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a b s t r a c t

We establish existence results of Hartmann–Stampacchia type for a class of varia-
tional–hemivariational inequalities on closed and convex sets (either bounded or un-
bounded) in a Hilbert space.
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1. Introduction

Let Ω be a bounded open set in RN . Assume that K is a nonempty, closed, and convex (bounded or unbounded) set in
H10 (Ω). The first major result in the theory of variational inequalities is the following direct consequence of the Stampacchia
theorem: for any f ∈ H−1(Ω), there is a unique u ∈ K such that, for all v ∈ K ,∫

Ω

∇u · ∇(v − u)dx ≥ 〈f , v − u〉. (1)

The above result is often referred to as the Hartman–Stampacchia theorem (see [1, Lemma 3.1] or [2, Theorem I.3.1]). A
simple proof of the Hartmann–Stampacchia theorem is due to Brezis and may be found in [2].
Several nonlinear and nonconvex extensions of (1) have been given in a nonsmooth framework by Fundos,

Panagiotopoulos and Rădulescu [3] and byMotreanu andRădulescu [4].We refer to [5–8] for related results and applications.
In [3], Hartman–Stampacchia type properties are obtained for nonconvex inequality problems of the type: find u ∈ K

such that, for all v ∈ K ,∫
Ω

∇u · ∇(v − u)dx+
∫
Ω

j0(x, u(x); v(x)− u(x))dx ≥ 0,
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where j0 stands for the Clarke generalized directional derivative. The case of variational–hemivariational inequalities was
studied in [1] for the model problem: find u ∈ K such that, for all v ∈ K ,∫

Ω

∇u · ∇(v − u)dx+ Φ(v)− Φ(u)+
∫
Ω

j0(x, u(x); v(x)− u(x))dx ≥ 0,

whereΦ is convex and lower semicontinuous.
In this paper we are concerned with a more general class of inequality problems with lack of convexity. The main idea in

the study we develop in this work is related to the previous nonlinear inequality problems but also has a strong relationship
with the semilinear boundary value problem{

−∆u = f (x, u) inΩ
u = 0 on ∂Ω, (2)

where f : Ω × R→ R is a Carathéodory function satisfying
|f (x, t)| ≤ λ1 |t| for all (x, t) ∈ Ω × R. (3)

Here, λ1 denotes the first eigenvalue of the Laplace operator (−∆) in H10 (Ω). If ϕ1 is a positive eigenfunction of (−∆)
corresponding to λ1 then, by our basic assumption (3), ϕ1 (resp.,−ϕ1) is a super-solution (resp., a sub-solution) of problem
(2). Thus, problem (2) has at least one solution. However, we point out that assumption (3) is very sensitive, in the sense
that problem (2) has no longer solutions provided that f has a growth described by |f (x, t)| ≤ λ1 |t| + C , for some C > 0.
For instance, the linear Dirichlet problem{

−∆u = λ1u+ 1 inΩ
u = 0 on ∂Ω

does not have any solution, as can be easily seen after multiplication by ϕ1.
We intend to show in this paper that the growth assumption (3) can be used to obtain existence results for a general

class of variational–hemivariational inequalities. We refer to [12] for a thorough introduction to variational problems and
to [13] for may related nonlinear inequality problems.

2. The main result

We first recall that if ϕ : H10 (Ω) → R is a locally Lipschitz function then ϕ0(u; v) denotes the Clarke generalized
derivative of ϕ at u ∈ H10 (Ω)with respect to the direction v ∈ H

1
0 (Ω); that is,

ϕ0(u; v) = lim sup
w→u
λ↓0

ϕ(w + λv)− ϕ(w)

λ
.

Accordingly, Clarke’s generalized gradient ∂ϕ(u) of ϕ at u is defined by
∂ϕ(u) = {ξ ∈ H−1(Ω); 〈ξ, v〉 ≤ ϕ0(u; v), for all v ∈ H10 (Ω)}.

The function (u, v) 7−→ ϕ0(u, v) is upper semicontinuous and
ϕ0(u; v) = max{〈ζ , v〉; ζ ∈ ∂ϕ(u)} for all v ∈ H10 (Ω).

Then ∂ϕ(u) is a nonempty, convex, and weak ∗ compact subset of H−1(Ω).
We refer to themonograph by Clarke [9] for further properties of the generalized gradient of locally Lipschitz functionals.
In this paper we are concerned with the following inequality problem:find u ∈ K such that for all v ∈ K ,∫

Ω

∇u · ∇(v − u)dx+
∫
Ω

f (x, u)(v − u)dx+
∫
Ω

j0(x, u(x); v(x)− u(x))dx ≥ 0. (4)

Throughout, we assume that f : Ω × R→ R is a Carathéodory function such that

sup
x∈Ω
lim sup
t→±∞

∣∣∣∣ f (x, t)t
∣∣∣∣ < λ1. (5)

Observe that assumption (5) implies the existence of some µ ∈ (0, λ1) and C > 0 such that, for all (x, t) ∈ Ω × R,
|f (x, t)| ≤ µ |t| + C . (6)

We assume that j : Ω × R→ R is a Carathéodory function such that
|j(x, y1)− j(x, y2)| ≤ k(x) |y1 − y2| for all x ∈ Ω and y1, y2 ∈ R, (7)

for some function k ∈ L2(Ω), and there exist h1 ∈ L2(Ω) and h2 ∈ L∞(Ω) such that
|z| ≤ h1(x)+ h2(x)|y| for all (x, y) ∈ Ω × R and all z ∈ ∂ j(x, y). (8)

Our main result in this paper is the following.
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Theorem 2.1. Assume that K is a nonempty, closed, and convex set in H10 (Ω) and that hypotheses (5), (7) and (8) are fulfilled.
Then problem (4) has at least one solution.

We conclude this section by observing that condition (5) is very much related to the growth assumption (3). However,
due to the presence in (4) of the nonconvex term

∫
Ω
j0(x, u(x); v(x) − u(x))dx, we are not able to work under the same

hypothesis; that is,

sup
x∈Ω
lim sup
t→±∞

∣∣∣∣ f (x, t)t
∣∣∣∣ ≤ λ1. (9)

However, the techniques we use in what follows enable us to obtain the same result as stated in Theorem 2.1 provided that
(9) holds, but

|f (x, t)| ≤ µ |t| + C for all (x, t) ∈ ω × R,

for some µ ∈ (0, λ1), where ω ⊂ Ω and |ω| > 0.

3. An auxiliary result

Throughout this section we assume that Ω is bounded and we prove that the existence result stated in Theorem 2.1 is
valid in this particular case.
Let J : L2(Ω)→ R be themapping defined by J(u) =

∫
Ω
j(x, u(x))dx. Our assumption (8) implies that J is locally Lipschitz

on L2(Ω) and, for all u, v ∈ L2(Ω),∫
Ω

j0(x, u(x); v(x))dx ≥ J0(u; v). (10)

Since H10 (Ω), we obtain that relation (10) holds for any u, v ∈ H
1
0 (Ω).

We recall (see [3]) that, in view of our assumptions (7), (8), and (5), the mapping

H10 (Ω)× H
1
0 (Ω) 3 (u, v) 7−→

∫
Ω

j0(x, u(x); v(x))dx is weakly upper semicontinuous

and, for all v ∈ H10 (Ω), the mapping

H10 (Ω) 3 u 7−→
∫
Ω

f (x, u)(v − u)dx is weakly continuous.

The main result of this section is the following.

Theorem 3.1. Assume that K is a nonempty, closed, convex, and bounded set in H10 (Ω) and that hypotheses (5), (7) and (8) are
fulfilled. Then problem (4) has at least one solution.

The proof of this existence property relies on the celebratedKnaster–Kuratowski–Mazurkiewicz (KKM)principle.We first
recall that if E is a vector space then a subset A of E is said to be finitely closed if its intersection with any finite-dimensional
linear manifold L ⊂ E is closed in the Euclidean topology of L. Let X be an arbitrary subspace of E. A multivalued mapping
G : X → P (E) is called a KKMmapping if

conv {x1, . . . , xn} ⊂
n⋃
i=1

G(xi)

for any finite set {x1, . . . , xn} ⊂ X .
For the convenience of the reader we recall the KKM principle of Knaster, Kuratowski, and Mazurkiewicz (see [10]

and [11]).

Theorem 3.2. Let E be a vector space, X be an arbitrary subspace of E, and G : X → P (E) be a KKM mapping such that G(w)
is finitely closed for anyw ∈ X. Then the family {G(w)}w∈X has the finite intersection property.

Proof. We claim that it is enough to show that the inequality problemfind u ∈ K such that for all v ∈ K ,∫
Ω

∇u · ∇(v − u)dx+
∫
Ω

f (x, u)(v − u)dx+ J0(u; v − u)dx ≥ 0 (11)

has a solution. This fact, combined with relation (10), implies that problem (4) has at least one solution.
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Returning to problem (11), let G : K → P (H10 (Ω)) be the multivalued mapping defined as follows: for anyw ∈ H
1
0 (Ω),

let G(w) be the set of all v ∈ K such that∫
Ω

∇v · ∇(w − v)dx+
∫
Ω

f (x, v)(w − v)dx+ J0(v;w − v) ≥ 0.

Step 1. The set G(w) is weakly closed.
Indeed, let us assume that vn ∈ G(w) and vn ⇀ v in H10 (Ω). Then∫

Ω

∇v · ∇(v − w)dx ≤ lim inf
n→∞

∫
Ω

∇vn · ∇(vn − w)dx

and

lim
n→∞

∫
Ω

f (x, vn)(w − vn)dx =
∫
Ω

f (x, v)(w − v)dx.

Using now the upper semicontinuity of the mapping J0(· ; ·), we obtain

lim sup
n→∞

J0(vn;w − vn) ≤ J0(v;w − v).

Therefore,

J0(v;w − v) ≥ − lim inf
n→∞

(
−J0(vn;w − vn)

)
.

Using these relations, we conclude that if vn ∈ G(w) and vn ⇀ v then∫
Ω

∇v · ∇(w − v)dx+
∫
Ω

f (x, v)(w − v)dx+ J0(v;w − v)dx ≥ 0,

which shows that v ∈ G(w). Now, using the basic assumption that K is bounded, we deduce that G(w) is weakly closed.
Step 2. G is a KKM mapping.
Arguing by contradiction, we findw1, . . . , wn ∈ K and z ∈ conv {w1, . . . , wn} such that z 6∈ ∪nj=1 G(wj). This means that,

for all j = 1, . . . , n,∫
Ω

∇z · ∇(z − wj)dx+
∫
Ω

f (x, z)(z − wj)dx+ J0(z;wj − z) < 0.

This means thatwj ∈ C , where

C :=
{
w ∈ K ;

∫
Ω

∇z · ∇(z − w)dx+
∫
Ω

f (x, z)(z − w)dx+ J0(z;w − z) < 0
}
.

Since the mapping J0(u; ·) is subadditive and positive homogeneous (see [9]), the set C is convex; hence z ∈ C , a
contradiction.
Step 3. The family {G(w)}w∈K has the finite intersection property.
This follows by combining Step 2 with Theorem 3.2 of Knaster, Kuratowski, and Mazurkiewicz. Thus, there exists

u ∈ ∩w∈K G(w) or, equivalently,∫
Ω

∇u · ∇(v − u)dx+
∫
Ω

f (x, u)(v − u)dx+ J0(u; v − u) ≥ 0,

for all v ∈ K . This concludes the proof of Theorem 3.1. �

4. Proof of Theorem 2.1

We apply some ideas developed in [3] and [4] which rely essentially on Theorem 3.1 combined with the possibility to
approximate the set K with bounded sets having the same structure.
Without loss of generality we assume that 0 ∈ K . For any positive integer n, set

Kn := {w ∈ K ; ‖w‖ ≤ n}.

Thus, 0 ∈ Kn for all n ≥ n0, where n0 is a positive integer.
Applying Theorem 3.1 we find un ∈ Kn (n ≥ n0) such that, for all v ∈ Kn,∫

Ω

∇un · ∇(v − un)dx+
∫
Ω

f (x, un)(v − un)dx+
∫
Ω

j0(x, un(x); v(x)− un(x))dx ≥ 0. (12)
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We claim that the sequence (un) is bounded inH10 (Ω). Arguing by contradiction and passing eventually to a subsequence,
we can assume that ‖un‖H10 (Ω) →∞ as n→∞. Taking now v = 0 as a test function in relation (12), we obtain (using also
our assumption (5))

‖un‖2H10 (Ω)
=

∫
Ω

|∇un|2dx+
∫
Ω

f (x, un)undx ≤
∣∣∣∣∫
Ω

j0(x, un(x);−un(x))dx
∣∣∣∣ . (13)

Using now condition (7), we find∣∣∣∣∫
Ω

j0(x, un(x);−un(x))dx
∣∣∣∣ ≤ ∫

Ω

k(x) |un(x)|dx

≤ ‖k‖L2(Ω) ‖un‖L2(Ω) ≤ C ‖k‖L2(Ω) ‖un‖H10 (Ω), (14)

where C > 0 is a constant determined by the continuous embedding H10 (Ω) ⊂ L
2(Ω).

On the other hand, our assumption (5) implies that∣∣∣∣∫
Ω

f (x, un)undx
∣∣∣∣ ≤ µ ∫

Ω

u2ndx+ C |Ω| ≤
µ

λ1
‖un‖2H10 (Ω)

+ C |Ω|. (15)

Combining relations (13)–(15), we obtain(
1−

µ

λ1

)
‖un‖2H10 (Ω)

− C |Ω| ≤ C ‖k‖L2(Ω).

Since µ ∈ (0, λ1), this relation shows that the sequence (un) is bounded in H10 (Ω). Thus, up to a subsequence, un ⇀ u ∈ K
in H10 (Ω). To conclude the proof, it remains to show that u is solution of problem (4). As we have already observed in the
proof of Theorem 3.2, it is enough to show that u verifies (11). Fix v ∈ K . Thus, there is a positive integer N such that for all
n ≥ N , v ∈ Kn. Using now Theorem 3.1 we find that for all n ≥ N ,∫

Ω

∇un · ∇(v − un)dx+
∫
Ω

f (x, un)(v − un)dx+ J0(un; v − un) ≥ 0. (16)

Next, since un ⇀ u, we obtain∫
Ω

f (x, u)(v − u)dx = lim
n→∞

∫
Ω

f (x, un)(v − un)dx, (17)

J0(u; v − u) ≥ lim sup
n→∞

J0(un; v − un) (18)

and ∫
Ω

∇u · ∇(u− v)dx ≤ lim inf
n→∞

∫
Ω

∇un · ∇(un − v)dx;

hence ∫
Ω

∇u · ∇(v − u)dx ≥ lim sup
n→∞

∫
Ω

∇un · ∇(v − un)dx. (19)

Using now relations (17)–(19) and passing at ‘‘lim sup’’ in (16) we conclude that u solves problem (11), so u is a solution
of (4). This completes the proof of Theorem 2.1. �
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