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ARTICLE INFO ABSTRACT

In this paper, we are interested in the existence of infinitely many weak solutions for

Communicated by S. Carl a non-homogeneous eigenvalue Dirichlet problem. By using variational methods, in an

appropriate Orlicz-Sobolev setting, we determine intervals of parameters such that our

problem admits either a sequence of non-negative weak solutions strongly converging to

zero provided that the non-linearity has a suitable behaviour at zero or an unbounded
sequence of non-negative weak solutions if a similar behaviour occurs at infinity.
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1. Introduction

Classical Sobolev and Orlicz-Sobolev spaces play a significant role in many fields of mathematics, such as approximation
theory, partial differential equations, calculus of variations, non-linear potential theory, the theory of quasiconformal
mappings, non-Newtonian fluids, image processing, differential geometry, geometric function theory, and probability
theory.

In this framework, we study in the present paper the non-homogeneous Dirichlet problem

—div(a(|Vu|)Vu) = Ah(x)f (u) in 2 i
Ulpe =0, Dy,
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where £2 is a bounded domain in R¥ (N > 3) with smooth boundary 352, whilef : R — Rand h : 2 — [0, 400 are
continuous functions, A is a positive parameter and « : (0, o0) — R is such that the mapping ¢ : R — R defined by

_Ja(tht, fort#0
p(t) = {0, fort =0,

is an odd, strictly increasing homeomorphism from R onto R.

Precisely, the main goal is to establish the existence of a precise interval of positive parameters A such that problem
(D{x”’;) admits either a sequence of non-negative weak solutions strongly converging to zero provided that the non-linearity
has a suitable behaviour at zero or an unbounded sequence of non-negative weak solutions if a similar behaviour occurs
at infinity. The interest in analysing this kind of problems is motivated by some recent advances in the study of eigenvalue
problems involving non-homogeneous operators in the divergence form; see, for instance, the papers [1-12].

The study of nonlinear elliptic equations involving quasilinear homogeneous type operators is based on the theory of
Sobolev spaces W™P(£2) in order to find weak solutions. In the case of nonhomogeneous differential operators, the natural
setting for this approach is the use of Orlicz-Sobolev spaces. These spaces consist of functions that have weak derivatives and
satisfy certain integrability conditions. The basic idea is to replace the Lebesgue spaces [P (§2) by more general spaces Ly (£2),
called Orlicz spaces. The spaces Ly (§2) were thoroughly studied in the monograph by Kranosel’skii and Rutickii [13] and
also in the doctoral thesis of Luxemburg [ 14]. If the role played by L”(£2) in the definition of the Sobolev spaces W™P(£2) is
assigned instead to an Orlicz space Ly (£2) then the resulting space is denoted by W™Lg (£2) and it is called an Orlicz-Sobolev
space.

Many properties of Sobolev spaces have been extended to Orlicz-Sobolev spaces, mainly by Dankert [15], Donaldson and
Trudinger [16], and O’Neill [17] (see also [18] for an excellent account of those works). Orlicz-Sobolev spaces have been
used in the last decades to model various phenomena.

Chen et al.[19] proposed a framework for image restoration based on a variable exponent Laplacian. A second application
which uses variable exponent type Laplace operators is the modelling of some materials with inhomogeneities, for instance
electrorheological fluids (sometimes referred to as ‘smart fluids’), cf. [20-22,9,23]. Materials requiring such more advanced
theory have been studied experimentally since the middle of the last century. The first major discovery in electrorheological
fluids is due to Willis Winslow in 1949. These fluids have the interesting property that their viscosity depends on the electric
field in the fluid. Winslow noticed that in such fluids (for instance lithium polymethacrylate) viscosity in an electrical
field is inversely proportional to the strength of the field. The field induces string-like formations in the fluid, which are
parallel to the field. They can raise the viscosity by as much as five orders of magnitude. This phenomenon is known as
the Winslow effect. For a general account of the underlying physics consult Halsey [24] and for some technical applications
Pfeiffer et al. [25]. An overview of Orlicz-Sobolev spaces is given in the monographs by Rao and Ren [26].

The main tool in order to prove our multiplicity result is the following critical point theorem obtained in [27] that we
recall here in a convenient form; see also the variational principle of Ricceri [28].

Theorem 1.1 ([27, Theorem 2.1]). Let X be a reflexive real Banach space, let J,I : X — R be two Giteaux differentiable

functionals such that ] is strongly continuous, sequentially weakly lower semi-continuous and coercive and I is sequentially weakly
upper semi-continuous. For every r > infy J, put

( sup I(v)) —I(u)
ve]~1(]—o0,r[)

o) = inf ,
ueJ~1(J—o0,r]) r—Ju)
and
y = liminf@(r), 8 = liminf @(r).
r—+400 r—>(i)rgf])+
Therefore

(a) If y < +oo then, foreach A € ]0, %[ the following alternative holds:

either

(a1) g :=J] — Al possesses a global minimum,
or

(ap) thereis a sequence {u,} of critical points (local minima) of g, such that lim,_, o J(u,) = +0o0.

(b) If 8 < +oo then, for each A € |0, 3|, the following alternative holds:

either

(bq) there is a global minimum of | which is a local minimum of g;,
or

(by) there is a sequence {u,} of pairwise distinct critical points (local minima) of g, which weakly converges to a global
minimum of J, with lim,_, o, J(u,) = infy J.
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We point out that, by using the above theoretical result, in [29] it was proved the existence of a well determined open
interval of positive parameters for which a non-homogeneous Neumann problem admits infinitely many weak solutions in
WLy (£2), that strongly converges to zero; see also the paper [30].

In this paper, treating a non-homogeneous Dirichlet problem, our framework is more complicated. For instance, we
cannot use constant functions in some steps of our proof. We overcome this difficulty by using a suitable sequence of cut-off
maps belonging to W(}L(p (£2). In addition, through a careful analysis of the Young function associated to the operator in
divergence form, we prove that the solutions are non-negative.

As pointed out before, this paper is motivated by recent advances on existence results for elliptic problems involving
non-homogeneous quasilinear operators. In this respect, the results contained in the present paper can be related with
various contributions present in literature involving general operators in divergence form.

The nonlinear boundary value problem

—div(log(1 + |Vu(x)|)|Vu®)|P2Vu(x)) = f(u(x)), forx e 2
u(x) =0, forx € 02

was analysed by Mihdilescu and Radulescu in [10]. In their paper two cases has been considered, where either
f) = —=AuP?u+u?u, or f(u) = AulP~?u— |y,

withp,qg > 1,p+q < min{N,r},andr < (Np — N + p)/(N — p). In the first case the existence of infinitely many
weak solutions for any A > 0 is proved, while in the second case, the existence of a nontrivial weak solution is established,
provided that A is sufficiently large.

Previously, under appropriate conditions on the Young function @ associated to the non-homogeneous potential « and

requiring a suitable growth of f, the existence of nontrivial solutions for the problem (Dfa’ﬁ]l), which are of mountain pass
type, was obtained by Clément, Garcia-Huidobro, Manasevich and Schmitt in [1].
Moreover, let ¢ € 2 — R be a continuous function. In [7, Theorem 2], the following anisotropic problem

—div(a(|Vu®)|)Vu®)) = rux)|"“2u(x), forx e 2
u(x) =0, forx € 082

is investigated. More precisely, through variational arguments, sufficient conditions on « and g such that the above problem
admits continuous families of eigenvalues have been established.
We just mention that Omari and Zanolin [31], by using lower and super solutions method and requiring an oscillating

behaviour of the potential F(§) := fog f(t)dt at infinity, proved the existence of infinitely many solutions for a perturbed
Dirichlet problem involving a quasilinear elliptic second order differential operator defined by

Au = div(a(|Vu|*) Vu),
where a : (0, +00) — (0, +00) is a map of class C! satisfies the following ellipticity and growth conditions of Leray-Lions
type:
(LL) There are constants y, I' > 0,k € [0, 1] and p € (1, 4+00) such that, for every t > 0,
Y+ P2 <a(t®) < Ik + P72,

and
(J/ - %)a(t) <d ()t < La(t).

More precisely, Omari and Zanolin require that

— 00 < liminf F©) <0, and limsup @ =
gl>o0 A(§2) gl—oc0 A(E?)

where A(£) = fo'é a(t)dt, for every £ € RY.

The class of quasilinear differential operators 4 considered in the cited work includes in particular the p-Laplacian
operator Ap, with 1 < p < oo, corresponding to a(t) := tP/2=1 for every t €]0, +oo[. Further, in [32], for p-Laplacian
equations, the existence of infinitely many solutions, has been studied requiring the following hypothesis on F at zero:

F F
lim infE =0, and limsup g = +4o00. (02)

g0t &P £0t

+00, (ha)

A careful analysis between our approach, for equations involving the p-Laplacian with Dirichlet boundary condition, and
the above cited result can be found in [33].
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It is easy to see that no results from [31] can be applied for a class of elliptic problems whose prototype is

di Mv — Af(u) in
—\ e v VY =M@ in o)
ulpe =0,

wherep > N + 1; see Remark 4.2.

The plan of the paper is as follows. In Section 2 we introduce our notation and the abstract Orlicz-Sobolev spaces setting.
Section 3 is devoted to main theorem and finally, in Section 4, as application, we prove that, for every A > 0, there exists a
sequence of pairwise distinct non-negative solutions for the problem (D’;) that strongly converges to zero in WOl Ly (£2); see
Theorem 4.1.

We cite the very recent monograph by Kristaly et al. [34] as general reference on this subject.

2. Orlicz-Sobolev spaces setting

A complete description regarding the development of variable exponent function spaces, based on a rich bibliography,
can be found in the recent monograph by Diening et al. [35].

This section summarizes those aspects of the theory of Orlicz-Sobolev spaces that will be used in the present paper.
This function spaces provide an appropriate venue for the analysis of quasilinear elliptic partial differential equations with
rapidly or slowly growing principal parts.

Variable exponent function spaces had already appeared in the literature for the first time in a article by Orlicz [36]. In
the 1950s, this study was carried on by Nakano [37], who made the first systematic study of spaces with variable exponent
(called modular spaces). Nakano explicitly mentioned variable exponent Lebesgue spaces as an example of more general
spaces he considered, see [37, p. 284]. Later, the Polish mathematicians investigated the modular function spaces (e.g. [38]).

Set

t t
D(t) = / @(s)ds, D*(t) = / ¢ '(s)ds, forallt € R.
0 0

We observe that @ is a Young function, that is, @ (0) = 0, @ is convex, and
tll)rgo d(t) = +o0.
Furthermore, since @ (t) = Oif and only ift = 0,
iy %2 =0 and i 52 400
then @ is called an N-function. The function @* is called the complementary function of @ and it satisfies
®*(t) = sup{st — &(s); s > 0}, forallt > 0.
We observe that @* is also an N-function and the following Young’s inequality holds true:
st < d(s) + ®*(t), foralls,t > 0.
Assume that @ satisfying the following structural hypotheses

to(t) 0. to(t) )
20 <p’ = stlig 20 < +00; (Do)

1 < liminf
t—o0

to(t) — liminf log(cb(t))' (®1)
d(t) t—oo  log(t)

The Orlicz space Ly (£2) defined by the N-function @ (see for instance [18,1]) is the space of measurable functionsu : 2 — R
such that

lullL, := sup {/ u(x)v(x)dx;/ D™ (Jv(x)dx < 1} < 400.
2 o)

N <mi= i

Then (Ly ($2), || - ||z, ) is @ Banach space whose norm is equivalent to the Luxemburg norm

lulle == inf{k > 0; / o) (ﬁ) dx < 1} )
Q k

For Orlicz spaces the Holder’s inequality reads as follows (see [26, Inequality 4, p. 79]):

/ uvdx < 2|[ullr, v, forallu € Ly(£2) and v € Lo»(£2).
@
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We denote by WL (£2) the corresponding Orlicz-Sobolev space for problem (Df hk) defined by

9
WLy (82) = {u € Lo (2): % € Lo(2). i= 1, N} .

This is a Banach space with respect to the norm
lulle = IVulle + llulle.

We refer to [18,1] for proofs and related results.
Following [18] we will define W01L¢(.Q) as the closure of C{°(£2) in W1Ls (£2), which is also reflexive under

assumption (®o). Also, from Lemma 5.7 in [39] we obtain that W, Ly (£2) may be (equivalently) renormed by using as norm
lull == IVulle,

foreveryu € W(}Lq) (£2); see also [1].

These spaces generalize the usual spaces [ (£2) and WP (£2), in which the role played by the convex mapping t > |t[?/p
is assumed by a more general convex function @ (t).
We recall the following result.

Lemma 2.1. Let u € W, Ly (£2). Then

/Q<P(|VU(X)|)dX < ful, if Jul <1 (1)

/pr(IVU(X)I)dX > flull”, i llull > 1; (2)
and

/Q@(IVU(X)I)dX > [lull®, i full < 1: (3)

/;qj(IVu(X)I)dX < [ull”,if flull > 1. (4)

For the proof of the previous result see, for instance, Lemma 1 of [40] and Lemma C.9 in [2].
Moreover, we say thatu € W(}Lq; (£2) is a weak solution for problem (D';’,’j\) if

/ a(|Vu®)))Vu(x) - Vu(x)dx = A/ h(x)f (u(x))v(x)dx,
2 2

for every v € WjLe (£2).
Finally, the following remarks will be useful in the sequel.

Remark 2.1. Letu € W01L¢(.Q) and assume that ||u|| = 1. Then

/ D (|Vulx)|)dx = 1. (5)
2

Indeed, in our hypothesis, there exists a sequence {u,} C WO]LQD (£2) such that u, — uin W01L¢, (£2) and ||u,|| > 1 for every
n € N. For instance, one can take u, := %u. Now, from (2) and (4) in Lemma 2.1, the following inequality holds

0
[l [P0 S/ D (|Vup (0)])dx < |lun|”.
2
Then
lim & (|Vu,(x)|)dx = 1.
n—oo Q
Finally, the thesis is achieved taking into account that
lim / D (|Vu,(x))dx = f @ (|Vu(x)|)dx,
n—oo Q I?)

from the continuity of the map u — [, @(|Vu(x)|)dx.
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Remark 2.2. We just point out that Lemma 2.1 and Remark 2.1 ensure that for every u € W01L¢ (£2) such that, for some
O0<r<l,

/ 2 (|Vudx <, (6)
2

it follows that ||u]| < 1; see, for instance, the recent paper [41] for a direct proof involving some properties of the Young
function. Moreover

1/po 1/p°
[ull < max { (/ 45(|Vu(x)|)dx> : (/ CD(IVU(X)I)dX) } , (7)
2 2

for every u € WjLe (£2).
Finally, let {u,} C W(} Ly (£2). A straightforward computation shows that if

/ @ (|Vu,(x)|)dx — +oo, then |u,|| — +o0. (8)
2

3. Main results

From hypothesis (@), by Lemma D.2 in [ 1] it follows that WL, (§2) is continuously embedded in W1-P0 (£2). On the other
hand, since we assume py > N, we deduce that WS "P0(§2) is compactly embedded in C°($2).
Thus, W, Le (£2) is compactly embedded in C°($2) and there exists a constant ¢ > 0 such that

lulloo < c llull, Yu e WyLe(£2), (9)

where [[u]|oo = Supycz [uX)|.
The aim of the paper is to prove the following result concerning the existence of infinitely many weak solutions of the
problem (Dfa’f}).

Theorem 3.1. Let f : R — R be a non-negative continuous function. Assume that

F(&)

. ) .
liminf < 400 and limsup — = +o0. h
g0t gP° g—>0+p §ro (ho)

Suppose h : 2 — [0, +00) is a continuous and non-identically zero continuous function. Then, for every

1

" |1 0 liminf B |
Il tim inf 5

there exists a sequence {v,} of pairwise distinct non-negative weak solutions of problem (Dg’ﬁ) such that lim,_ ||vnll =
lim;_, o [Vl = 0.

Proof. Let us consider the truncated problem
—div(e(|Vu))Vu) = Ah)f* (1) in £2 pfh
o — Dy )
ulpe =0,
where
wpy . )0 ift €]0, +oo]
NOES {0 otherwise .

Since, from our assumptions, f(0) = O it follows that f* € C°(R, R). We will prove that problem (D(f;’)\h) admits a

sequence of weak solutions that strongly converges to zero. Set X := W(}qu (£2). Hypothesis (@) is equivalent with the fact
that @ and @* both satisfy the A,-condition (at infinity), see [18, p. 232] and [1]. In particular, both (@, £2) and (®*, §2)
are A-regular, see [18, p. 232]. Consequently, the spaces Ly (£2) and WLy (£2) are separable, reflexive Banach spaces, see
[18, p. 241 and p. 247]. Now, define the functionals J,I : X — R by

](u):/ @ (|Vu(x)|)dx and I(u):/ h(x)F (u(x))dx,
2 2
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where F(§) = fo‘{’: f*(t)dt for every & € R and put
&) =J) — Al(u), ueX.

The functionals | and I satisfy the regularity assumptions of Theorem 1.1. Indeed, similar arguments as those used in [4,
Lemma 3.4] and [1, Lemma 2.1] imply that J, I € C'(X, R) with the derivatives given by

J'@W,v) =/ a(|Vu@))Vu(x) - Vo(x)dx,
2

(I'w), v) =/ hX)f* (u(x))v(x)dx,
2

forany u, v € X.

Moreover, since @ is convey, it follows that ] is a convex functional, hence ] is sequentially weakly lower semi-continuous.
Finally we observe that ] is a coercive functional. Indeed, by formula (2) of Lemma 2.1, we have J (u) > |u|?° foreveryu € X
with |u|| > 1. On the other hand, since X is compactly embedded into C°(£2) then the operator I’ : X — X* is compact.
Consequently, the functional I : X — R is sequentially weakly (upper) continuous, see [42, Corollary 41.9]. Let us observe
thatu € X isaweak solution of problem (Df ”hl) ifuisacritical point of the functional g; . Hence, we can seek for weak solutions

o

of problem (Df”’:\) by applying part (b) of Theorem 1.1. Now, let {c,} C]O0, oo[ be a sequence such that lim,_, ., ¢; = 0 and

o

. Flm) . _F(§)
lim = liminf —-.
n—o00 Cﬁ £>0t gP

Putr, = (%”)po for every n € N. Then, by inequality (7), it follows that

v e WlLo(2) :J(v) <1} C {v € WlLo(2) : |Jv]| < max{r)/P, r,}/PO}} .
On the other hand, since r, < 1, we have

max{r/Po, rnl/po} = r,}/po,
and

fvewilo@ : ol <1’} = v e WiLo(@) < vl < CC—”}

Moreover, due to (9), we have

W@ < vl < cllvll < ca, Vxe 2.

Hence

n

C
{vewiLo@): 1ol < 2} < {v e WiLo (@)t IVl = )

Set ug(x) = O for every x € £2. Taking into account that J (ug) = (1) = 0, we deduce that

sup [, h(X)F(v(x))dx — [, h(x)F (u(x))dx

~ . J()<m
r,) = inf
¢ (1) Jw<ry r—J(u)
oyt Ja MOOF 0 A
< o < ( / h(x)dx) Bz
T'n 2 Tn
F(cy) 0 F(cp)
= lIhllp)—— = Il @) —s-
n Cﬁ
Therefore, since
F
liminf (50) < 400,
£E—0t Sp
we have

F)

&

§ < liminf@(r,) < cp0||h||L1(_Q) lim inf < 400.
n—00 £—07t
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Now, take

1

F(S)

We show in what follows that 0, which is the unique global minimum of J, is not a local minimum of g,. Let D C £2 be
a compact set of positive Lebesgue measure such that h(x) > 0 for every x € D. Consider a cut-off function § € C§°(£2)

(so b € W(}LQD(S?)) such that D C Supp(f) C £2,0 < 6(x) < 1foreveryx € £2 and 8|p = 1. Bearing in mind that
F(§)

limsup — = +o0,
£—0t %-p

there exists a sequence {&,} in |0, p[ such that lim,_, ., & = 0 and

lim F&En) = +00. (10)

n—00 é:’go

Consider the sequence of functions {£,0} C W01L¢ (£2). Clearly ||£,0|| — 0and

g1.(&n0) =J(&:0) — ?»F(Sn)/h(x)dx - )»/ h(OF (€:6 (x))dx.
D

2\D

Now, bearing in mind (1) of Lemma 2.1, it follows that
J(6n0) =/ D (& VOX))dx < [|E0]P0 = [|0]P°&7°. (11)
Q2
Moreover, since h(x)F (£,6(x)) > 0 for every x € £2, we obtain

8.(&:0) < llo]Pgr — ?»F(Sn)/h(x)dx,
D

for every n big enough. Thus
5] (SnO)

< lojP — & (5") / hoodx, V> v,

for some v € N.
Owing to fD h(x)dx > 0, where meas(D) > 0, from (10) and taking into account the above inequality, we obtain

lim 8.n0)
im =

n—00 gpo

Thus, g; (€,60) < 0 definitively. Since g; (0) = J(0) — AI(0) = 0, this means that 0 is not a local minimum of g;. Then, owing
toJ has 0 as unique global minimum, Theorem 1.1 ensures the existence of a sequence {v,} of pairwise distinct critical points
of the functional g, (so a sequence of weak solution of the truncated problem) such that

0< lim fva|”° < lim f @ (|Vua(x)])dx = 0.
n—-oo n—oo Q

We deduce that lim,_, o, ||vs|| = 0. Moreover, by (9), it follows that limy_, ||vs]loc = O. Finally, we prove here that the
attained solutions are non-negative, in particular they are (non-negative) weak solutions of our initial problem. Hence, let

Vg € W Ly (£2) be one (non-trivial) weak solution of the truncated problem (Df ). Arguing by contradiction, if we assume
that vg is negative at a point of £2 the set

={x e 2 :vy(x) < 0},

is non-empty and open. Moreover, let us consider v} := min{vo, 0}. From either [5] or [1], we deduce that vj € W(}L4> (£2)
and

Vol (%) |Vv0(x)| for x such that vp(x) < 0
V()| = for x such that vy(x) > 0.

Then, since

/ a(|Vue(x)) Ve (x) - Vv(x)dxz)»[ hX)f* (vo(x))v(x)dx,
2 2
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forevery v € W01L¢ (£2), by setting v = vy it follows that

/_ a([Vug(x)) Vg (x) - Vg (x)dx = )»/ hX)f* (vo (%)) vg (x)dx.

Therefore

f (Vi DIVUs 0 Pdx = 0,
which means

/ (IVug(x))[Vug(x)|dx = 0.

Now, from the previous relation and bearing in mind that t¢(t) > @(t) for every t € R, we find that

](vS):/ ¢(|Vv5(x)|)dx=/ D (|Vyg(x))dx = 0. (12)
2 2~

Moreover, it follows from [20] that, since @ satisfies a global A,-condition, there exists a best positive constant A; such that

A / & ((u(0)dx < / & (IVu() ) ds, (13)
2 2
foreveryu e W(}Lq, (£2). Finally, from (12) and (13) we obtain that

/ @ (Jug (x))dx = 0,

that is vj(x) = 0in £27, an absurd. Hence vy is non-negative in £2, which proves the claim. Since in this case f*(vp(x)) =
f(vo(x)) for every x € £2, it follows that vy is also a nontrivial weak solution to (Df ’j\ ). The proof is complete. 0O

o

Remark 3.1. A concrete construction of a cut-off function # € (§°(£2) that appears in the proof of the above result can be

given in the following standard way. Now, since h is a continuous and non-identically zero function in £2, there exist T > 0
and xo € §2 such that B(xo, ) C §2 and hl, ./») > 0. Consider the function w : R — R given by

—1/s2 .
. Je ifs>0
o(s) = {o ifs < 0.
Further, set v : R — R with
Y(s) = w (s — %) w(t —9),
and define the map ¢ : R — R such that
[ vt
[ w(tdt
We observe that w, ¥, ¢ € C*°(R) and

c(s) =0 ifs<t/2, c(s)=1 ifs>r,
c(s) €]0, 1[ ifs €]t/2, 7[.

Finally, let

s(s):

0 ifx € 2\ B(xg, 7)
0(x) == g(%t - |x—x0|) if x € B(xo, ) \ B(X0, T/2)
1 ifx € B(xp, 7/2),

where | - | denotes the Euclidean distance. _
Bearing in mind the properties of the function ¢, we deduce that 8 € C§°(£2) (so 6 € Wo]L<1> (£2)), B(xp,7/2) C
Supp(0),0 < 6(x) < 1foreveryx € §2 and 0|, .2y = 1.

By the same method, applying part (a) instead of part (b) of Theorem 1.1, it is possible to prove the following result that
involves a non-linear term f: R — R with an oscillating behaviour at infinity obtaining, in this case, a sequence {v,} of weak

solutions of problem (DZ’.hA) such that lim,,_, o ||vy]| = o0.
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Theorem 3.2. Let f : R — R be a non-negative continuous function with f (0) = 0. Assume that

o . F(§)
lslgugof o < 400 and lérgigop 0 = +o00. (hso)

Suppose h : 2 — [0, 4+00) is a continuous and non-identically zero continuous function. Then, for every

1

" cho|lh lim inf
1Al 2 lim inf

F@©)
£90

there exists a sequence {v,} of non-negative weak solutions to problem ( Dfx"’i) such that limy_ « ||vn|| = 400.

Proof. The strategy of the proof is similar to the previous one. Hence, in the sequel, we omit the details and we use the
notations adopted in the proof Theorem 3.1. Then, from hypothesis

F
lim inf@ < 400,
gE—>+o0 EPo

by direct computations, it follows that y := liminf,_, ;. ¢(r) < +00. On the other hand, by

F
lim sup (50) = +00,
&E—+o0 4

there exists a sequence {n,} of positive constants such that lim,_, ., 7, = +00 and

F
lim ("('j) = +00. (14)
n—oo p
Mn

Now, consider the sequence of functions {n,0} C W01L¢ (£2). Arguing as in Theorem 3.1, we obtain

i &, (nnv)
m =

n—o00 D
n

—00. (15)

Indeed ||n,0|| — +o0 and

8. (6) = J(10) — AF (o) / h(dx — / RGOF (16 (X))dx.
D 2

\D

Again, thanks to Lemma 2.1, it follows that
_ p0 _ 0 pO
Jm0) = [ @M VOX)Ddx < [ImO1° = 161l 5 -
2
Moreover, since h(x)F (7,0 (x)) > 0 for every x € £2, we deduce that

2.(m0) < 1017 2" — AF () / h(x)dx,
D

for every n big enough. Hence

119 F n
£.010) g0 — 5, ) / h(x)dx, Vn>v,
nh nh /o

for some v € N. So, condition (15) is fulfilled.
Hence, the functional g; is unbounded from below. Then, part (a) of Theorem 1.1 ensures the existence of a sequence
{v,} of distinct critical points of g; such that

lim J(vy) = lim / @ (|V, (X)) dx = +00.
n—oo n—-oo Q

In conclusion, by (8) in Remark 2.2, it follows that lim,_, , ||vs]| = +00. Moreover, arguing as in the proof of Theorem 3.1,
the attained solutions are non-negative. [
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Remark 3.2. We explicitly observe that, exploiting the proof of Theorem 3.1, our result also holds for sign-changing
functions f : R — R just requiring that

max F(t
CF® .l FO F®
—00 < liminf , liminf ——5—— < +00 and limsup = 400
g0t &P g0t P g0t &P

instead of condition (hg). In this setting, for every

1
A e |0,

: P |
cP||h|[;1 oy liminf S5
Al () P ey

there exist a sequence {v,} of pairwise distinct non-negative weak solutions of problem (DQ”hA) such that lim,_, o ||vn]| =
lim;_, » ||vnllco = O. Indeed, by using the same notations of Theorem 3.1, if

max F(t)
.. tel-¢,
lim 1nf% < +o00,
§~>0Jr ;;:P

direct computations ensure that § < +o00. On the other hand, consider the sequence of functions {1,0} C Wo1 Ly ($2). Thanks
to

.. F(§)
—00 < liminf ,
£>0F %‘PO
there exists p > 0 and a real constant o such that % > o for every & €]0, p[. It follows that

F(§) = 0§™, forevery§ € [0, pl. (16)

From condition (11) and (16), bearing in mind that h > 0in £2, there exists v € N such that

8.(8q0) < [0]I7&r° — )»F(fn)/h(x)dx - )»9550/ h(x)0™ (x)dx, Vn > v.
D 2\D

Thus
g)\(%;e) < |16|P° — )\Lfg) / h(x)dx — )\Q/ h(x)0P° (x)dx,
! & Jb 2\D

for every n > v. Again, since fD h(x)dx > 0, where meas(D) > 0, from (16) and taking into account the above inequality,
we deduce that

fo G0

im =—

n—00 gﬁo

Thus, g, (£€,0) < 0 definitively. The thesis is achieved from our theoretical result.

An analogous conclusion can be achieved if the potential F has the same behaviour at infinity instead of the origin
obtaining, in this case, the existence of a sequence of weak solutions which is unbounded in W01L¢ (£2). Indeed, with the
notations of Theorem 3.2, if

max F(t
te[—§.§] ®

liminf ——— < 400,
£—+400 %‘PO

direct computations ensure that y < 4-o0. On the other hand, consider the sequence of functions {n,0} C W(}Lq) (£2).

Bearing in mind that liminfe_, ; % > —00, there exist o > 0 and a real constant k such that

F(g) > k&?,  for every £ €]o, +00. (17)

Moreover, we have
0 0
&.(m0) < nh [10]1P —kF(nn)/h(X)dX—)»/ h(x)F (.0 (x))dx,
D 2\D

for every n large enough.
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Hence

g (m6) = 1 1017 — AF(ny) / h(dx — A / RGOF (10 (X))dx — A f hOOF (16 () .
D G

0N($2\D) GeN(£2\D)
where
Go ={xeR2:0<n0kx) <o} and G°:={x e 2 :n,0(x) > o}.

Now, by using the mean value theorem, we obtain

< lIhllcmeas(2) max If()le. (18)

| heoraowds
GoN(£2\D)
Then, inequalities (17) and (18) yield
&.(m6) < 161" — AF () / hGodx + Alhllcmeas($2) max If (1)l — Akn?, / h(x)6” ()dx,
D @ Q

\D

for every n sufficiently large.
From (14) and the above inequality, we have

i &.(1n0)
m =

n— 00 p
n

Thus g, is unbounded from below. The proof is attained from part (a) of our theoretical result. In conclusion, for every

1
e o T
P te[-¢&,
Pl e lslgn;gong

there exists a sequence {v,} of weak solutions of problem (Df ”’j\) which is unbounded in W(}L(p (£2).If, in addition f (0) = O,

o

the attained solutions are non-negative arguing as in the proof of Theorem 3.1.

4. Consequences and examples

Define
Is|P~2
o(s) = ms fors # 0, and ¢(0) = 0,
wherep > N4 1. Let @(¢) == fot ©(s) ds and consider the space W(}Lq, (£2). By [2, Example 3, p. 243] we have
pO:p_1<p0:p:litnl£f%'
Thus, conditions (&) and (@) are verified. From the above observations, by using Theorem 3.1, the following result holds.

Theorem 4.1. Let p > N + 1and f : R — R be a continuous non-negative function with potential F (§) := fogf(t) dt.
Assume that

F F
lim inf@ =0 and limsup ©) = +4o00. (hg)
g0+ EP oot §P7
Then, for each A > 0, the problem
v vup g ) =M@ in 2
—div| ———————Vu) = Af(u) in
log(1 + [Vul) )
ulpe =0,

admits a sequence {v,} of pairwise distinct non-negative weak solutions of problem (Di) such that lim,_ o ||lvpll =
limp o0 [[Vnllec = 0.
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Remark 4.1. From Theorem 3.2, by using the following condition

F F
lim infﬁ =0 and limsup @ = +00, (h2,)
g—>+oo EP1 £—>+00

instead of (hg), in Theorem 4.1, our approach ensures a sequence {v,} of weak solutions to problem (Dg) such that
lim,,_, o ||vn || = co. If, in addition, we have f (0) = 0, the attained solutions are non-negative.

A concrete example of application of Theorem 4.1 is given as follows.
Example 4.1. Let {s,,}, {t,} and {5, } be sequences defined by
spi=277, ty = 272", 8y = 27,
and consider v € N such that
Snr1 <th <Sp—&n, VYn>v.

Moreover, fixp > N + 1and let f : R — R be the non-decreasing continuous function given by

27~ ift €]s, — 8, +oof
y(t) ift € JIsnt1 — ns1, Snpal
f@t) = i
2700 if e | snrr. 50— 8l
n>v
0 ift <0,
where
Y(E) = (2707 = G-Dmy (t — Sn1 T+ 3n+1) 4 9= (=D,
St

SetF(§) := fosf(t) dt for every & € R. Therefore
F(sn) < f(5n+1)$n +f(5n)8n

s~ sh ’
and
F(tn) - f(5n+1)(tn - 5n+1)
et T t2! ’
for every n large enough.
Owing to
. f(snt1)sn + f(Sn)dn . fsn) (= Sng1)
lim =0, lim = 400,
n—00 slr’l n—00 tll_l”l

it follows that

F F(t,
lim (n) =0, lim (&) = 400

p—
n—oo n n—oo tn

Hence, condition (hg ) holds and, thanks to Theorem 4.1, for each A > 0, the following Dirichlet problem

—div MVu =Af(u) in$2
log(1+ vu) )~ (D))
ulpe =0,

admits a sequence of pairwise distinct non-negative weak solutions which strongly converges to zero in W(} Ly (£2).

Remark 4.2. The differential operators studied in this work do not necessarily satisfy Leray-Lions type conditions. For
instance, we observe that the map a : (0, +00) — (0, +00) defined by

£3/2

“O = e+ VD
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does not satisfy condition (LL). Thus, if £2 is a bounded domain of R?, the result contained in [31] cannot be applied in order
to study the existence of infinitely many solutions for elliptic Dirichlet problems involving the operator

. |Vul?
AU = div| ———Vu .
log(1 + [Vul)

In the next example we argue the existence of infinitely many non-negative solutions for a non-homogeneous Dirichlet
problem involving a sign-changing function f : R — R whose potential F has a suitable growth at infinity.

Example 4.2. Let 2 be a nonempty bounded subset of the Euclidean plane R> and let @ be a Young function such that
conditions (®g) and (®;) hold for py = 4 and p® = 5. Moreover, put

a; =2, anyq = n!(an)% + 2,

foreveryn > 1.Further,setS := |J,y]@nt1— 1, Gnp1 +1[and S" := J,- ;[an + 1, ani1 — 1]. Define the continuous function
f : R — Ras follows B

(a”_‘_l)ﬁe(t—(an+1—1))](t—(an+1+1))Jrl z(a”‘H -9 iftesS
(t = (ans1 — D)2(t — (Gpy1 + 1))?
5 1 4
fO =1 (o) T G (4, 4 0,00 — 20 ,
— ifteS
(@ + 1= 2@y — 1 1)2
0 otherwise.
By straightforward computation we obtain
6 1 +1 .
(apy1)®e E @1 DE G +D) ifees
§ 5 1 4
e :/0 A (anHzJ) e T VEG D ey 112?  fg € 5
0 otherwise .
Since F(a,41) = (ay41)® for every n € N, it follows that
F(a
lim ( n+l) = 400
e lhyg
Hence
F
lim sup (f) = +00.
&—>+o0 3
Putting y, = a,41 — 1for every n € N, we obtain max <, F(§) = (a,)® for every n > 1. Now, since
max F (&)
. [§1=<yn
lim ———— =0,
n—oo yn
we deduce that
max F(t)
P 1153
liminf ———— = 0.
E—+o00 54
5
Finally, put &, := “*1* for every n > 1. Owing to F(&,) = — (M) , clearly
F
lim (5n) = -1
n—o00 %‘;
Consequently
lim infﬁ =-1
E—>+o0 £
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Thanks to Remark 3.2, our result guarantee that for each A > 0 and for every continuous and non-identically zero function
h: £ — [0, 400), the following problem

{—div(a(|Vu|)Vu) = Ah(X)f (u) in £ (DQ,’hA)

ulpe =0,
possesses a sequence of non-negative weak solutions which is unbounded in W(}qu (£2).

Remark 4.3. We just observe that the technical approach adopted here improves the existence results for elliptic Dirichlet
problems involving the p-Laplacian contained in [33]. Indeed, in the cited paper, the potential F is assumed to be non-
negative in [0, +00).
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