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0. INTRODUCTION

In this paper we consider the problem

{ —Au=Af(w) inQ

(1
u=20 on 3%},

where Q is a smooth connected bounded open set in RY, f: R — R is a C' convex nonnegative

function such that £(0) > 0, f'(0) > (0) and f is asymptotically linear, that is
y J@)
S

f—+co

= a € (0, +0).

In what follows, we suppose that A is a positive parameter and u € C3(Q) N C(Q).
We point out some well-known facts about the problem (1) (see [1] for details):
(i) there exists A* € (0, +00) such that (1) has (has no) solution when A € (0, 1%)
(A € (A%, +0), resp.);
(ii) for A € (0, A*), among the solutions of (1) there exists a minimal one, say u(1);
(iii) A — u(1) is a C' convex increasing function;
(iv) u(4) can be characterized as the only solution # of (1) such that the operator
—A — Af'(u) is coercive.
In what follows we discuss some natural problems raised by (1):
(i) What can be said when A = A*?
(i) Which is the behaviour of u(1) when A approaches A*?
(iii) Are there other solutions of (1) excepting u(4)?
(iv) If so, which is their behaviour?
Before mentioning our main results, we give some definitions and notations:
(i) let }im (f(t) — at) =l € [-o0,x). We say that f obeys the monotone case (the non-

monotone case) if | = 0(/ < 0, resp.);
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(i) if & € L7(Q) we shall denote by ¢;(a) and 4;(«) the jth eigenfunction (eigenvalue, resp.)
of —A — «a. We consider that {q¢;(a)¢(a) = dj and @ (a) > 0. If @ = 0 we shall write
@;(4;, 1esp.);

(iii) a solution u of (1) is said to be stable if A, (Af'(«)) > 0 and unstable otherwise;

(iv) u.c.s.Q and u.Q will mean ‘‘uniformly on compact subsets of Q’’ (‘‘uniformly on Q’,
resp.).

All the integrals considered are over Q, so that we shall omit Q in writing.
Now we can state the main results.

THEOREM A. If f obeys the monotone case, then:
(i) A* = A,/a;
(ii) lim u(A) = o0, u.c.s.Q;
A \*
(iii) u(A) is the only solution of (1) when 1 € (0, A*);
(iv) (1) has no solution when A = A*,

THEOREM B. If f obeys the nonmonotone case, then:
(i) A* € (A,/a, A,/4,), where A, = min f(¢)/t;
>0
(i) (1) has exactly one solution, say u*, when 4 = 1%;
(i) lim w(d) = u* u.Q;
A A*
(iv) when 4 € (0, 4,/a], (1) has no solution but u(1);
(v) when A € (4,/a, A*), (1) has at least an unstable solution, say v(4).

For each choice of v(1) we have:

(vi) lim v(d) = u.c.5.Q;
A=A /e

(vii) lim v} = u* u.Q.
A *

After we establish these results, we discuss the problem of the order of convergence to o in
the theorems A and B.
1. PROOF OF THEOREM A
LEmMMaA 1. Let a« € L®(Q), w € Hy(Q) — [0}, w = 0, be such that 1,(a) < 0 and
—Aw = aw. 2)

Then:

(i) A (@) = 05
(i) —Aw = aw;
(iii)) w > 0 in Q.

Proof. If we multiply (2) by ¢, («) and integrate by parts, we obtain
a0, (@W + 1, () \ o (@w = \ o, (@W.

Now, this means that 4,(«) = 0and —Aw = aw. Since w = 0and w # 0, we get w = ¢¢,; (c)
for some ¢ > 0, which concludes the proof. I
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LEMMA 2 (The linear case). If f(¢) = at + b when =0, with a, b > 0, then:
(i) A* = A//qa;
(ii) (1) has no solution when A = A*,

Proof. (i), (ii) If A € (0, A,/a) then the problem

3)

—Au — Aau = Ab in Q
u=20 on dQ

has a unique solution in Hy(€) which is positive in view of Stampacchia maximum principle (see
[1]). Now Q smooth and —Au = Aqu + Ab € H)(Q) mean u € H*Q) and so on. We get
u € H*(Q) and, therefore, u € C*(Q). We have thus exhibited a smooth solution of (1) when
A e (0,A,/a).

We claim that (1) has no solution if A* = A,/a. For if u were such a solution, multiplying (1)
by ¢, and integrating by parts, we get | ¢, = 0, which contradicts ¢, > 0. R

LEMMA 3. (i) A* = A /a;
(ii) if (1) has solution when A = A*, it is necessarily unstable;
(iii) (1) has at most a solution when A = A*;
(iv) u(4) is the only solution of (1) such that A,(Af (1)) = 0.

Proof. (i) 1t is enough to exhibit a super and sub solution for A € (0, 4,/a), that is
U, Ue C3Q) N C(Q) such that U < 0,

—-AU = Af(U) in Q
U=0 on 4Q

and that the reversed inequalities hold for U (see [1] for the method of super and subsolutions).
Take some b > 0 such that f(z) < at + b for nonnegative . Let U be the solution of (3) with
b = f(0)and U = 0. We have f(1) < at + b for ¢ > 0 and this implies f(U) < aU + b in view
of the positivity of U. The remaining part is trivial.
(ii) Suppose that (1) with 1 = A* has a solution #* with A, (A*f’(u*)) > 0. Then by the
implicit function theorem applied to

G:lue C*"Q):u = 00naQ) x R - C*»"}Q), Gu, 1) = —Au — Af(u)

it follows that (1) has solution for A in a neighbourhood of i*, contradicting by this the
definition of A*.

(iii) Let u be such a solution. Then u is a supersolution for (1) when A € (0, A*) and,
therefore, u = u(4) for such A. This shows that u(A) (which increases with 1) tends in L'(Q)
sense to a limit #* < u. Since —Au(l) = Af(A)) we get —Au* = A*f(u*). In order to conclude
that u* is a solution of (1), it is enough to prove that u* € H,(Q) and to deduce from this first
that either —Au* € I2(Q) and, hence, u* € W>2(Q) when N > 2, or —Au* € I}(Q) and,
hence, u* € C>"*(Q) if N = 1, 2 (using theorems 8.34 and 9.15 in [2]). The first case is then
concluded via a bootstrap argument, while the second one using the theorem 4.3 in [2] (here
2% = 2N/N — 2 is the critical Sobolev exponent).
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Now we claim that u(A) is bounded in H#,(Q). Indeed, if we multiply (1) by (1) and integrate
by parts we get

IVu)> = 4 | fu)u@) < 1* | uf ().

Thus, u(A) = u* in Hy(Q) if A - A*. Indeed, if v is a weak- cluster point of #(1) when
A — A*, then, up to a subsequence, u(A) — v a.e. However, u(1) — u a.e. We have hence
obtained that w* € Hy(Q). The proof will be concluded if we show that u = u*. Let
w=u — u*=0. Then

—Aw = AX(fw) — fu*) = 2 (w*)w. @

We also have A, (A*f'(u*)) < 0, so that lemma 1 implies that either w = 0 or w > 0,
AMAEf'(u*) = 0 and —Aw = A*f'(u*)w. If we take (4) into account the last equality implies
that fis linear in all the intervals [1*(x), u(x)], x € Q. It is easy to see that this forces f to be
linear in [0, max u]. Let «, § > 0 be such that f(u) = au + B and f(u*) = au* + . We have

Q
0= 4@ W) = 1 (A*a) = Ay~ A*a,

that is A* = A,/«. The last conclusion contradicts lemma 2.
(iv) Suppose (1) has a solution u # u(d) with A,(Af'(u)) = 0. Then u > u(A) by the strong
maximum pringciple (see the theorem 3.5 in [2}). Let w = u — u(4) > 0. Then

—Aw = A(f) - fA)) < Af Ww. &)
If we multiply (5) by ¢ = ¢, (Af'(¥)) and integrate by parts we get

il Fwew + A GS @) | ow = 4 \f’(u)ww.

Thus, A, (Af'(4)) = 0 and in (5) we have equality, that is fis linear in [0, max «]. Let o, § > 0
be such that f(¥) = o + B, f(u(4)) = au(d) + S. Then

0 = A (Af"(u) = A (Af " (w(d)),

contradiction. W
The following result is a reformulation of the theorem 4.1.9. in [3].

LEMMA 4. Let (u,) be a sequence of nonnegative superharmonic functions in Q. Then either:
(i) lim u, =% u.c.s.Q; or

n—,©

(i) (u,) contains a subsequence which converges in Lj,.(Q) to some u*.

LemMA 5. The following conditions are equivalent:
(i) A* = 4,/a;
(ii) (1) has no solution when 4 = 1%;
(iii) xlin)\l* u(d) = u.c.s.Q.
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Proof. (i) = (ii). Suppose the contrary. Let u be such a solution. As we have already seen,
A (A* f(w) < 0. However, A, (A*f'(w)) = A, (A*a) = 0.

Hence 4,(A*f'(¥)) = 0, that is f'(¥) = a. As already happened, this contradicts lemma 2.

(ii) = (iii). Suppose the contrary. We prove first that #(1) are uniformly bounded in Z*(Q).
Suppose again the contrary. Then, up to a subsequence, u(1) = k(A)w(A) with k(1) — o« and
§wr(d) = 1.

Suppose, using again a subsequence if necessary, that wu(i) - u* in L},.(Q). Then
(A/k(A)) f(u(A)) = 0 in L}, (), that is

“AWA) = 0 in Ll (Q). 6)
It is easy to see that (w(1)) is bounded in Hy(Q). Indeed,

. : - . o
| 17wl = \ ~Aww(l) = \mf(uu))wu) =4 (@w’(2) +%wm)

. .

< A*a + ¢ J1Q] (for a suitable ¢ > 0).

w(d) < A*a + ¢

Let w € Hy(Q) be such that, up to a subsequence,
w(4) — w weakly in H3(€2) and strongly in I2(Q). (N

Then, by (6), —Aw = 0, and by (7), w € Hy(Q) and | w? = 1. We have obtained the desired
contradiction. Hence (#(4)) is bounded in L*(Q). As above, u(1) is bounded in Hy(Q). Let
u € Hy(Q) be such that, up to a subsequence, u(A) — u weakly in H,(Q) and strongly in I*(Q).
Then by (1) we get that u is a H)(Q) solution of —Au = A*f(u). As we have already done, we
get that in fact u is a solution of (1) when A = A*. This contradiction concludes the proof.

(iii) = (ii). As we have seen, if (1) has a solution when A = A*, it is necessarily equal to

lim u(A), which cannot happen in the given context.
A R*

[(iii) and (ii)] = (i) Let #(A) = k(A)w(L) with k(1) and w(A) as above, This time lim k(1) =oo.
AoN*
As above we get a uniform bound for (w(4)) in H}(Q). Let w € Hy(Q) be such that, up to a
subsequence, w(i) = w weakly in Hj(Q) and strongly in L*(Q). Then —Aw(1) = —Aw in
D(Q) and A/k(1) f(u(A)) = A*aw in L}(Q). (The last statement will be shown out in the proof
of lemma 9). So we obtain

—Aw = Ai*aw, w e Hy(Q), w =0, w? = 1.
However, this means exactly that A1* = A,/a(and w = ¢,). N

LemMma 6. The following conditions are equivalent:
(i) A* > A,/a;
(ii) (1) has exactly a solution, say u*, when A = A*;
(iii) u(A)is converging u. Q to some u* which is the unique solution of (1) when A = A*.

Proof. We have already seen that A* = A,/q. This mak_es this lemma a reformulation of the
preceding one apart from the fact that the limit i_n (iii) is u. Q. Since we know that u(1) — u* a.e.,
it is enough to prove that u(A) has a limit in C(Q) when A — A*. Even less, it is enough to prove
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that u(4) is relatively compact in C(€). This will be done via the Arzela-Ascoli theorem if we
show that (u(4)) is bounded in C°'*(Q). Now 0 < u(i) < u* implies 0 < f(u(d)) < f(u*),
which offers a uniform bound for —Au(4) in L*¥(Q). The desired bound is now a consequence
of the theorem 8.34 in [2] (see also the remark from the p. 212) and of the closed graph
theorem. W

Proof of theorem A. (i), (ii) and (iv) will follow together if we prove one of them. We shall
prove that A* = 4,/a by showing that (1) has no solution when 4 = 4,/a. For suppose u were
such a solution. Then

~Au = Af(u) = A,u. ®

If we multiply (8) by ¢, and integrate by parts we get Af(4) = 4, u, contradicting the fact that
f() > 0.

(iii) taking into account the lemma 3(iv), it is enough to prove that for 4 € (0, A,/a) any solu-
tion u verifies 4,(Af'(«)) = 0. However,

—A - Af' (W) = -A — Aa,
which shows that

MAS W)z A (ha) =4 - Aa>0. A

2. PROOF OF THEOREM B

(i) We prove first that A* < A,/4,. For this aim, we shall see that (1) has no solution when
A = A,/,. Suppose the contrary and let u4 be such a solution. Then multiplying (1) by ¢, and
integrating by parts we get

Ay \ o u =2 \ @S (u). 9)

In our case, (9) it becomes

4
/Ll

— u
7o "

\ o fw) = Ay

i.\(/)lu:

which forces f(v) = A, u and, as above, this contradicts f(0) > 0.
The remaining part of (i), (ii) and (iii) are equivalent in view of the lemmas 3(iii) and 6. We
shall prove that A* > A,/a supposing the contrary. Then lim #(A) =co u.c.s.Q and A* = 4,/a.
A= N¥

If we examine (9) rewritten as

=)
|

= | ouliuth) - arw

«

\ @1 [(4) — aDu(d) = ASf @A) — au(A)] = -4 S i [f (@) — au(d))] (10
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we see that the right-hand side integrand converges monotonously to /¢, when A — A*. Here
[ = lim (f(t) — at) < 0. Passing to the limit in (10) we obtain the contradictory inequality
=00

0=-IA|¢g >0.

We have seen that A* < 1,/4, and we know that (1) has solution when 4 = A*. This shows
that A* < 4,/4,.

(iv) can be be proved exactly in the same way as (iii) in the theorem A.

Since all the solutions of (1) are positive, we may modify f(¢) as we wish for negative 7. In
what follows we shall suppose, additionally, that f is increasing.

For the proof of (v) we shall use some known results that we point out in what follows.

The Ambrosetti-Rabinowitz theorem. Let E be a Banach space, J € C'(E, R), u, € E. Suppose
that there exist R, p > 0, v, € E such that

Juw) = Jug) + p if Jlu — ull = R (11)
J(vy) < Jug). 12)

Suppose that the following condition is satisfied.

(PS) Every sequence (u,) in E such that (J(u,)) is bounded in R and J'(x,) — 0 in E* is
relatively compact in E.

Let

® = {p e C(0, 1], £): p(0) = uy, p(1) = vo)

and )
¢ = inf max F o p.
® [0,1]

Then there exists u € E such that J(u) = ¢ and J'(u) = 0.

Note that ¢ > J(i,) and that is why u # u, (see [1] for details).
We want to find out solutions of (1) different from u(4), that is critical points, others than
u(d), of

1

JE->R,  Ju = 5 |Vul* -

Fu),

o

where E = Hy(Q) and F(t) = A §{f(s) ds. We take u(4) as u, for each 4 € (A,/a, A*).
We have the following theorem.

LemMa 7. (i) J e CHE, R);
(ii) for u, v € E we have J'(w)v = [Vu - Vv — A{f(u)v;
(iii) u, is a local minimum for J.

The proof can be found in [1].
In order to apply the Ambrosetti-Rabinowitz theorem we transform u, into a local strict
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minimum by modifying J. Let
.
JooE—~R, J.(u) = Ju + 3 |V(u — up)l®.

In view of the preceding lemma we obviously have:
(i) J e CU(E, R);
() J;-v=[§Vu-Vo - A{f(@v + e[ V(u — uy) - Vo,
(iii) u, is a local strict minimum for J, if € > 0 (so that (11) is verified).
We prove first the existence of a v, good for all ¢ near 0.

LemMa 8. Let ¢, = (Aa — A|)/2A,. Then there exists v, € E such that J,(vg) < J, (1) for
€ € [0, &).
Proof. Note that J,(u) is bounded by J,(«) and Jy, (). 1t suffices to prove that
lim J, (t9,) = —o0.
! — o0

However,

A &
J(tg)) = E‘zz + fi,zz

R el R
“salit | o+ 5 | 19l = | Fuo. (13)
Let a = (3aA + 4,)/44. Since «a < a, there exists 8 € R such that f(s) = as + 8 for all s,

which implies that F(s) = «4/2s* + f4s when s = 0. Then (13) shows that

A+ g4, — A

<0
2

. 1
lim sup e S ltp)) <
{0
because of the choice of . B

LemMMa 9. The condition (PS) is satisfied uniformly in ¢, that is if
(J, (u,)) is bounded in R, g, € [0, &) (14)
and
J;, (u,) = 0in E* (15)

then (u,) is relatively compact in E.

Proof. Since any subsequence of (u,) verifies (14) and (15), it is enough to prove that (u,)
contains a convergent subsequence. It suffices to prove that (u,) contains a bounded sub-
sequence in E. Indeed, suppose we have proved this. Then, up to a subsequence, u, — u weakly
in H)(Q), strongly in I(Q) and a.e., and €, — €. Now (15) gives that

—Au, — Af(uy) — &, AU, — ug) = 0 in D'(Q).
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Note that f(u,) — f(u) in LX(Q) because | f(u,) — f(u)| < alu, — u|. This shows that

—(1 + &)Au, = Af(u) — €Ay, in D'(Q),
that is
—Au — Af (W) — eA(u — uy) = 0. (16)
The above equality multiplied by u gives

(I +¢ \ Vul*> = A\ uf(u) — €A | uf(uy) = 0. an
Now (15) multiplied by (u,) gives
(1 + En) ‘Vun|2 - unf(un) — € A unf(uo) -0 (18)

o

in view of the boundedness of («,). The middle term in (18) tends to —A | «f(x) and the last one
to —&A § uf (uy) in view of the L*(Q)-convergence of u, and f(u,). Hence, if we compare the first
terms in (17) and (18) we get that { [Vu,|> = {|Vu|?, which insures us that u, = u in Hy(Q).
Actually, it is enough to prove that («,) is (up to a subsequence) bounded in I*(©Q). Indeed, the
I*(Q)-boundedness of (u,) implies that Hi(Q)-boundedness of (u,) as it can be seen by
examining (14).

We shall conclude the proof obtaining a contradiction from the supposition that
l4all 2@y = . Let u, = k,w, with k, >0, {w, =1 and k, — . We may suppose &, = &.

Then
2
v<w,, - %) } 19)

n

A 7 R I 1
TN T JFE‘;[;\ b

n—co n
ky

& | V(W -
FINC
Thus (19) can be rewritten

, 1+¢,{ 1|

'}Ln:c| 2 (\ vanlz - k_,Z, (s F(un)J =

Now

nf(uo)

zn v 2
2 j' wal” + 2k2

L

However,
Aa 5,
‘F(un)‘ = |F(kn W")! = ?kn W, + Ablknwnl

because | f(¢)| < alt| + b. Here b = f(0). This shows that ((1/k}) § F(u,)) is bounded and this
must also be true for ||w HHO(Q, Now let w € Hy(Q) be such that (up to a subsequence) w, = w
weakly in Hy(Q), strongly in L*(Q) and a.e. Note that § w? = 1. We claim that

—(1 + &)Aw = daw"™. (20)
Indeed, (15) divided by k, gives

Sy g,
b

1 +¢ Vw, Vv — A
( ’l)l n U k" k".

Sug)v = 0 @n
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for each v € Hy(Q). Now
A+e)\Vw, Vo> (1 + &) Vw:- Vo

Hence (20) can be concluded from (21) if we show that 1/k, f(u,) converges (up to a subse-
quence) to aw’ in L*(Q). Now 1/k, f(u,) = 1/k, f(k,w,) and it is easy to see that the required
limit is equal to aw™ in the set

fx e Q:w,(x) = wx) # 0}.

If w(x) = 0 and w,(x) > w(x), let ¢ > 0 and n, be such that |w,(x)| < ¢ for n = n,. Then

k b
f(#w") <éa+ r for such n,

that is the required limit is 0. Thus, (f(u,))/k, = aw” a.e. Here b = f(0). Now w, = w in
I*(Q) and, thus, up to a subsequence, w, is dominated in Z2(Q) (see theorem IV.9 in [4]).

Since 1/k, f(u,) < a|lw,| + 1/k, b, it follows that 1/k, f(u,) is also dominated. Hence (20)
is now obtained. Now (20) and the maximum principle imply w = 0 and (20) becomes

Aa
—Aw = w

1 +¢
w=0 (22)
w? = |

Thus Aa/(1 + &) = 4, (and w = ¢,), which contradicts the fact that ¢ € [0, g;] and the choice
of &,. This contradiction finishes the proof of the lemma 9. @&

LemMma 10. c, is uniformly bounded.
Proof. The fact that J; increases with ¢ implies ¢, € [c,, Cl- B

Now we continue the proof of the theorem B(v): for ¢ € (0, &], let v, € Hy(Q) be such that

A

A £
—Ay, = mf(vs) + mf(uo) (23)

and
J(vy) = c,. (24)

The relation (24) and the lemmas 9 and 10 show that there exists v € Hy(Q) such that v, = v
in Hy(Q) as ¢ = 0. Now (23) implies

-Av = Af(v).
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The last assertions to be proved are that v # u, = #(4) and v € C3(Q) N C(Q). Note that v,
is a solution of (23) different from u, and, hence, unstable in the sense that

A
Ay <1—+—Ef'(va)) <0.

Indeed (23) is an equation of the form
—Au = g(u) + h(x),

where g is convex and positive and A is positive. Then, if it has solutions, it has a minimal one,
say u, with 4,(g'(4)) = 0 (see [1]). Now the proof of the lemma 3(iv) shows that for all other
solutions v we have A,(g'(v)) < 0. In our case, u, stands for v and v, for v. All we have to
prove now is that the limit of a sequence of unstable solutions is also unstable, which will be
done in the following lemma.

LemMa 11. Let u, — u in Hy(Q) and u, — u be such that 1, (u,f (1)) < 0.
Then A, (uf'(u)) = 0.

Proof. The fact that /,(a) < 0 is equivalent to the existence of a ¢ € Hy(Q) such that

|Vo|* <

ap®  and \ o =1

follows from the Hilbert-Courant min-max principle.
Let ¢, € Hy(Q) be such that

g 3

| 196,12 < | s G002 @5)

and

(p,z, = ]. (26)

Since f’ < a, (25) shows that (p,) is bounded in Hj(Q). Let ¢ € HZ(Q) be such that, up to a
subsequence, @, — ¢ in Hy(Q). Then the right-hand side of (25) converges, up to a subsequence,
toulf ‘(t)¢”. This can be seen by extracting from (¢,) a subsequence dominated in I*(Q) as in
the theorem IV.9 in [4]. Since

o =1 and \ Vol < liminf | |Ve,|?,
we get the desired result.

The fact that v e C*(Q) N C(Q) follows via a bootstrap argument

ve HyQ) = f(w) e’ Q) = ve W¥(Q) =---

The key facts are:

(a) if v € IP(Q) then f(v) € [P(Q);

(b) an elliptic regularity result (theorem 9.15 in [2]);
(c) the Sobolev embeddings.
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(vi) Suppose the contrary. Then there are u, — 4,/a, v, an unstable solution of (1) with
A = u,, and v € Li,.(Q) such that v, = v in Li (Q).

We claim first that (v,) cannot be bounded in Hy(€2). Otherwise, let w € Hy(Q) be such that,
up to a subsequence, v, — w weakly in Hy(Q) and strongly in [*(©). Then

~Av, > —-Aw  inD(Q) and  f) (W) inAHQ),

which shows that —Aw = A,/a f(w).
It follows that w € C*(§2) N C(Q), that is w is a solution of (1). From lemma 11 it follows that

A <%f’(w>) <. @7)

Now (27) shows that w # u(4,/a), which contradicts (iv) of the theorem.

The fact that (v,) is not bounded in H}(€2) implies that (v,) is not bounded in [3(€). Indeed,
we have seen that the I?(Q)-boundedness implies the Hy(Q2) one. So, let v, = k,w,, where
k,> 0, {w2 = 1 and up to a subsequence k, — .

We have

loc

“Aw, = %f(u,,) -0 inll.(Q

(and, hence, we have convergence also in the distribution sense) and (w,) is seen to be bounded in
Hy(Q) with an already provided argument. If wis a %-cluster point of (w,) in Hy(Q), we obtain
—Aw = 0and { w? = 1, the desired contradiction.

(vii) As before, it is enough to prove the /*(Q)-boundedness of v(4) near A* and to use the
uniqueness property of #*. Suppose the contrary. Let u, = A*, |[v,ll;2, = ©, where v, are the
corresponding solutions of (1). If we write again v,, = k,w,,, then

~Aw, = %f(un). (28)
The fact that the right-hand side of (28) is bounded in Z?(Q) implies that (w,) is bounded in

HL(Q). Let w be such that up to a subsequence w,, — w weakly in Hy(Q) and strongly in L*(Q).
A computation already done shows that

—Aw = A*aw, w=0 and w2 =1,
which forces 4* to be 4,/a. This contradiction concludes the proof. W

3. SOME FURTHER REMARKS
As we have seen in the proofs of the theorems A and B, we have that:
(i) in the monotone case,

lim ————— u(d) = @ in H(Q);
N eN/a ”“(’1)”1_2(9) ] 0
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(ii) in the nonmonotone case,

lim ———— v(d) = ¢, in Hy(Q).
A=N/a HU(A)"LZ(Q)
It is natural to try to find out:
(i) if the above limits continue to exist in a more restrictive sense, say in C(Q);
(i) which is the asymptotic behaviour of |u(A)l| 2, and [|v(1)]| 2(e, when A is near 4,/a.
It is easy to answer the first question. We have the following proposition.

ProposiTION 1. (i) in the monotone case,

. _ . 1A
)\_l’l{];l/amu(i) = ¢ in C (Q).

(ii) In the nonmonotone case,

. . LA
e ol " 70 O

Proof. (i) The proof is essentially the same as for the lemma 6: it is enough to prove that
(1/(|u(A) | 120y) u(A)) is relatively compact in C'(Q) (when 4 is near 4,/a), which can be done by
showing that it is bounded in C!"*(€2). However, this follows from the fact that the above
set is bounded in Hy(Q) and a bootstrap argument (note that a uniform bound for
w(d) = 1/(lu()ll 29,) u(2) in some IP(Q), | < p < = provides a uniform bound for —Aw(A)
in IP(Q) for the same p).

(ii) is identical with (i). W

Moreover, we have the following proposition.

ProrositioN 2. If w(2) is either 1/([u(A)l 20, w(A) or 1/(v(A)li20)) v(4), then @,/w(d) is
uniformly bounded when A is near 4,/a.

Proof. Note that the strong maximum principle impligs that aw(4)/dv < 0 on dQ and, hence,
¢,/w(4) can be extended to a continuous function on Q by setting
@ _ (99,/3v)(x)

w0 = Gwienm

for x € Q2.

Lemma 12. There exists &, > 0 such that if

wo = Ix € RN :d(x, 0Q) < &,
then:
(i) for each x € w, there is a unique x, € 92 such that d(x, 0Q) = |x ~ xpl;
(ii) if T(x) = x,, then IT € C'(w,) (x, X, are as above);
(iii) if [x — TI(x)| = & then x = II(x) - ev(I(x)) or x = I1(x) + ev(Il(x)), according to the
case x € Q or x ¢ Q;
(iv) if x € Q then [x, [T(x)) C Q.

The proof can be found in [5]. &
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Let w = w, N Q and K = Q\w. Since w(d) = ¢, u. Q, for A close enough to A,/a we have
w(4)x > 3 min g, that is ¢,/w(d) < c in K for such 1 and a suitable c. If xew, let
K

X = II(x). Then

0 00— 0ix0)  _ —8(89,/3v(x))(x + T(X — X)) 29)
w(i, x)  wd,x) — wd,xg) —e@w/v(xp))(A, xo + T(x ~ Xg))

for some 7e(0,1). Taking a smaller ¢,, if necessary, we may suppose that
(@w/av(T1(x)))(x) < 0 on @. Then, as above, the quotient in (29) is smaller than some ¢, > 0 for
A near A,/a. B

For the second question the answer is delicate. For example we have the following
proposition.

PRrROPOSITION 3. Suppose f to obey the monotone case, that is f(¢) = af for all ¢, and let
[ = lim[f(z) — at] = 0.
11—
Then

n

. A
lim (4, — ab)llud) 2oy = =1 | 01
A= \/a a

Proof. Let L, be a limit point of (1, — aA)||u(A)|;2(q) when A = 4,/a. If we rewrite

B

\ @4, — alyu(d) = A(f(u(d)) - au(A)] = 0 (10)

in the form

Ao (f(u(R)) — au(R)) (30

\ o4, — dl)||u(?t)||1_2(mW(/1) =

. «

and we note that the right-hand side integrand converges don_1inated to (A/a)lp, when
A — A,/a, and that the left-hand side integrand tends to Lopiu. Q if L, < c and to o uni-
formly in Q if L, = o« (on an appropriate sequence of 1), we get that

Ay
L(,:Al\(pl. m
a 0

It is obvious that the answer is good only when /> 0. If / = 0 then it shows only that
lu())l 20, grows slower than 1/(A, — aA). As we shall see below, in this case the answer
depends heavily on f.

Example 1. Let f(1) = t + 1/( + 2) when ¢ = 0 (defined no matter how for negative ¢). Then

E{T VA - AH“(}L)”LZ(SZ) = VA, QI
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Proof. With the usual decomposition u(4) = k(A)w(4), if we divide (10) by \/m we get
A9,
IV = 2w + 2V, — 47
We claim first that liminfvA, — Ak(1) > 0. Otherwise, let u, — 4, be such that
VI T k() — 0. Then
VA = k(W) =0 u.Q

PNA — Ak(A)w(d) = @31

and
\/}'l - u,,k(u,,)w(u,,) + 2\/AI - Uy 0 U.Q,

which contradicts (31) for large n.
We shall also prove that hm sup\/,{l Ak(A) < . Suppose the contrary. Let u, = 4, be

such that VA, — u, k(u,) = . Then the left-hand side of (31) tends to oo with n. We shall show
that the right-hand side remains bounded and the contradiction will conclude the proof. Now
@,/ w(u,) is uniformly bounded by some M > 0, so that the right-hand side integrand is less
than A, M/~ A, — u,k(u,), which is bounded.

Let ¢ € (0, +o) be a limit point of VA, — Ak(A) when A — A,. Let u, — A, be such that
VA, — u,k(u,) —» cand VA, — u,k(u,) = c/2. Then the left-hand side of (31) tends to c, while
the right-hand side integrand is dominated by 24, M/c and converges a.e. to A,/c. Hence
¢ = A,/c|Q| which finishes the proof. W

Note that a similar computation can be made if f(7) = V> + 1.
If f(r) — at decays to o faster than 1/7 then the behaviour becomes more complicated, as
shown in the following example.

Example 2. Let f(t) = t + 1/(t + 1)>. Then ||u(A)||;2(q, tends to o like no power of (1; — 4).
More precisely:

)] hm (/11 — D) 12 ()
(i) hm (Al = DMu) 2y = 0if @ > 4

4 1.
w if o < 33

Proof. We shall need first some estimations for { 1/¢, and | 1, 5 4 1/9,.

LemMA 13. (i) There exist positive constants K, K, and ¢, such that

| 1
Kilngl < | L, 5y— =< K,|Ing| for ¢ € (0, &,).
. @
(i) | /@ = .

Proof. (i) follows obviously from (i).
(i) Let ¢, and w, as in lemma 12. Let
O: Wy IQ x ("'80, 50) and ¥ 0Q X (_80, 80) - Wy
be defined by

®(x) = (IT(x), {x — TI(x), v(x))) and W(x,, &) = Xy + ev(xg).
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Then ®, ‘P are smooth and ¥ = ® ™', so that if we replace if necessary &, with a smaller number,
we may suppose that there exist C,, C, > 0 such that 0 < C, < [J(¥)| < C, on w,.
We claim that there exist C;, C, > 0 such that

Cyd(x, 3Q) < ¢,(x) < C,d(x, 3Q)

when x € w, if we replace, eventually, ¢, with a smaller number. Indeed, as max(d¢,/dv) < 0,
we obtain that oe

9¢,(x)
—C, = g 77
} ;Slelg IVI1(x))

if g, is small enough.
Let C, = max|¢’|. Then if x € w we get
)

39,(y)

0100 = 1) = 910 = —dOx, T Z2m oo

for some y e [x, I1(x)] and also the desired result.
Take &, < min(inf ¢, C;¢,). Now if ¢ < ¢, then
Nw

1 1
{¢|>£}(p_l = {sclzt‘]}w_] + \ 1{€<«>1<€1}(p_]‘
Note that
£ £ £ £
— < dx,00) < —; Cle < <glC =< d(x,0Q) < —
{Cz ( ) CJ { @ 1 {C4 (. ) C;}
and
1 1 |
< <
C4d(xa aQ) (ﬂ](X) C3d(X, aQ)
there. Then
1 1 1
| lgw,aﬁ,}(’fl + a l{s/C3<d(x,aSl)<51/(‘4}m
- \ . 1 ) 1 . .l ; 1
= ‘ {w]>€}(pl = ‘ {w,zm}wl C3 ‘ {e/Cy<d(x,0Q) < £,/C3} d(x, GQ) .

It remains to find, for example, Cs, C, > 0 such that

1

)M < C6(llne| + 1).

Csilng| <1 = \ Lie/c,<dwam<s oy

Now with the changement of coordinates, x = P(x,, J), we get
1

JAR X (e/Cy,8,/Cy) 5

I = [J()| ds(x,) dd,




Bifurcation problem 873

so that

Cye, C,¢,
C1oQ|/In— =< I = (,]0Q| In —
l\ l nC3£ 2| lnC3£

and the desired estimation follows easily. The proof of the lemma is completed. W

Now in order to prove (i) of the example 2 it is enough to show that

lim () = ') 3y = .
Ay

Suppose that there exist 4, = 4, and ¢ < o such that
(A, = )k, = ¢, where k, = [[u(u,)l120)-
If we divide (10) written with A = u, by (4, — u,)*"* we get

2 @
LGy = u) Pk, w, + D

oA = ) kW, = (32)
where w, = (1/k)u(u,).

If ¢ = 0 then the left-hand side in (32) tends to 0, while the second one to oo. Hence
¢ € (0, ). The fact that k,, — « implies that for each ¢ > 0, 2k, w, + 1 < ek}, for large n, so
that the right-hand side of (32) is larger that

4| e
27 Vgt + e

for n large enough to have (4, — u,)**k2 < 2¢?. Since the limit of the left-hand side is ¢, we get
that

P
2¢2

.

@,

c= 5
97 + ¢

for all € > 0. Letting ¢ — 0 we obtain ¢ = oo, the desired contradiction.

(ii) Suppose the contrary. Then there exist « >4, u, > 4, ¢ € (0, +] such that
('11 - A)akn - where kn = ”u(.un)nLl(Q)'

Let f = 3o — 1 > 0. Then (10) with A = u, divided by (4, — A)' ™ gives

' !
Ay — U)K =1
Lot =t =2 | i

(=1,). (33)
The limit of the left-hand side is ¢ € (0, +]. I, can be estimated as follows

l{wlaxl_}‘n} U F J’l + K"‘

[n = \ pee = \ l{‘ﬂl<)\|_l‘«n}”' +
Now

/11—/1,,

v Al 1)1 — 0
1 n

O<J,,s~

.
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while

MG, — un)’ | 1
0<K,= — lw.zx.w;q,—l’
where M = sup max u2/¢? < o (as shows the proof of proposition 2).

Lemma 13 shows that the last expression is O(A, — u,)°|In(A, — u,)|), that is it tends to zero
with n.
In the nonmonotone case |[v(4)[;2q, grows faster to «o. We have the following proposition.
ProPosITION 4. Let f obey the nonmonotone case and let
lim[f(¢t) — at] = € [—, 0).
{0
Then
)\l‘{n (A — aA)HU(A)HLZ(Q) = /.

The proof is identical to that of the preceding proposition.
The result is good only when / € R, When / = —oo, we give an example.

Example 3. If f(1) =t + 2 -~ ~t + 1, then

lim (4 — 4,)*v(d)
NN

: 2
o) = <\ wNE) .

Proof. If we multiply (10) by 4 — 4, we get

j 0100 — AWNEDVWDIA - (4 — AVEDV D]

=204 — 4)) \ @, — 4 s gV = A kMw() + 4 = 1) = VA = 1)k(A)wA)],

‘ ' (34)
where k(4), w(4) are as usual. We prove first that lim sup(A — A,)’k(4) < . Suppose there
exist u, = 4, such that (u, — 4,)*k(u,) = «. Then thé;ight-hand side of (34) tends to 0, while
the left-hand side is, for a suitable choice of C,, C, > 0, less than

Ci(h = WVKQ) = Cyd = 4,)*k(A)
so it tends to —oo.
Suppose now that

lixm inf(/l - )%k(4) = 0. (35)
The last integral in (34) is positive, so that (34) gives

P NKDNWRIL ~ (4 — AWVKDVWD] < 24 | ¢, (36)
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However, the assumption (35) makes the left-hand side of (36) to tend to « for a suitable A.
The contradiction shows that (35) is false.

Now let ¢ € (0, +) be any limit point of (1 — 4,)*k(1) when A — A,. Then (34) shows that
c=(§ (Pl\/(ﬂ_ﬂz-

All other functions we have tested behaved well in the sense that [[v(A)ll 2, ~
Cg(1/(A — A,)), where g is the inverse of the antiderivative of

1
at + f(0) + 1 — f(t)~

[0, +©) 3¢ ~

Acknowledgements—This work was done while the authors were at the Laboratoire d’Analyse Numérique, Université
Paris 6, with a Tempus fellowship. We would like to thank Professor H. Brezis, who gave us this problem, for his very
valuable advice and hearty encouragement.

REFERENCES
1. BREZIS H. & NIRENBERG L., Nontinear functional analysis and applications to partial differential equations (in
preparation).
2. GILBARG D. & TRUDINGER N. S., Elliptic Partial Differential Equations of Second Order. Springer, Berlin
(1983).
. HORMANDER L., The Analysis of Linear Partial Differential Operators, 1. Springer, Berlin (1983).
. BREZIS H., Analyse Fonctionnelle. Masson, Paris (1992).
. IFTIMIE V., Partial Differential Equations. Bucharest University Press (1980). (In Romanian.)

(LR SNV ]



