LoV )t Vedx = / S(teve)tevedx.
Ve . €
i=l1 ! RN RN
(2.52)

Then we get

1 | ,
_ r 2 Pi _
I (teve) = p”thslIWiY,’_g(RN) + ‘- i ||t€v8||W;'_';i(RN) / F(teve)dx
i=

RN
11 (R T .
— (= - — p - Di
= (5 = o hevell g, + Zl (37 = 7 evel i
1=
1
- / <_f(t8u8)té‘u8 - F(teua)) dx > 0. (2.53)
Pm
N

From (2.53), we see that the sequence {¢,} must be bounded as ¢ — 0. Indeed, if
t. — +ooase — 01, then using the condition ( f1), we have

m [7:
"
Lo (teve) > —||v8|| 3,,(RN)+Z Il Wer @y = I ey = =00
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which is a contradiction with (2.53). Thus, we can assume that 7, — #gase — 0.
Then we get

th — P tf
limsupc, < o dedy + 2 / Volw|Pdx
e—0t p lx — ¥l )4
R2N RN
m Di .
f lw(x) —w(y)|”
0 LA =
+Z(Pi |x — y|NFpis dxdy
! 2N
(P
+0 / V0|w|Pfdx) - / F(tow)dx
Pi o o
= JVO(IOU))

via to Vitali’s theorem. If 7o = 0, by the condition (f1) and (f3), we have
|F O] < ealt]Pn ™" 4+ Clenlt]? @ s (aolt NN 7)

for all + > 0 and some constants ¢ > p,,. Then from (2.52), we get

m—1
P i pPi P f(té‘vs)
1277 v | W+Zﬂ’ PIvel )+ Wvel I = —vedx
RN "
<8*/|v8|p’"dx+tg_p”’C(8*)/|vs|‘7<I>N,s(<x0|tsv5|N/(N_S))dx. (2.54)
RN RN

Choose ¢, > 0 is small enough, using Trudinger—-Moser inequality and note that

ve — w strong WS (RN) (+ > —) from (2.54), we get a contradiction since the

left side tends to oo and the right side tends to zero. Hence 7y > 0. Using Vitali’s
theorem and take limit of (2.52) as ¢ — 07, we deduce

P P1||w||17
WTP(]RN)
p—pi pi p J (ow)
Y Tl = —-wdx.
£ Vo, WS Pi (RN) v WS Pm (RN ) tl’m
gV 0

Note that w € N, v, and using the condition (f5), we obtain 7y = 1. Therefore

limsupc, < Jy,(w) = cy,.
e—0t

By Lemma 4, we get cy, < Cp, = a(l — —)( )N/(’“ N) forall y; > a.In
SKYISp
the case m = 1, we can proved similarly as above. We omit the details. O
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Lemma 11. The functional I, satisfies the (P S)q condition at any level d > 0 and
d satisfies the condition

-1 1
m—1 PR
[(i_l) S/Nds/N_i_Z(i_l) Di dpl
N pn - P M
-1 1
—— T N/(N—
+(1 _l_ 1 )Pmdpm] [(N=9)
pm WK Pmk
IBDS/(N
oy

ifm>2and

-1 1

s s/(N—s)

[(1_1) A/Nds/zu(i_i_ ! )pldp ] NIN=9 _ By 7
N u P U pik o

ifm = 1, where ¢ > 1 is a suitable constant and near 1.

Proof. Let {u,} be a (PS), sequence of I, then by Lemma 8, {u,} is a bounded
sequence in W, and

g/ N
hmsup||un||N/(N 9 o B , (2.55)
Moy

where ¢ > 1 is a suitable constant and ¢ near 1. Therefore, up to a subsequence, we
can assume that u,, — u weak in W, u,, — u in L;IOC(RN) forallg € [—, +00)
s

and u, (x) — u(x) almost everywhere on RY. By arguments as Lemma 2.5 [8],
for any ¢, > 0, there exists R = R(ey) > 0 such that A, C Br(0) and

lim sup / ( [ (x) —Mn(Y)|p +Z |Mn(x)_un(y)|pi

n—00 [x — Y|2N im1 lx — y|N+piS
RN\Br(0) RN n

m
FVEN)(nl? + Y lunl) ) dx < .
i=1

Then, we obtain

f lun |V dx < 25 and f up|Prdx < 25 (2.56)
Vo Vo
RN\ B (0) RN\BR(0)

for all n large enough. From the condition ( f1), (f3) and (g3), we get

lg(x, 1)t] < 8[t1Pm 4 Cslt]? Dy s (ot N/ N7 (2.57)
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forallt € R,x € RY and some § > 0,9 > pm. Using (2.55), (2.57) and
Trudinger—Moser inequality, Holder inequality, there exists D > O such that

1/t
/ lg(ex, up)uyldx <8 / lun|Pmdx + D / 1, |7 dx

RN\BR(0) RN\BR(0) N\Bg(0)
(2.58)
for some constant r > 1.
N N N .
For any v € (—, 4+00), choose a > — such that v € (—, a), there exists
s s s

1 1-
o1 € (0, 1) such that — = % + —01. Apply the Holder inequality to estimate
v a

[ lun(x)|"dx, and we get
RN\Bg(0)

/ Iu,,(x)|de = / |un(x)|v01|un(x)|(1—al)vdx

RN\BR(0) RN\BR (0)
ojvs/N (1—op)v/a
<( [ e an)™ ([ ran) T 2s)
RN\BR(0) RN\ Bg (0)

From (2.48), we have

—1
Hunll La@V\Bg0)) < Saellttnllw,-

On combining that inequality with (2.59), we deduce

—(1— 1—
/ (O dx < S0 1§50 s o 1l 7"+ (2:60)
RN\ Bg(0)

From (2.55), (2.56) and (2.60), there exists constant D > 0 such that
/ lun(x)|"dx < Dey. (2.61)
RN\ Bg(0)
Join (2.56), (2.58) and apply (2.61) to v = g1, we get
/ |g(ex, up)unldx < K*ex
RN\BR(0)

for all n large enough and «* > 0 is a suitable constant. Hence, we deduce

lim / lg(ex, up)uyldx = 0. (2.62)

n—oo
RN\ BR(0)
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Note that A, C Bg(0), and the embedding from W, into L9(Bg(0)) is compact
N

for any g € [—, +00), we have
s
lim lg(ex, up)u,ldx = lim / lg(ex, u)uldx (2.63)
n—0o0o n—0od

Bg(0) Bg(0)

by the Lebesgue Dominated convergence theorem or Vitali’s theorem. Using
Trudinger—Moser inequality, we get g(ex, u)u € L'(RY), then can choose R
large enough such that

/ lg(ex, u)uldx < &y. (2.64)
RN\ BR(0)

From (2.62), (2.63) and (2.64), we obtain

lim gex, up)udx = [ g(ex, uwyudx. (2.65)
n— oo
RN RN

By arguments as in [54], we get < I,; (u), ¢ >= 0 for all ¢ € W,. Consequently,
we get < Ig/(u), u >= 0, or equivalently

m
ey vy 2 el ey = f glex, wudsx. (2.66)
€ i—=1 Ve
RN

Since {u,} is (P S) sequence, then < I;(u,,), U, >=o0,(1)asn — oo.

m
et s gy D s o) = f g(ex, unundx + o (). (2.67)
€ i—1 V.e
RN

Apply Brezis-Lieb lemma, (2.66) and (2.67), we obtain u,, — u strong in W,. We
finish the proof of Lemma 11. O

Lemma 12. The functional I, restricted to N satisfies the (P S)y condition at any
level d > 0 and d verifies

-1 1
—s/N m—1 -
N u o b M
-1 1
— T N/(N-—:s
(L_l__l )pmdpm] /=)
Pm 2 Pk
_

3

[Wo )
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ifm>2and
-1 1
B - -~ s/(N—s)
(5 - 1) SIN N (L 1 L) PLgp ]N/“V VB
N nu Pt M pik o

ifm = 1, where ¢ > 1 is a suitable constant and near 1.

Proof. Let {u,} C N, be such that I, (u,) — d and ||I,(un)|n;|lws = 0n(1) as
n — oo, where W is the dual space of W,. Then there exists {X,} C R such that

L (un) = AT, () + 0, (1), (2.68)

where

m
Te(w) =l gy + 2l vy = f g(ex, wyudx.
& i=1 Ve
RN

Taking into account < I; (uy), u, >= 0, we have

/ Un(x) —u P
<T,(up),up >=p / %dxdy +p / V(ex)|u,|Pdx
R2N Y R2N
m .
Jin (x) — up ()] ,
+> (p,- ’;x — y|N”+pis dxdy + p; f V(ax)lunlp’dx)
i=1 R2N R2N

—fg(sx,un)undx—/g;(sx,un)uﬁdx

RN RN
< /((pm — Dg(ex, up)uy — g (ex, up)uy)dx
RN
= /((Pm — Dg(ex, up)uy, — g)(ex, up)u)dx
A

+ f (P — Dg (6%, )ity — g)(ex, un)u2)dx

ASN{x:iu, (x)<a})

+ / (P — Diglex, un)itn — (e, un)u)dx.

ASN{x:uy (x)>a}
s V() —1 . .
When x € Af and ¢ > a, we have g(ex, 1) = Tﬂ’m . It implies that

(pm — Dglex, 1)t — g (ex, H)1> = 0.
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Therefore, we get

< Ty > = [ (g (6, 2 — (pm — Dig(ex, un)n)dx
Ag

+ / (gl (ex, un)u2 — (pm — Dg(ex, up)un)dx > 0

ASN{x:iuy (x)<a}

(2.69)

via to the conditions (ge) and (g7). By arguments as Lemma 8, for y; large enough,
we have {u,} is a bounded sequence in W, and

B s/(N—s)
szV/ N=s)  DxZx (2.70)

El

lim sup [uy ||
n—o00 (Vo)

where ¢ > 1 is a suitable constant and ¢ near 1. Therefore, up to a subse-

quence, we can assume that u, — u weak in W, u, — u in LZ)C(RN) for
N

all g € [—, 4+00) and u,(x) — u(x) almost everywhere on RY. We prove that
s

SuUp, ey < T;(u,,), u, >< 0. Conversly, if sup, .y < T;(un), u, >= 0, then up to
a subsequence, we can assume that lim, o < 7, 8/ (up), up, >= 0. Using Fatou’s
lemma and (2.69), we have

0 > lim ioréf/(g,’(ax, U2 — (pm — Dgex, up)uy)dx
n—
Ae

> /(g;(sx, u)u2 — (pm — Dg(ex, w)u)dx >0 2.71)
Ag

due to the condition (g7). Hence u = 0 in A,. Then u,, — 0 in L9(A,). Using
Trudinger—Moser inequality and (2.70), we get

lim /g(ex,un)undx = lim /f(un)undx =0.
n—0o0o n—0o0
A Ae
Hence, we obtain

m
et s vy + 2 Nt ey = f g(ex. un)undx + / g(ex. un)undx
€ i—1 V,e A re

&

=/g(8x,un)undx+0n(1)
Ag

1
= %/V(Sx)|”n|pmdx+0n(l)a

AL‘

€
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thanks to the condition (gs). Then, we deduce
llunllw, — 0O

as n — 00, it is a contradiction with the fact that ||u,||w, > rx > 0 for all n. In
conclusion, we get sup, .y < Ts/(un), u, >< 0, and (2.68) implies A, = 0,(1)
as n — 0o. Therefore, {u,}is a (PS). sequence of I, and Lemma 12 is obtained
from Lemma 11. O

Corollary 1. The critical points of I, on N; are critical points of I, in W.

Now, we prove the existence of a ground state solution for problem (P;). That
is a critical point u, of I, satisfying Io(ue) = cs.

Theorem 7. Assume that (f1) — (f5) and (V) hold. Then there exists € > 0 such
that (P}) has a ground state solution for all 0 < ¢ < €.

Proof. By Lemma 10 and Lemma 11, there exists > 0 such that ¢, < cy,

for all ¢ € (0,%). We can choose d = cy, < a(l — —)( )N/(’” N) and
S YIS
y1 > max{a, y3} where y3 satisfies the condition
-1 1
—s/N N/(N— s/(N—s)
[(Z-4) bs/zv+(i_1_ Ly [V B
N pn P1 K pik cag
in which b = a(1 — —)( )N/(’” N)and m = 1. When m > 2, y3 satisfies
ST YIS
the condition
-1 1

s 1\-s/N ey N/(N=s)
G- "o E - 2y7om)

N pu - P K

-1 1
N/(N— s/(N—s)
RIS ) KA g
Pm 1% Pmk co

Lemma 11 implies that I, satisfies the (PS),, condition. Combine that result with
Lemma 7, I, has a critical point at level c,. O

4. Multiplicity of solutions to (P)

In this section, we show that the existence of multiple weak solutions and study
the behavior of its maximum points related with the set M. The main result of this
section is equivalent to Theorem 2 and it is stated as follows:

Theorem 8. Assume that (f1) — (fs) and (V) hold. Then for any § > 0, there exists
g5 > 0 such that (P) has at least caty; (M) nontrival nonnegative solutions, for
any 0 < ¢ < e5. Moreover, if u denotes one of these solutions and z; is its global
maximum, then

lim V(eze) = Wo.
e—0F
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Proof. We consider the energy function

1 lu(x) —u(y)|? /
Jyy(u) = — —————+ | VolulPdx
’ p lx — >V
RN
ii M+ [ viuras| - [ Fonas
— y|N+pis
— pi lx =yl A A

of problem (Py,). We recall that cy, is the minimax level related to Jy, and Ny, is
the Nehari manifold related to Jy, is given by

Nyy = {u € WSNS@RNY 0, wPi RV )\ (0} :< J’Vo(u), u >=0}.

Let$ > Obe afixed and w be a ground state solution of problem (Py,). It means that
Jy,(w) = cy, and J‘/,0 (w) = 0. Let n be a smooth nonincreasing cut-off function

8
in [0, 400) such thatn(s) = 1if0 < s < Eandn(s) =0ifs > §.Forany y € M,

we denote

EX —y
Iﬂs,y(x) =n(lex — yDw ( B )
and ®, : M — N, which is defined by ®.(y) = e Ve y, where t, > 0 satisfies

max Ie (te,y) = Lo (e Ye.).

From the construction, ®.(y) has compact support for any y € M. O
Lemma 13. The function ®. satisfies the following limit

lim+ I (D (y)) = cv, uniformlyiny € M.
e—0

Proof. Suppose that the statement of Lemma 13 doesnot hold, then there exists
8o > 0, {yn} C M and ¢, — 0 such that

e, (e, (¥n)) — cvy| = Bo. 4.1

By Lemma 2.2 [14], we have

. p _
Jim e ey = ol 42)

Vo WP (RN)
and

||P' = [|w||} 4.3)

lim
00 ||]//€nsyn S p, (RN) WVO,W‘Y’pi (RN)
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foralli =1,...,m. Since < I;n (e, Wep,yp)s ey Yeyn,y, >= 0, using the change of
EnX — Yn

&n

variable z = , then we get

m
P pPi
||t81/f8,,,yn||WiV/.p RN + E ||t81!/sn,yn||v;.‘v/,m ®RN) = /g(gnxs tsws,,,y,,)tsnwen,yndx
s€n . »€n
i=1

RN

= /g(snz + Y, te, ¥ (|Enz)w(2)te, ¥ (lenzw(2)dz.
RN
4.4)
We observe that if z € Bse, (0), then g,z + y, € Bs(y,) C Ms C A. Then

8Enz + yu: te, ¥ (lenzDw(2)) = f (e, ¥ (lenz))w(2)).

Now we prove that t,, — 1. First we show that t,, — 79 < 4-00. Conversly if
te, — 400, from (4.4) we have

- p Pl
PP, M|| o (RN)+||I‘Z/€" vl TPI(]RN) tplfl
&n

/ f(tgnw(z))w(z)

lz|<
28”

4.5)

ifm =1, and

m—1

pP—>p p Pi—D Pi Pm
7 '"||1/fan,ynliwé,§n(m)+;ta,: sl o, + Vel m

4.6)
/ S (e, w(z)l)w(z) @7
=
lz|< 28”

if m > 2. From the condition ( f>) and (f4), we have f(r) > yu|t|*~! for all
t > 0. If m = 1, combine that property and (4.4), we deduce

_ f@ ,,w(z))w(z)
tEI:n pl||¢en )n” Y/I (RN)+||1//5n yn|| s,p1 = / £

V &n

e
tsn

lz]=
28n

> yiutl P / whdx — +o0

lzl<

2&,
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asn — oo. Itisacontradiction with (4.2) and (4.3). Similarly, we get a contradiction
in the case m = 2. Therefore, up to a subsequence, we may assume thatz,, — fo >
0 as n — 00. We consider the case that ) = 0. From (2.41), we have

f(te,n(enzDw(@))|te, n(lenzhw(2)]
< tlte,n(lenzw () |77
+ Clte, n(|enzDw(@)|4 @y s (@olte, n(lenzl)w ()| ¥/ N =)
< Tlte, W@ + Clte,w(@)|! Py s (colts, w(@D VN (4.8)

due to @ 4(¢) is an increasing function on [0, +00), where T > 0 is small enough
and g > p,,. Combine (4.6) and (4.8), we get

P pi
e, Von.n e g +Z||ranwgn nlliysr
i=1

T / |te, w(2)[Pmdx + Ctd. / lw ()1 Py s (@olte, w ()N N ) dx. (4.9)
RN RN

o (RN)

Since [|te, Ve, vn IIW;@” ®RN) = 0 and |, Wsn,ynnw‘jff ®Y) ~ 0 asn — oo for all
i en

i=1,...,m, then

p
e, Ve lyer v, + Z] ey Vel i,
=

m
= On+ D'l (Wellwgr @y + D Wl lysr @)™ (4.10)

i=1
Using Trudinger—-Moser inequality and note that z,, — O asn — oo, take 7 > 0
is small enough such that (m + 1)l Pm — rA p’" Vo = 0, from (4.9) and (4.10), we

obtain ((m + 1)1=pm — rApp'"VO)Ilwll%'W =< 0,1(1) as n — oo due to

| I‘(/IE,, s Yn | |W‘S;.,€7n (RN)

+ 2 Wewsallwsrs vy = 1wllwy o, + D 01w, e g, > 0
i=1 i=1

as n — oo. It is a contradiction. Hence, fyp > 0. Now we prove that 7o = 1. From
(4.6), using Lebesgue Dominated convergence theorem, we have

p—pi P bl SOOI 1
) » w = | ———dx ifm=1
o |l ||WV0.WS,P(]RN) + ”WVO,WW(RN) / i
and
—Pm ~pm "
w ' w
Il ||WV WS P (RN +Zl—1 0 I “W 0. WS Pi ®RN) w || V WS- pm ®N)
f(tow)w
x

pm_l
]RN Iy
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if m > 2. Note that w € N, Vo> then the condition (f5) implies #p = 1. Still using
Lebesgue Dominated convergence theorem or Vitali’s theorem, we get

nll)ngo/ F(tswgmyn(x))dx:/F(w)dx.
RN RN

Hence, we obtain

lim Ian (cbsn (Yn))
n—oo
tf » wayy .
== n11>n;0 I:;Hwé?n,yn”w-‘f/:[;n (RN) + Z E”wanv)’rznwaléi - / F(tgn wsna)’n)dx]
i=1 RN
Jwllfy lwl|4
Vo, WP (RN) Vo, W Pi (RN)
= 0—+ZO— — / F(w)dx = Jy,(w) = cy,
p iz Pi o
which contradicts with (4.1). O

Forany § > 0, let p = p(8) > 0be such that M5 C B,(0). Let x : RY — RV
be define as
X if [x] < p
A R Y
x|

Next, we define the barycenter map 8, : N; — R" given by
J x @) (u)lP + 300 lu(x)[P)dx

Be(u) =2

S qulP + 30 fu(o)|P)dx
RN

Lemma 14. ([54]) The functional ®. satisfies the following limit
lim B.(®:(y)) =y uniformlyiny € M. “4.11)
e—0t

Proof. For the convenience to the readers, we present a proof to above lemma.
Suppose by a contradiction that there exists 6o > 0, {y,} C M and ¢, — 0 such
that

|Be, (P, (Yn)) — Ynl = b0 (4.12)
for all n large enough. Using the definitions of ®;, (y,), Bs,. n and the change of
. EnX — Yn
variable z = ———, we have
&n

:38,, (<D8n (yn)) =Yn
J Dx(enz 4 yn) — yal(n(enzDw @17 + Y7 [n(lenzD lw(2)[17)dz

N
_I_]R

J (In(lenzDlw @7 + 3 n(enh w (@) [17)dz
RN
(4.13)
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From the assumptions {y,} C M C B,(0) and |x(x)| < p forall x € R¥, use the
Dominated convergence theorem by taking n — oo in (4.13), we get

lim |ﬁ8n (q)sn (n)) — yul =0,
n— o0
which contradicts with (4.12). O

Lemma 15. Let s, — 0" and {u,} C /\/En be such that Iy, (u,) — cv,. Then there
exists {¥,} C RN such that the translation sequence v, (x) = u,(x + ¥,) has a
subsequence which converges in WSN/$(RN) N N WP RN). Moreover, up to
a subsequence, {y,} : y, =€y, > y € M.

Proof. Since < I;n (un), up >= 0and I, (u,) — cy,, by arguments Lemma 8
and Lemma 10, {||u||w,,} is a bounded sequence and when y; is choosen such
that y; > max{a, y3} and

N aN \N/s=N)
cyy <all—— =b,
si) \yasp

a=- (A +e)"" Z A;L ntee)”
N

for some &, > 0 and y3 satisfies

-1 1
—s/N N/(N— S/IN =
[(i_l) o [,s/zv+<i_i_ ! )mbpl] = B
N u P K pik cag
if m =1 and
_ -1 1 -1 1
—s/N A —— T N/(N-—
[(i_l> s/ bS/N+Z(i_l) Pi pPi +(L_1_L)pmbpm] /¢
N nun —\pi n Pm K Pmk
,B 03/(1\7 s)
(Mo
if m > 2. Then, we deduce
N/s Vo
i supllnllyyr ey = 57
N u
and
CV0
h,fii‘;p””"” Apl(RN)S T 1 1
pL K pik
if m =1 and
cy, CV,
1 p&‘ D) —0 1 S, p; < —07
lrlzllsolipHMnH ]m(RN) 1 1 1 lr?;l)solip”un” p'(RN) e 1 1
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i=1,...,m—1ifm > 2. Hence, we obtain
av/(N
tim sup [, [[3/ ¥ < Beo (4.14)
n—00 o
We also get
N—
i N/(N 9 _ B0 3/
im sup ||un|ly,
n— 00 cx

due to the continuous embedding from W, into W. Now, we show that there exist
a sequence {J,} € R" and constants » > 0, 8 > 0 such that

lim inf / luy|Pmdx > B > 0. (4.15)

n—00
B (Yn)

Indeed, if (4.15) is false, then for any » > 0, we have

By Lemma 5, we have u,, — 0 strongly in L4 (RY) for any g € (p,,, +00). Using
Trudinger—Moser inequality and (4.14), we deduce

lim /g(s,,x,u,,)u,,dx =0.
n—oo
RN
Combine that result and u, € N,, we obtain lunllw,, — O0asn — oo.lItis
a contradiction with I, (v,) — cy, > 0. Therefore, (4.15) holds. Let us define
Vp = uy(x 4 yp). Since the ||.||y, is invariant with the translation, then {v,} is a

bounded sequence in W, thus up to a subsequence, we can assume that there exists
v € W such that v,, — v weak in W and v, (x) — v(x) a.e. in RV and v, — v in
IOC(RN) for any g € [— +00). From that result and (4.15), we get v # 0. Let
s
t, > 0 such that w,, = t,v, € N} v, and we set y, := &,y,. Thus, using the change
of the variable z = x + ¥,,, V(&,(x + ¥,,)) > Vp and the invariance by translation,
we can see that

1 1
e < ) <~y + - / V(enx + yu)lwn|Pdx — / F(wp)dx
RN RN

m
1 1 )
+ Z (p_[wn]s pi T P_ f Vienx + }’n)|wn|pldx)
— i i

i=1 BN

1 1
= _[wn]sp,p + — / V(enx 4 yu)|wy|Pdx
4 p "
R
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m

1
+ Z <_[wn]s pi + — / Vienx + yn)|wn|p’d)€>
iz P RN
- / G(enX + yn, wp)dx
RN

= IS,, (tyun) < 18,1 (un) < cyy + o, (1)

due to the condition (g3). Then we get Jy, (w,) — cv,- Since {w,} C Ny,, using
the condition ( f2), there exists a constant K > 0 such that ||w,||w,v, < K for all
n. We have v, /4 0 strongly in W. Indeed, if v, — 0 in W, then v, — v weak
in W, it contradicts with v, — v # 0 in W. Hence, there exists « > 0 such that
[lvallvy,w = a > O for all n. Consequently, we have

o < ||tnvn||Vo,W = ||wn||V0,W <K,

K
which yields t, < — forall n € N. Therefore, up to a subsequence, we can assume

that 1, — typ > 0(.1We prove that fp > 0. If 1p = 0, then [[w,|lv,,w — O, it
is a contradiction with w, € Ny,. Up to a subsequence, we suppose that w, —
w = tov # 0 weak in W and w,(x) — w(x) a.e. on RY. By arguments as in
Proposition 1 (also see [54]), we can get J{,O (w) = 0. Now we prove that

. p B »
ngn;o ||wn||VQ,W‘*P(RN) - ||w||V0,W°7P(]RN) (4.16)

and
hm ||wn||p Wspl(RN) ||w|| Wipt(RN)’ '=1,...,m. (417)

Using Brezis—Lieb’s lemma, (4.16) and (4.17), we obtain w, — w strong in W.
By Fatou’s lemma, we have

10117, ey < Bminf llwallf, e, (.18)
and
||w||€i),WW’i(RN) < 11mmf||wn|| Voowsri@yy =1, m (4.19)
Assume that by contradiction that
Wl s, < Timsup [[w, |} 0
Vo, WP (RN) _)Oop nllyo, we.p@®NY
or
1T, o oy < i sup a5 o v,
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for somei € {1,...,m}. We see that

1 /
vy +o,(1) = JVo(wn) - ; < JVO(U)"), wy >
1 /11

+ / [lf(wn)wn - F(wn):| dx
m

RN

Using the condition ( f2), and Fatou’s lemma, we get

1 1 1 1 1 1
Vo = ; - ; lmsuprnH 0, W8P (RN) + Z - ; lmsuprl’L“ Vo, WSPi (RN)

Di n—o00

+ lim inff [lf(wn)wn — F(wn)i| dx
n—0o0 I,L

RN
1 1 /11
> === )lwl? . + (———) w|Pt
(p M) Vo, WP (RY) ; i 1 Vo. W )
1
+/|:—f(w)w—F(w)i|dx
RN "
1 ,
= Jy,(w) — L Jy, (W), w >= Jy,(w) = ¢y,

which is a contradiction. Then

llwll?, >11msupllwnll (4.20)
— 00

Vo, WsP(RN) Vo, Ws-P(RN)*

and

||w|| >hmsup||w,1|| i=1,...,m. “4.21)

Vo, W5 Pi (RN) Vo, W5 Pi (RN)”
Combine (4.18) and (4.20), (4.19) and (4.21), we get (4.16). Since t, — 1y as
n — oo, then v, — v in WHNS@®RN) n 0™ WP (RV) as n — oo. Now we
prove that {y,} has a subsequence such that y, — y € M. Indeed, if {y,} is
not bounded, that is there exists a subsequence, still denoted by {y,}, such that
|yn| = +00. Choose R > 0 such that A C Bg(0). Then for all n large enough,
we have |y,| > 2R, and for any x € Bg/,,(0), we have

&nX + Yn = |ynl — enlx| > R.
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From the condition (V}), u, € N, and the definition of g we have

m
p pi
e e |71 g
i=1

m
P pi _
= Mltallyer gy + 2 Menl s o = / g(enx, upupdx.  (4.22)
€n l:1 s€n
RN

Using the change of variable z = x + J,, from (4.22), we get

m
p pi
100l sy + 2 0011 oy = [ 8Cent + 3, v
i=1

RN
= / g(Snx + Yn, Un)Updx + f g(SnX + Yn, Up)vpdx
Brye, (0) BS Jen (0)
= f f(vn)vndx + / g(enx + yu, vp)vpdx. 4.23)

BR/ep (0) B, (0)

i v
Note that £(r) < 70|t|1’m*‘. Then (4.23) implies

m
. 1
P P
10l gy SN0l oy < 7 [ Volunldx
i=1

BRr/e, (0)
+ / g(&nx + Yu, Vp)vpdx. (4.24)
Bfe/gn 0)
. . N N
Since v, — v strong in W, then v, — v strong LY (R") for all ¢ > —, then for
s

any e, > 0, we can choose R as above large enough such that

/ [v,|Pmdx < ePm and / v, |9dx < &
RN\Bg(0) RN\Bg(0)
for some ¢ > p,,. Using the condition (g3) and Trudinger—Moser inequality, we

get

/ |g(enXx + Yn, Vp)Unldx < Keéx, (4.25)
B;Q/Sn (O)

where «, > 0is a suitable constant and n large enough. Combine (4.24) and (4.25),
we have

—1
1 e _
Pm E Pi 4 _
(1 - %) ||vn||V0,Ws,pm(RN) + — ||vn||V0,W‘Y’pi(RN) + ||vl‘l||voyws,p(RN) - On(l)
i=
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if m > 2 and

1 p
(1 - E) ||vl’l||v WS- I’I(RN) + HU”HVO,WS-P(RN) = On(l)

if m = 1. That is v, — 0 strong in W*N/$@RY) N N Ws-Pi (RM) which contra-
dicts with v, — v # 0. Therefore, we may assume that y, — yo.If yo ¢ A. Then
there exists » > 0 such that for every n large enough, we have |y, — yo| < r and
B> (yo) C A°. Thusif x € By /¢, (0), we have that |g,x + y, — yo| < 2r so that

enX + yu € A", By arguments as above, we get a contradiction. Hence, yp € A.
We now prove V (yg) = Vp. Indeed, if V (yg) > Vp, using the Fatou’s lemma and
the change of variable z = x + y,,, then we have

cvy = Jyp(w) < Jy(yp) (w)

n—0o0

1
< lim inf [; [wn]gp + / V(enx + yp)|wy,|Pdx
]RN

+Z% [wnlely, + / Vi(enx + y)lw|Pdx | = / F(w,)dx]

RN RN
N o R 7
= liminf [—[un]s,p + — / V(en2)|unlPdz
n—oo p p
RN
WINPT . 74
+ 2 (Ll + 2 [ veluinaz) - [ Fadz].

i—1 Pi Di

= RN RN

From above inequality, we deduce

cyvy = Jyy(w) < Jyyg)(w)

tP t?
< liminf [—[un] + — | V() |uylPdz
n—00 P
RN
e
+ Z (Stuntty + % [ vranunac) - [ Gene. ]
Pi o o
= liminf I, (t,u,) <liminf I, (u,) = cy,, (4.26)
n—oo n—oo
which is an absurd. m|

Let Rt — R be a positive function such that #(¢) — 0 as ¢ — 07 and let
Ne =f{u € N; : I(w) < ey, + h(e)).

By Lemma 14, we have h(e) = |I.(®:(y)) — cy,| — 0 as e — 0T. Hence
®.(y) € N and N # @ for any ¢ > 0. Moreover, we have the following result:
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Lemma 16. ([7]) For any § > 0, it holds that

hm sup dist(Bs(u), Ms) = 0.
0 E-/\/a

Lemma 17. Assume that (V) and (f1) — (f5) hold and let v, be a nontrivial
nonnegative solution of the following problem

m m
(A5 0n + D _(—A)}, v + Va(x) <|vn|”vn +y |vn|l’f2vn)

i=1 i=1
= g(enX + &nn, vn) in RV, (4.27)

where V,,(x) = V(epx +€,yn) and e, y, — vy € M. If {v,} is a bounded sequence
in W verifying

0.5/ (N=s)
lim sup [[u, [/ < B2
n—00 (Vo9

where ¢ > 1 is a suitable constant and v, — v strong in W, then v, € L®(R"N)
and there exists C > 0 such that ||vy||corn) < C for all n € N. Furthermore

lim v, (x) = 0 uniformly in n.
lx|—+o0

Proof. For any L > 0 and 8 > 1, let us to consider the function y(t) =
t(min{z, L})?#=D and

1 .
Y (vn) = VL,ﬁ(Un) = Unvz(f,} ) eW, vp = min{v,, L}.

Set
1
p , =
A(t) = LS and '(r) = /(y ) Pdr.
P 0
Then we have [14]
A/(a —Db)(y(a) — y(b)) > |T'(a) — T'(b)|? forany a, b € R. (4.28)

From (4.28), we get

T (vp (%)) = T (wa (YDI”

< 10a () = v MIP 2 Wa () = v G (a0} P 0 = Warl ED) ().
(4.29)
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Therefore, taking y (v,) = v, vf(f as a test function in (4.27), we have

10n () = 0 1P 2 W () = v ) (v ) @) = o C ™))
|2N dxd

lx—y
R2N

10w () = v 1P 2 (W () = v () (a0} &™) ) = (0B ”)(y))d .,

m

+ E /
= lx — y[Ntpis
~R2N

m
+ / Vi (x) (lvnlp + Z |vn|p") vf’(ffl)dx = /g(s,,x + &n¥n, v,,)v,,vp(ﬂ Dax.

i=1

RN RN

From the condition (f1), (f3) and (g3), for any ¢ > 0, there exist C(g) > 0 such
that

gx, 1) < (1) <elt|”' + Ce)t|" Dy s (gt VN

for all x € RY and r € R. By arguments as [7], we have

100 () = e P2 (0 () = v ) (a0} &™) ) = o) D) (9))
dxdy
|x_ |2N
RZN

foralli =1, ..., m. Combine that inequality with (4.29), we have
[T ()1’ + / Va)oalPo) CVax < / Fnvgvy B Vax.
RN
1
SinceI"(v,) = ﬂvnvf S vl = T(v,) and the embedding from W V/s (RY) —

* N_. . . .
LN"(RN) (N* > —) is continuous, then there exists a suitable constant S, > 0
s
such that

T @I, ey = ST @I e v,y = ﬂ,,s*||vnvL,,||LN*(RN) (4.30)

We know that the embedding from W*V/$ (RN)ﬂﬂ;”:] WP (RV) — wsN/s(RN) -

N _. . .
LY(RY) (v > —) is continuous, then there exists a best constant
s

. ||M|| s,p (RN N
S, = inf Vo WRPERD) Gy s 2
u0,ueWsNis@®Ny  |ul| v gyy s

This implies

||M||Lp(RN) < S;l ||u||V0,WS’p(RN) forall u € Ws’p(RN). (431)
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Then we obtain

@I, oy < [ |"dx+C<e)/d>Ns<ao|vn|N/ ool P
RN

<eﬂ”/|F<v,,>|pdx+0(e)/<1>Nv<ao|vn|N/<N D) unvy P dx
]RN

< e”S, Iy, Wip(m+C<s>/<1>Ns<ao|vn|N/(N Nlvavy Pdx.  (4.32)

RN

Choose 0 < & < B7PS?, then (4.32) implies

p
’B—ps*(l—é‘ﬂps )||UnULn ||LN*(RN)

< C(e) / (D (@0 va| VN =9))7 dx / vav} ) 9P dx

N
Using Trudinger-Moser inequality in W% V/$(RV) with ¢ >> — such that N** =
s
gp < N*, ¢’ > 1 and ¢’ near 1, then there exists a constant D > 0 such that
1000 107 e o,y = D00 117, v
Let L — +o0 in above inequality, we deduce

1 1
llonllves < DPB BB |Junl e v (4.33)

*

Now, we set 8 = > 1. Then BZN** = BN* and (4.33) holds with S replaced

N**

by ,32. Therefore, we obtain

1 2
2 B2

allvege < DPP™BP N 10all v o,
1 2

B2 B2
= D PP BB vl s v,

1 (1 1 ) 1 2
2 32
<DP\B ) BB oyl weos v, (4.34)
Iterating this process as in (4.34), we can infer that for any positive integer m,

m

Zj:] ry m a—j
lonllgwepm < D PBT BRI=008 7 |y || e . (4.35)
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Taking the limit in (4.35) as m — oo, we get

[Ton]l ooy = €

YR T o e
for all n, where C = D = pBI ,321:1 B supy, [[vpll pveep eyy < +00. Since
v, — v strong in W, then lim|y|— 100 v, (x) = O uniformly in 7. |

Let § > 0 be small enough such that Ms C A. By Lemma 14 and Lemma 16,
there exists € = g5 > 0 such that the following diagram

M—)N —>M5

is well-defined for any ¢ € (0, €). Thanks to Lemma 14 and by decreasing ¢ if
necessary, we obtain that

Be(®:(y)) =y +0(e,y)

for all y € M, for some function 8 = 0(g, y) satisfying |6 (g, y)| < % uniformly
iny € M, and for all ¢ € (0,¢). Therefore, H(t,y) := y + (1 — 1)0(¢, y),
with (¢, y) € [0, 1] x M, is a homotopy between . o @, and the inclusion map
id : M — Ms. By [17, Lemma 4.3] (see also Lemma [22, Lemma 2.2]), we get

catﬁg(./%) > caty; (M).

Since the functional I, satisfies the (PS)., condition on N, with 0 < ¢, <
¢y, + h(e)), then by Lusternik-Schnirelmann’s theory of critical points (see [57,
Theorem 5.20]), I, has at least cat i N > catyy, (M) critical points on N, C N..

By Corollary 1, I, has at least caty; (M) critical points restricted to N which are
critical points of I, in W,. This means that (P;)* has at least catyy, (M) solutions.

Now, we show that there exists & = &g such that, for any ¢ € (0, &) and any
solution u, € N; of (2.37), it holds

|ME|L°°(A§) <da. (436)

Assumin& (4.36) to be false, then there exists a sequence &, — 0 and a sequence
{ue,} S N, such that I] (u.,) = 0and

lue, LAy = a. 4.37)
Since V(g,x) > Vy forall x € RN and n € N, then

¢y, < max Jy,(tu,) < max Iy, (tu,) = I, (uy) < cy, + h(ep),
>0 >0

and h(e,) — 0. It implies that I, (us,) — cy,. By Lemmas 15 and 17, we
can find a sequence {y,} C RY such that v,(-) = ug,(- + yo) — vin W and
Yn = &nyn — ¥ € M. Then, we can find r > 0 such that B, (y) C B»-(y) C A and
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0 By, (v/en) C Ag,, for all n large enough. In particular, for any y € B, /¢, (3),
we have

1 2r
< —(r+o0,(1) < —
£ n

n

~ y
Yn — —
&

n

<1y —=ul+

‘ y
y—2
&

n

and Ag’n C Bf Jen (yp) for n large enough. Since v, — v in W, we deduce that
vy (x) = 0 as |x| = 400 uniformly in n € N, and hence there exist R, ngp > 0

such that v, (x) < a for all |x|] > R and n > ng. Consequently,
ug, (x) < a forall x € By(y,) and n > ny. (4.38)

Increasing ng if necessary, we can assume that -~ > R, and we get Ay C
Brc/gn n) C Bfg(?n) So,

ug, (x) <a forallx € Agn and n > nyg, (4.39)

which contradicts (4.37). Hence (4.36) holds.

Setting e5 = min{zs, £s}, we can then guarantee that problem (2.37) admits at
least catyy, (M) non-trivial solutions. If u; € N is one of these solutions, in the
light of (4.36) and the definition of g, u, is a solution of (2.37) and i, (x) = u(x/¢)
is a solution of problem (1.1).

Final we consider the behavior of maximum points of . (x) as ¢ — 0. Take
&, — 07 and the sequence {ug, } of solutions of (2.37) for ¢ = ¢,. By (g1) we can
find y > 0 small enough such that

\%
glex, )t < ftpm forallx e RV, 0 <1 < y. (4.40)

Arguing as before, we can take R > 0 such that, for n large enough,

el oo e 5y < 7 (4.41)
Up to a subsequence, we may assume that, for n large enough,
e | Lo = 7 (4.42)

otherwise we would get [[up || oo gy < v. Since Ig’n (uy)(u,) = 0, we obtain

m
i Vo
LR PRIR | U P IR TR o MU

1

= % ||u5n e

W;_Qj’ (RN)

and hence ||u€” — 0asn — oo, in contrast with I, (ug,) — cy, > 0. From

lw,,
(4.41) and (4.42), we deduce that the global maximum points p,, of u,, belong
to Br(y,), thatis p,, = g, + ¥, for some g, € Br(0). Recalling that i, (x) =
un(x/ey) solves (1.1), then the maximum points 7., of it,, are ne, = €4 Yn + Engn-



Schrodinger equations with exponential growth 551

Noting that ¢, € Br(0), &,y — y € M, we get V(y) = Vo = lim,, 0 V(1¢,).
Then, we deduce

lim V(ne) = lim V(e pe,) = Vo.
e—0t n—+oo

and the proof is concluded. O
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