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Abstract. In this paper, we are concerned with a Kirchhoff problem in
the presence of a strongly-singular term perturbed by a discontinuous
nonlinearity of the Heaviside type in the setting of Orlicz–Sobolev space.
The presence of both strongly-singular and non-continuous terms brings
up difficulties in associating a differentiable functional to the problem
with finite energy in the whole space W 1,Φ

0 (Ω). To overcome this obstacle,

we establish an optimal condition for the existence of W 1,Φ
0 (Ω)-solutions

to a strongly-singular problem, which allows us to constrain the energy
functional to a subset of W 1,Φ

0 (Ω) in order to apply techniques of convex
analysis and generalized gradient in the sense of Clarke.
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1. Introduction

In this paper, we are concerned in presenting equivalent conditions for the
existence of three solutions for the quasilinear problem

(Qλ,μ)
{−M

(∫
Ω

Φ(|∇u|)dx
)
ΔΦu=μb(x)u−δ+λf(x, u) in Ω,

u > 0 in Ω, u=0 on ∂Ω,

which are linked to an optimal compatibility condition between (b, δ) for exis-
tence of solution to the strongly-singular problem

(S)
{−ΔΦu = b(x)u−δ in Ω,

u > 0 in Ω, u = 0 on ∂Ω
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with the boundary condition still in the sense of the trace.
Here, M : [0,∞) → [0,∞) is a continuous function, f : Ω × (0,∞) →

(0,∞) is of Heaviside type, 0 < b ∈ L1(Ω), δ > 1, λ, μ > 0 are real parame-
ters. Moreover, −ΔΦu = −div(a(|∇u|)∇u) stands for the Φ-Laplace operator,
where a : (0,∞) → (0,∞) is a C1-function that defines the increasing homeo-
morphism φ : R → R given by

φ(t) =
{

a(|t|)t if t �= 0,
0 if t = 0,

whose the associated N-function Φ : R → R is given by Φ(t) =
∫ |t|
0

φ(s)ds.
The issue about existence of three solutions for a suitable range of pa-

rameters λ, μ > 0, for particular forms of Problem (Qλ,μ), has been considered
in the literature recently, principally in the context of non-singular problems
(δ < 0) and in the case in which f is continuous, see for instance [3,11,30,33]
and references therein. There are few works for singular nonlinearities, we
quote for example [12,13,33] who considered Φ(t) = |t|p/p, t > 0, 1 < p < ∞
and M ≡ 1 in (Qλ,μ). We also refer to [21,24,26] on recent developments to
the study of local or nonlocal problems with nonstandard growth.

In [33], a singular problem for low dimensions was studied, while in [12]
and [13] a singular problem for high dimensions was treated, but in both cases
f has been considered a Carathéodory function with suitable assumptions.
More specifically, in [13], the singular perturbation was considered in the weak
sense (0 < δ < 1), while in [12] they permitted δ > 1 by balancing the size of
this δ with the existence of a 0 < u ∈ C1

0 (Ω) such that the product bu−δ in
L(p∗)′

(Ω).
In this paper, we establish an optimal condition to the relationship be-

tween the power δ > 1 and the potential b(x) > 0 to existence of three solutions
to the singular problem (Qλ,μ), independent of the dimension N , in the pres-
ence of both a discontinuous nonlinearity of the Heaviside type and a non-local
term. More precisely, we prove how the existence of three solutions to (Qλ,μ)
is associated to the existence of solutions still in W 1,Φ

0 (Ω) to the problem (S).
Our approach is based on the existence of positive solution to the problem (S),
which provides a non-empty effective domain for the energy functional associ-
ated to (Qλ,μ) and enable us to apply techniques of the generalized gradient
in Clarke sense to get a multiplicity result.

Besides this, we prove qualitative results about these three solutions. We
highlight how the non-local term M should be to the discontinuity of the
function f be effectively attained by the solutions and how the level set of
these solutions behaves exactly at the discontinuity point of f . To our knowl-
edge, both the results of equivalent conditions and qualitative information on
solutions are new in literature.

As our main results will be obtained via variational methods, we need to
introduce the energy functional associated to Problem (Qλ,μ). To do this, let
us denote by W 1,Φ

0 (Ω) the Orlicz–Sobolev space associated to Φ and extend
the function f to R as f(x, t) = 0 a.e in Ω and for all t ≤ 0. From these, the
functional naturally associated to (Qλ,μ) is I : W 1,Φ

0 (Ω) → R ∪ {∞} defined
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by

I(u) = M̂

(∫
Ω

Φ(|∇u|)dx

)
− λ

∫
Ω

F (x, u)dx + μ

∫
Ω

G(x, u)dx,

where

M̂(t) =
∫ t

0

M(s)ds, F (x, t) :=
∫ t

0

f(x, s)ds

and G : Ω × R → (−∞,∞] is defined by

G(x, t) =

{
−b(x)t1−δ

1−δ for x ∈ Ω and t > 0,

+∞ for x ∈ Ω and t ≤ 0.

To ease our future references, let us rewrite I as I = Ψ1 + μΨ2, where

Ψ1(u) = M̂

(∫
Ω

Φ(|∇u|)dx

)
− λ

∫
Ω

F (x, u)dx (1)

and

Ψ2(u) =
∫

Ω

G(x, u)dx. (2)

The main difficulty in treating strongly-singular problems consists in the
fact that the energy functional associated to the equation neither belongs to
C1, in the sense of Fréchet differentiability, nor is defined in the whole space
W 1,Φ

0 (Ω). In fact, when δ > 1 the functional Ψ2 may not be proper, i.e. it may
occur Ψ2(u) = ∞, for all u ∈ W 1,Φ

0 (Ω).
Another difficulty exploited in this work is the presence of a more general

quasilinear operator, which may be even nonhomogeneous. To deal with this
situation, we approach the problem (Qλ,μ) in Orlicz–Sobolev space setting.
Below, let us state the assumptions about Φ that we will assume throughout
this paper.

(φ0): a ∈ C1((0,∞), (0,∞)) and φ is an increasing odd homeomorphisms from
R onto R;

(φ1): 0 < a− := inft>0
tφ′(t)
φ(t) ≤ supt>0

tφ′(t)
φ(t) := a+ < ∞.

Let us denote by Φ∗ the function whose inverse is given by (Φ∗)−1(t) =∫ t

0
Φ−1(s)s−1−1/Nds, t > 0. In order to Φ∗ be a N-function, we need to require

∫ 1

0

Φ−1(s)s−1−1/Nds < ∞ and
∫ ∞

1

Φ−1(s)s−1−1/Nds = ∞.

In this case, Φ∗ is a N-function given by Φ∗(t) =
∫ |t|
0

φ∗(s)ds for some
increasing odd homeomorphisms φ∗ : R → R. About Φ∗, we will consider

(φ2): φ+ < φ∗
− := inft>0

tφ∗(t)
Φ∗(t) , where 1 < φ− := a− + 1 ≤ a+ + 1 := φ+.

As another consequence of (φ0) and (φ1), the Orlicz space LΦ(Ω) coin-
cides with the set (equivalence classes) of measurable functions u : Ω → R such
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that
∫
Ω

Φ(|u|)dx < ∞ and it is a Banach space endowed with the Luxemburg
norm

‖u‖Φ := inf
{

α > 0 :
∫

Ω

Φ
( |u(x)|

α

)
dx ≤ 1

}
.

Associated to the space LΦ(Ω), we can set the Orlicz–Sobolev space
W 1,Φ(Ω) by

W 1,Φ(Ω) =
{
u ∈ LΦ(Ω) : uxi

∈ LΦ(Ω), i = 1, · · · , N
}

and deduce that it is a Banach space with respect to the norm

‖u‖W 1,Φ = ‖u‖Φ + ‖∇u‖Φ.

The Orlicz–Sobolev space W 1,Φ
0 (Ω) is naturally defined as the closure of C∞

0 (Ω)
in W 1,Φ(Ω)-norm, under the hypothesis (φ1). For more information about the
Orlicz and Orlicz–Sobolev spaces, we refer [1,17,18].

About M , let us assume
(M): M(t) ≥ m0t

α−1 for all t ≥ 0 and for some α > 0 such that Φα ≺≺ Φ∗,
that is, limt→∞

Φα(τt)
Φ∗(t) = 0 for all τ > 0, where Φα(t) := Φ(tα).

To conclude our assumptions, let us suppose that f : Ω × (0,∞) −→ R
+

is a measurable function such that f(x, t) = 0 a.e. in Ω × (−∞, 0] and
(f0): f(x, ·) ∈ C (R − {ã}) for some ã > 0, −∞ < f(x, ã − 0) < f(x, ã + 0) <

∞, x ∈ Ω, where

f(x, ã − 0) := lim
s→ã−

f(x, s), f(x, ã + 0) := lim
s→ã+

f(x, s),

(f1): there exists an odd increasing homeomorphism h from R onto R and
nonnegative constants a1, a2 and a3 such that

|η| ≤ a1 + a2H̃
−1 ◦ H(a3|t|) for all η ∈ ∂F (x, t), t ∈ R and x ∈ Ω,

where H(t) =
∫ |t|
0

h(s)ds is a N-function satisfying Δ2 (H̃ is the its
complementary function) such that H ≺≺ Φ∗ and

th(t)
H(t)

≤ h+ for all t ≥ t0 with 1 < h+ ≤ φ∗
−
2

+ 1, (3)

for some t0 > 0,
(f2): limt→0+

supΩ F (x,t)

tαφ+
= 0,

(f3): limt→∞
supΩ F (x,t)

tαφ− = 0.
Before stating the main results, let us clarify what we mean by a solution

of (Qλ,μ).

Definition 1.1. A function u ∈ W 1,Φ
0 (Ω) is a solution to the problem (Qλ,μ) if

u > 0 a.e in Ω, bu−δϕ ∈ L1(Ω) and

M

(∫
Ω

Φ(|∇u|)dx

)∫
Ω

a(|∇u|)∇u∇ϕdx

=
∫

Ω

[
μ

b(x)
uδ

+ λf(x, u)
]

ϕdx for all ϕ ∈ W 1,Φ
0 (Ω).
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Under the hypothesis (f0), a solution 0 < u ∈ W 1,Φ
0 (Ω) of the problem

(Qλ,μ) has to satisfy∫
Ω

(
f(x, u(x) − 0) − f(x, u(x) + 0)

)
uχ{x∈Ω : u(x)=ã}(x)ϕdx

= 0 for all ϕ ∈ W 1,Φ
0 (Ω), (4)

where χ{x∈Ω : u(x)=ã} stands for the characteristic function of the set {x ∈
Ω : u(x) = ã}. Next, we state that (4) is satisfied, under additional assump-
tions on f and b, by showing that meas{x ∈ Ω : u(x) = ã} = 0, where meas
stands for the Lebesgue measure.

Theorem 1.1. Assume f satisfies (f0), (f1) and 0 < b ∈ L1(Ω) holds. If u ∈
W 1,Φ

0 (Ω) is such that:
(i) u is either a local minimum or a local maximum of I, then meas{x ∈

Ω : u(x) = ã} = 0,
(ii) u is a critical point of I and b ∈ L2

loc(Ω), then meas{x ∈ Ω : |∇u(x)| =
0} = 0. In particular, meas{x ∈ Ω : u(x) = c} = 0 for each c > 0.

Moreover, if u satisfies (i) or (ii) above, then:
(iii) u is a solution of Problem (Qλ,μ),
(iv) there exists C > 0 such that u(x) ≥ Cd(x) for x ∈ Ω, where d stands for

the distance function to the boundary ∂Ω,
(v) u solves (Qλ,μ) almost everywhere in Ω if in addition bd−δ ∈ LH̃(Ω).

Our main result on the multiplicity of solutions can be stated as follows.

Theorem 1.2. Assume δ > 1, b ∈ L1(Ω) ∩ L2
loc(Ω), (φ0) − (φ2), (f0) − (f3) and

(M) hold. Then, the below claims are equivalents:

(i) there exists 0 < u0 ∈ W 1,Φ
0 (Ω) such that

∫
Ω

bu1−δ
0 dx < ∞,

(ii) the problem (S) admits a (unique) weak solution u ∈ W 1,Φ
0 (Ω) such that

u(x) ≥ Cd(x) for x ∈ Ω for some C > 0 independent of u,
(iii) for each λ > λ∗, there exists μλ > 0 such that for μ ∈ (0, μλ], the problem

(Qλ,μ) admits at least three solutions, being two local minima and the
other one a mountain pass critical point of the functional I, where

λ∗ = inf

{
M̂
(∫

Ω
Φ(|∇u|))∫

Ω
F (x, u)dx

: u ∈ W 1,Φ
0 (Ω) and

∫
Ω

F (x, u)dx > 0

}
. (5)

Moreover, for each of such solutions the meas{x ∈ Ω : u(x) = ã} = 0. Besides
this, u solves (Qλ,μ) almost everywhere in Ω if in addition bd−δ ∈ LH̃(Ω) and
(iv) either M is non-decreasing and f(x, t) = f(x) for all 0 < t < 1 and a.e.

x ∈ Ω,
(v) or M is such that a Comparison Principle holds to Problem (Q0,μ) and

αφ− > 1,
then there exists ã� > 0 such that

meas{x ∈ Ω : u(x) > ã and u is a solution of (Qλ,μ)} > 0
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for each 0 < ã < ã� given.

Remark 1.1. About the above theorem, we still highlight the following facts:
(i) the equivalency between (i) and (ii) holds true without assuming b ∈

L2
loc(Ω),

(ii) each one of such solutions given by (iii) is such that u(x) ≥ Cd(x) for
x ∈ Ω, for some C > 0 dependent on u,

(iii) in particular, Theorem 1.2 shows that a perturbation by a Heaviside
function is enough to break the uniqueness of solution of the pure singular
problem (S) to produce at least three ones for the problem{−ΔΦu = μb(x)u−δ + λH(u − a) in Ω,

u > 0 in Ω, u = 0 on ∂Ω,

for appropriate parameters λ, μ > 0, where H stands for the Heaviside
function. This is new to literature of singular elliptic problems even to
Laplacian operator.

In [19], Lazer and McKenna has proven that problem (S) admits solution
still in H1

0 (Ω) if, and only if, δ < 3 when 0 < b0 ≤ b ∈ L∞(Ω) and Φ(t) = |t|2/2
in (S). Mohammed, in [25], considered Φ(t) = |t|p/p (p > 1) in (S) and proved
that the sharp power in this case is given by (2p−1)/(p−1). As a consequence
of Theorem 1.2, we are able to find a δq > 1 such that the problem (S)
still admits a solution in W 1,Φ

0 (Ω) for all δ < δq, where δq depends on the
summability Lq(Ω) of b. This is the content of the next corollary.

Corollary 1.1. Assume (φ0), (φ1) and (φ2) hold. If 0 < b ∈ Lq(Ω) for some
q > 1 and

1 < δ <
q(2φ+ − 1) − φ+

q(φ+ − 1)
:= δq,

then the problem (S) admits (unique) weak solution.

Although no answer about δq > 1 be the sharp power for the exis-
tence of solution still in W 1,Φ

0 (Ω) has been provided, we observe that δq →
(2φ+ − 1)/(φ+ − 1) as q → ∞ and this limit is the sharp value obtained both
by [19,25] for the cases Φ(t) = |t|2/2 and Φ(t) = |t|p/p (p > 1), respectively.

In particular, as a consequence of Theorem 1.2 and Corollary 1.1, we have
the following.

Corollary 1.2. Assume (φ0), (φ1), (φ2), (M) and (f0) − (f3) hold. If b ∈ Lq(Ω)
for some q > 1 and 1 < δ < δq, then for each λ > λ∗ given, there exists
μλ > 0 such that for μ ∈ (0, μλ] the problem (Qλ,μ) admits at least three weak
solutions with the same properties as those found in item−iii) in Theorem 1.2.

It is worth mentioning that the above theorems improve or complement
the related results in the literature both by the presence of the Kirchhoff term,
the summability assumption on the potential b, the strongly-singular term and
the non-homogeneity of the operator. Our results contribute to the literature
principally by:
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(i) Theorem 1.1 unify some results on Δp-Laplacian operator, with 1 < p <
∞, to Φ-Laplacian operator, see for instance [2,22].

(ii) Theorem 1.2 establishes necessary and sufficient conditions for existence
of multiple solutions for the problem (Qλ,μ), by connecting and extending
the principal result in Yijing [31] to a non-homogeneous operator;

(iii) Theorem 1.2 extends the principal result in Faraci et al. [12] and comple-
ments the main result in [13], principally by considering a non-homogeneous
operator, an optimal condition on the pair (b, δ) to existence of three so-
lutions, a discontinuity of the Heaviside type and including a Kirchhoff
term;

(iv) Corollary 1.1 gives us an explicit range of variation of δ, in which the
existence of solution in W 1,Φ

0 (Ω) for (S) is still guaranteed. In particular,
when Φ(t) = |t|p/p and b0 ≤ b(x) ∈ L∞(Ω) for some constant b0 > 0, the
value δq coincides with the sharp values obtained in [16,19];

(v) Corollary 1.2 complements the principal result in [12] by showing an
explicit variation to δ, where the multiplicity is still ensured, namely,

0 < δ <
p(N − 1)
N(p − 1)

= δ(p∗)′ ,

To ease the reading, from now on let us assume the assumptions (φ0),
(φ1), (φ2), (M) and gather below some functional that appear throughout the
paper.

• M̂(t) =
∫ t

0
M(s)ds, t ∈ R,

• Ψ1(u) = M̂
(∫

Ω
Φ(|∇u|)dx

)− λ
∫
Ω

F (x, u)dx,
• Ψ2(u) =

∫
Ω

G(x, u)dx,
• P(u) =

∫
Ω

Φ(|∇u|)dx,
• J(u) =

∫
Ω

Φ(|∇u|)dx + 1
δ−1

∫
Ω

b(x)|u|1−δdx,

• J1(u) :=
(
M̂ ◦ P

)
(u) = M̂

(∫
Ω

Φ(|∇u|)dx
)
,

• J2(u) =
∫
Ω

F (x, u)dx,
• I = Ψ1 + μΨ2 = J1 − λJ2 + μΨ2,

• − (M ◦ P) (·)ΔΦ(·) : W 1,Φ
0 (Ω) →

(
W 1,Φ

0 (Ω)
)′

is understood as

〈− (M ◦ P) (u)ΔΦu, ϕ〉 := (M ◦ P) (u)
∫

Ω

a(|∇u|)∇u∇ϕdx, ∀ ϕ ∈ W 1,Φ
0 (Ω).

This paper is organized as follows. In Sect. 2, we present some prelimi-
nary knowledge on the Orlicz–Sobolev spaces and some results of non-smooth
analysis related to our problem. The Sect. 3 is reserved to prove Theorem 1.1,
while in Sect. 4 we prove Theorem 1.2.

2. Non-smooth analysis for locally Lipschitz functional

In this section, we are going to remember some facts related to non-smooth
analysis. However, one of the principal contribution of this section is establish-
ing appropriated assumptions under the N-function Φ, the non-local term M
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and the discontinuous function f that make possible to approach (ii =⇒ iii),
in Theorem 1.2, via Ricceri’s multiplicity theorem [28].

Under our hypotheses and the decomposition of the functional I into Ψ1

plus Ψ2, that is,

I = Ψ1 + μΨ2, (6)

we have written I as a sum of a locally Lipschitz functional Ψ1 and a convex
one Ψ2 (see (1) and (2)). Below, let us recall few notations and results on the
Critical Point Theory for the functional Ψ1 and Ψ2. We refer the reader to
Carl, Le & Motreanu [4], Chang [5], Clarke [8] and references therein for more
details about this issue.

Let us begin by remembering that the generalized directional derivative
of Ψ1 at u ∈ W 1,Φ

0 (Ω) in the direction of v ∈ W 1,Φ
0 (Ω) is defined by

Ψ0
1(u; v) = lim sup

h→0 λ→0+

Ψ1(u + h + λv) − Ψ1(u + h)
λ

and the subdifferential of Ψ0
1(u; ·) at z ∈ W 1,Φ

0 (Ω) is given by

∂Ψ0
1(u; z) =

{
μ ∈

(
W 1,Φ

0 (Ω)
)′

: Ψ0
1(u; v) ≥ Ψ0

1(u; z)

+〈μ, v − z〉 for all v ∈ W 1,Φ
0 (Ω)

}
,

since Ψ0
1(u; ·) is a convex function. In particular, ∂Ψ0

1(u; 0) is named by the
generalized gradient of Ψ1 at u and denoted by ∂Ψ1(u).

About the functional Ψ2, its effective domain is defined by Dom(Ψ2) =
{u ∈ W 1,Φ

0 (Ω) : Ψ2(u) < ∞} and a point u ∈ Dom(Ψ2) is called a critical
point of the functional I if

Ψ0
1(u; v − u) + Ψ2(v) − Ψ2(u) ≥ 0, ∀ v ∈ W 1,Φ

0 (Ω).

In this context, we say that I satisfies the Palais-Smale condition (the
condition (PS) for short) if:

“{un} ⊂ W 1,Φ
0 (Ω) is such that I(un) → c and

Ψ0
1(un; v − un) + Ψ2(v) − Ψ2(un) ≥ −εn‖v − un‖, ∀ v ∈ W 1,Φ

0 (Ω),

where εn → 0+, then {un} possesses a convergent subsequence.”
In order to prove the next result, let us define the functionals

J1(u) := M̂(P(u)) and J2(u) :=
∫

Ω

F (x, u)dx,

where P is defined by

P(u) =
∫

Ω

Φ(|∇u|)dx.

It is well know that, under the hypotheses (φ0) and (φ1), the functional
P is sequentially weakly lower semicontinuous and C1 with

〈P ′(u), ϕ〉 =
∫

Ω

a(|∇u|)∇u∇ϕdx, ∀ ϕ ∈ W 1,Φ
0 (Ω).
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Moreover, P ′ : W 1,Φ
0 (Ω) → W−1,Φ̃

0 (Ω) is a strictly monotonic operator of the
type (S+). Thus, we can rewrite I as

I = Ψ1 + μΨ2 = J1 − λJ2 + μΨ2, (7)

where J1 is C1, J2 is locally Lipschitz and Ψ2 is a convex functional.

Lemma 2.1. Suppose (φ0), (φ1), (f0) and (f1) holds. Then,
(i) J1 ∈ C1(W 1,Φ

0 (Ω),R)) and

〈J ′
1(u), ϕ〉 = M(P(u))

∫
Ω

a(|∇u|)∇u∇ϕdx, ∀ϕ ∈ W 1,Φ
0 (Ω),

(ii) J2 ∈ Liploc(W
1,Φ
0 (Ω),R) and

∂J2(u) ⊆
{

w ∈ (LH(Ω)
)′

: w(x) ∈ ∂F (x, u(x)) a.e. x ∈ Ω
}

.

In particular, for each w ∈ ∂J2(u), there exists a unique ω ∈ LH̃(Ω) such
that

ω ∈ [f(x, u(x) − 0), f(x, u(x) + 0)] a.e. x ∈ Ω and

〈w,ϕ〉 =
∫
Ω

ωϕdx, ∀ ϕ ∈ W 1,Φ
0 (Ω),

(iii) J ′
1 is of type (S+), that is,

“if un ⇀ u and lim
n→∞ sup 〈J ′

1(un), un − u〉 ≤ 0, then un → u in W 1,Φ
0 (Ω)”.

(iv) if un ⇀ u in W 1,Φ
0 (Ω), then J0

2 (un;un − u) → 0 and,

〈ηn, un − u〉 =
∫

Ω

ηn(un − u)dx → 0, ∀ ηn ∈ ∂J2(un),

(v) if un ⇀ u in W 1,Φ
0 (Ω), then J2(un) → J2(u),

(vi) J1 is sequentially weakly lower semicontinuous in W 1,Φ
0 (Ω),

(vii) Ψ1 ∈ Liploc(W
1,Φ
0 (Ω);R) is sequentially weakly lower semicontinuous and

Ψ0
1 is of the type (S+).

Proof. First, we note that the item (i) is an immediate consequence of as-
sumptions on M and properties of P. Next, we present a summary proof of
the other items.
(ii) Let J̃2 : LH(Ω) → R be a functional defined by J̃2(u) =

∫
Ω

F (x, u)dx, u ∈
LH(Ω). So, it follows from Theorem 1.1 in [20] that J̃2 ∈ Liploc(LH(Ω);R)
and

∂J̃2(u) ⊆
{

w ∈ (LH(Ω)
)′

: w(x) ∈ ∂F (x, u(x)) a.e. x ∈ Ω
}

.

Since W 1,Φ
0 (Ω)

LH

= LH(Ω), we are able to apply [5, Theorem 2.2] to
conclude that J2 = J̃2

∣∣
W 1,Φ

0 (Ω)
is locally Lipschitz continuous and

∂J2(u) ⊆ ∂J̃2(u) ⊆
{

w ∈ (LH(Ω)
)′

: w(x) ∈ ∂F (x, u(x)) a.e. x ∈ Ω
}

.

The conclusion of the proof is a direct consequence of Theorem 1.1
in [20] and classical Riesz Theorem for Orlicz spaces, see for instance [27].
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(iii) This conclusion is a consequence of item (i) and the fact that P ′ is of the
type (S+).

(iv) Let un ⇀ u and ηn ∈ ∂J2(un). Since ηn ∈ (LH(Ω)
)′, the Riesz theorem

for Orlicz spaces implies that there exists a unique ηn ∈ LH̃(Ω), still
denoted by ηn, such that

〈ηn, un − u〉 =
∫

Ω

ηn(un − u)dx.

Besides this, by using (f1), H ∈ Δ2 and Young’s inequality, we obtain

|ηn(un − u)| ≤ a1|un − u| + a2H̃
−1 ◦ H(a3|un − u| + a3|u|)|un − u|

≤ C(|un − u| + H(|un − u| + |u|)),
which leads us to conclude that |ηn(un − u)| ≤ g(x) for some g ∈ L1(Ω),
after using the compact embedding W 1,Φ

0 (Ω) ↪→ LH(Ω) and Lemma 5.3
in [14]. As un → u a.e in Ω, the first claim follows by Lebesgue’s theorem.

To end the proof, it follows from Proposition 2.171 in [4] that there
exists η̃n ∈ ∂J2(un) such that J0

2 (un; v) = 〈η̃n, v〉, for all v ∈ W 1,Φ
0 (Ω).

Hence, we obtain from above conclusion that J0
2 (un;un − u) = 〈η̃n, un −

u〉 → 0.
(v) As in the previous item, by using (f1) and dominated convergence the

result follows.
(vi) This item is a consequence of the continuity and monotonicity of M̂ and

the fact that P is sequentially weakly lower semicontinuous in W 1,Φ
0 (Ω).

(vii) By items (i) and (ii) above, we have Ψ1 ∈ Liploc(W
1,Φ
0 (Ω);R). Besides

this, we get from item (iv) and (f1) that Ψ1 is sequentially weakly lower
semicontinuous. Let un ⇀ u such that lim supn→∞ Ψ0

1(un;un − u) ≤ 0.
Then, (iii) and (iv) above lead us to

lim sup
n→∞

〈−(M ◦ P)(un)ΔΦun, un − u〉
= lim sup

n→∞
〈−(M ◦ P)(un)ΔΦun, un − u〉

−λ lim
n→∞ J0

2 (un;un − u) = lim sup
n→∞

Ψ0
1(un;un − u) ≤ 0,

which implies the claimed, after using the (iii). This ends the proof.

�

The next lemma gives us some properties regarding Ψ2.

Lemma 2.2. Assume 0 < b ∈ L1(Ω). If Problem (S) admits a solution in
W 1,Φ

0 (Ω), then Ψ2 is a proper functional. Besides this, Ψ2 is convex, sequen-
tially weakly lower semicontinuous and Ψ2(u) �= −∞ for all 0 < u ∈ W 1,Φ

0 (Ω).

Proof. First, note that 0 ≤ G(x, u) ≤ +∞ in Ω for all u ∈ W 1,Φ
0 (Ω), so

Ψ2(u) �= −∞. Moreover, if u0 ∈ W 1,Φ
0 (Ω) is a solution of (S), then u0 ∈

Dom(Ψ2), which proves Dom(Ψ2) �= ∅.
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The convexity follows directly from the definition of Ψ2. Finally, by the
Fatou’s lemma, we conclude that Ψ2 is sequentially weakly lower semicontin-
uous. �

Lemma 2.3. Suppose (φ0)−(φ3), (M), (f1) and (f3) hold. Then, I is a coercive
functional.

Proof. First, by the assumption (M) and Lemma 5.1 in [14], we have

M̂
(
P(u)

)
≥ m0

α
‖∇u‖αφ−

Φ for all u ∈ W 1,Φ
0 (Ω) with ‖∇u‖Φ ≥ 1. (8)

Moreover, by taking ε > 0 small enough, it follows from (f1) and (f3) that
F (x, t) ≤ C1 + ε|t|αφ− for all x ∈ Ω, t ∈ R and for some C1 > 0. Thus, by the
embedding W 1,Φ

0 (Ω) ↪→ Lαφ−(Ω), which follows from the hypothesis (φ3), we
conclude

Ψ1(u) ≥ C3

(
‖∇u‖αφ−

Φ − 1
)

for all u ∈ W 1,Φ
0 (Ω) with ‖∇u‖Φ ≥ 1 (9)

for some C3 > 0. Since δ > 1, we have Ψ2(u) ≥ 0. Thus, after all these
information and (6), we conclude I(u) → ∞ as ‖∇u‖Φ → ∞, that is, I is
coercive. This ends the proof. �

Lemma 2.4. Suppose (S) admits a solution in W 1,Φ
0 (Ω) and the assumptions

(φ0) − (φ3), (M),(f1), (f3) hold. Then I satisfies the (PS) condition.

Proof. Let (un) ⊂ W 1,Φ
0 (Ω) and (εn) ⊂ (0,∞) be sequences such that I(un) →

c ∈ R, εn → 0 and

Ψ0
1(un;ϕ − un) + μ

(
Ψ2(ϕ) − Ψ2(un)

)

≥ −εn‖∇(ϕ − un)‖Φ for all ϕ ∈ W 1,Φ
0 (Ω) and n ∈ N. (10)

It follows from the coercivity of I, obtained in the previous lemma, that
(un) is bounded in W 1,Φ

0 (Ω). Thus, passing to a subsequence if necessary, we
may assume that un ⇀ u. So, by Lemmas 2.1-(vii) and 2.2, we obtain that I
is sequentially weakly lower semicontinuous, which yields

I(u) ≤ lim inf
n→∞ I(un) = c < ∞,

whence Ψ2(u) < ∞. So, by taking ϕ = u in (10), we obtain

−(−Ψ1)0(un;un − u) ≤ μ
(
Ψ2(u) − Ψ2(un)

)
+ εn‖∇(un − u)‖Φ for n ∈ N.

Therefore, by using the previous inequality and the lower semicontinuity
of Ψ2, we get

lim inf
n→∞ (−Ψ1)0(un;un − u) ≥ 0,

which leads to

0 ≤ lim inf
n→∞

(−Ψ1)
0(un; un − u) ≤ lim inf

n→∞
[
(−J1)

0(un; un − u) + λJ0
2 (un; un − u)

]
= lim inf

n→∞
〈−J ′

1(un); un − u〉 + λ lim
n→∞

J0
2 (un; un − u)

= − lim sup
n→∞

〈J ′
1(un); un − u〉,
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after applying Lemma 2.1-(iv). Thus, Lemma 2.1-(iii) implies that un → u in
W 1,Φ

0 (Ω) to a subsequence that ends the proof of lemma. �

Proposition 2.1. Assume (φ0)−(φ3), (M), (f1) and (f3) hold. Then, any strict
local minimum of the functional Ψ1 = J1 − λJ2 in the strong topology of
W 1,Φ

0 (Ω) is so in the weak topology.

Proof. We just need verify that, under these assumptions, the conditions of
Theorem C in [29] are fulfilled. Since W 1,Φ

0 (Ω) is a reflexive and separable
space, J1 and J2 are sequentially weakly lower semicontinuous and the func-
tional Ψ1 is coercive (see (9)), we just need to check that J1 ∈ WW 1,Φ

0
, that

is,

“if un ⇀ u and lim
n→∞ inf J1(un) ≤ J1(u), then un → u up to a subsequence”

to conclude the proof of the proposition,
In this direction, let us assume un ⇀ u and lim

n→∞ inf J1(un) ≤ J1(u). Since

J1 is sequentially weakly lower semicontinuous, we have lim
n→∞ J1(un) = J1(u)

for some subsequence, still denoted by (un). Thus, from this fact, continuity
and monotonicity of M̂ in R

+, we obtain limn→∞ P(un) = P(u). Therefore,
by the hypothesis (φ1) we can apply [10, Theorem 2.4.11 and Lemma 2.4.17]
to conclude that un → u in W 1,Φ

0 (Ω). This ends the proof. �

Below, let us connect the existence of solution to problem (S) with exis-
tence of two local minima to the functional I.

Lemma 2.5. Suppose (S) admits a W 1,Φ
0 (Ω)-solution, (φ0) − (φ3), (M) and

(f1) − (f3) hold. Then, for each λ > λ∗ there exists μλ > 0 such that for
μ ∈ (0, μλ] the functional I has two local minima.

Proof. Fix λ > λ∗, where λ∗ > 0 was defined at (5). Since Ψ1 is lower semicon-
tinuous and coercive (see Lemma 2.1-vii) and (9)), there exists a global mini-
mum u0 ∈ W 1,Φ

0 (Ω) of Ψ1 in W 1,Φ
0 (Ω) and, in particular, Ψ1(u0) ≤ Ψ1(0) = 0.

If Ψ1(u0) = 0, we would have

J1(u) − λJ2(u) = Ψ1(u) ≥ Ψ1(u0) = 0 for all u ∈ W 1,Φ
0 (Ω),

which would yield λ∗ ≥ λ, but this is impossible.
Let us denote by C > 0 the best embedding constant of W 1,Φ

0 (Ω) ↪→
Lαφ+(Ω) and take 0 < ε < (m0C

αφ+)/λα. Thus, it follows from the assump-
tions (f2) and (f3) that F (x, t) ≤ εtαφ+ for all t ∈ (0,m) ∪ (M,∞) for some
m > 0 small enough and M > 0 large enough.

Besides this, if ‖∇u‖Φ < ε′, then we have

mαφ+

∣∣∣[m ≤ u ≤ M ]
∣∣∣ ≤ (

∫
[m≤u≤M ]

uαφ+dx
)1/αφ+

≤ ‖u‖αφ+ ≤ C‖∇u‖Φ ≤ Cε′,

that is,
∣∣∣[m ≤ u ≤ M ]

∣∣∣ ≤ Cε′/mαφ+ .
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So, it follows from the above information and assumption (f1) that∫
Ω

F (x, u)dx =
∫

[u<m]

F (x, u)dx +
∫

[u>M ]

F (x, u)dx +
∫

[m≤u≤M ]

F (x, u)dx

≤ ε

∫
Ω\[m≤u≤M ]

uαφ+dx + sup
m≤t≤M

F (x, t)
Cε′

mαφ+
≤ ε

∫
Ω

uαφ+dx

for some ε′ > 0 small enough, which shows J2(u) ≤ ε‖u‖αφ+

αφ+
for all u ∈

W 1,Φ
0 (Ω) with ‖∇u‖Φ ≤ ε′.

Therefore, we obtain from this fact, hypothesis (M) and Lemma 5.1 in
(8) that

Ψ1(u) ≥ m0

α
‖∇u‖αφ+

Φ − λε‖u‖αφ+
αφ+

≥ m0C
αφ+

α
‖u‖αφ+

αφ+
− λε‖u‖αφ+

αφ+
> 0 = Ψ1(0)

holds, whenever ‖∇u‖Φ < ε′ with ε′ > 0 such above, that is, 0 is a strict local
minimum of Ψ1 in the strong topology. Hence, we obtain from Proposition 2.1
that 0 is a local strict minimum of Ψ1 in the weak topology as well, i.e, there
exists a weak neighborhood Vw of 0 such that

0 = Ψ1(0) < Ψ1(u) for all u ∈ Vw\{0}.

After these information and the assumption that the problem (S) admits
a solution in W 1,Φ

0 (Ω), we are able to follow the same strategy of the proof
of Theorem 1.1 in [12] to build disjoint open sets D1 and D2, in the strong
topology, such that 0 ∈ D1, u0 ∈ D2 and to find ω̃i ∈ Di such that ω̃1 and ω̃2

are distinct local minima of I. This ends the proof. �
By applying Corollary 2.1 of [23] for functional of the type locally Lipschiz

plus convex (it is a version of Corollary 3.3 in [32] that considers functional of
the type C1 plus convex), Lemmas 2.4 and 2.5, we have the following property.

�
Corollary 2.1. Suppose (φ0) − (φ3), (b), (M) and (f1) − (f3) hold. In addition,
assume that Problem (S) admits a W 1,Φ

0 (Ω)-solution. Then, for each λ > λ∗

there exists μλ > 0 such that for μ ∈ (0, μλ] the functional I has three critical
points, being two of them local minima and the other one a mountain pass
point to the functional I.

3. Proof of Theorem 1.1

Before starting the proof of Theorem 1.1, let us prove the two below lemmas.

Lemma 3.1. (Multivalued solutions) Assume (φ0)− (φ3), (M), (f0), (f1), 0 <

b ∈ L1(Ω) and u ∈ W 1,Φ
0 (Ω) be a critical point of I. Then:

(i) u > 0 a.e. in Ω and there exist a η ∈ ∂Ψ2(u) and a ρ ∈ [f(x, u(x) − 0,

f(x, u(x) + 0)] ⊂ LH̃(Ω) such that
(
M ◦ P)(u)

∫
Ω

a(|∇u|)∇u∇ϕdx = μ〈η, ϕ〉 + λ

∫
Ω

ρϕdx for all ϕ ∈ W 1,Φ
0 (Ω),

(11)
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where ∂Ψ2(u) stands for the subdifferential of the convex functional Ψ2

at u,
(ii) bu−δϕ ∈ L1(Ω) for any ϕ ∈ W 1,Φ

0 (Ω). Besides this,

∂Ψ2(u) = {η} and 〈η, ϕ〉 = −
∫

Ω

bu−δϕdx for all ϕ ∈ W 1,Φ
0 (Ω).

In particular, the Eq. (11) turns into
(
M ◦ P)(u)

∫
Ω

a(|∇u|)∇u∇ϕdx =
∫

Ω

[
μbu−δ + ρ

]
ϕdx for all ϕ ∈ W 1,Φ

0 (Ω),

(12)

(iii) there exists a C > 0, dependent on u, such that u(x) ≥ Cd(x) for x ∈ Ω,
(iv) ρ + bu−δ ∈ L2

loc(Ω) if in addition b ∈ L2
loc(Ω).

Proof of (i). Since u is a critical point of I (see (7)), in particular, we have
u ∈ Dom(Ψ2), which implies

∫
Ω

|G(x, u)|dx < ∞, that is, G(·, u(·)) is finite
a.e. in Ω. Therefore, by the definition of G, we have u > 0 a.e in Ω.

Again, by u ∈ W 1,Φ
0 (Ω) be a critical point of I, it follows from [4, Propo-

sition 2.183], that

0 ∈ −(M ◦ P)(u)ΔΦu − λ∂J2(u) + μ∂Ψ2(u),

where ∂J2(u) stands for the generalized gradient of the locally Lipschiz con-
tinuous functional J2 at u. Thus, there exist ρ ∈ ∂J2(u) and η ∈ ∂Ψ2(u) such
that

〈−(M ◦ P)(u)ΔΦu, v〉 = λ〈ρ, v〉 − μ〈η, v〉 for all v ∈ W 1,Φ
0 (Ω). (13)

So, it follows from Lemma 2.1-(ii) that there exists a unique ρ ∈ LH̃(Ω),
with ρ ∈ [f(x, u(x) − 0), f(x, u(x) + 0)], such that the equality (11) holds true.
This ends the proof of (i).

Let us prove (ii). By (11) and ρ ≥ 0, we have
(
M ◦ P)(u)

∫
Ω

a(|∇u|)∇u∇ϕdx ≥ −μ〈η, ϕ〉 for all 0 ≤ ϕ ∈ W 1,Φ
0 (Ω),

which implies, by definition of η ∈ ∂Ψ2(u), that
(
M ◦ P)(u)

∫
Ω

a(|∇u|)∇u∇ϕdx

≥ μ

∫
Ω

[G(x, u) − G(x, u + tϕ)
t

]
dx for all 0 ≤ ϕ ∈ W 1,Φ

0 (Ω).

Hence, by u > 0 a.e. in Ω and Fatou’s lemma, we obtain

μ

∫
Ω

b(x)u−δϕdx ≤ lim inf
t→0+

1

−δ + 1

∫
Ω

μb(x)

(
(u + tϕ)−δ+1 − u−δ+1

t

)
dx

≤ M (P(u))

∫
Ω

a(|∇u|)∇u∇ϕdx < ∞ for all 0 ≤ ϕ ∈ W 1,Φ
0 (Ω),

(14)
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that proves that bu−δϕ ∈ L1(Ω) for any ϕ ∈ W 1,Φ
0 (Ω). To finish the proof of

(ii), let η ∈ ∂Ψ2(u). Then for ε ∈ (0, 1), we have

Ψ2 (u − εu) − Ψ2(u) ≥ −ε〈η, u〉,
which can be rewritten as

(1 − ε)−δ+1 − 1
(δ − 1)ε

∫
Ω

b(x)u−δ+1dx ≥ −〈η, u〉.

So, by doing ε → 0+ in the previous inequality, we obtain∫
Ω

b(x)u−δ+1dx ≥ −〈η, u〉. (15)

On the other hand, again by the fact that η ∈ ∂Ψ2(u), one has

〈η, ϕ〉 ≤ Ψ2 (u + εϕ) − Ψ2(u)
ε

=
1

−δ + 1

∫
Ω

b(x)
(

u−δ+1 − (u + εϕ)−δ+1

ε

)
dx,

for all 0 ≤ ϕ ∈ W 1,Φ
0 (Ω) and ε > 0 given, which yields

−
∫

Ω

b(x)u−δϕdx ≥ 〈η, ϕ〉, (16)

after using Fatou’s lemma.
By taking ϕ = u in (16) and combining this with (15), we obtain

〈η, u〉 = −
∫

Ω

b(x)u−δ+1dx. (17)

Besides this, by letting ϕ ∈ W 1,Φ
0 (Ω), testing (16) with (u + εϕ)+ and

using (17), we get

−ε

∫
Ω

b(x)u−δϕdx ≥ ε〈η, ϕ〉 − 〈η, u · χ[u+εϕ≤0]〉 − ε〈η, ϕ · χ[u+εϕ≤0]〉,
which lead us to

−
∫

Ω

b(x)u−δϕdx ≥ 〈η, ϕ〉 − 〈η, ϕ · χ[u+εϕ≤0]〉, (18)

due (16), that is, −〈η, u · χ[u+εϕ≤0]〉 ≥ 0.
By using that |[u + εϕ ≤ 0]| → 0 as ε → 0, the inequality (18) yields

−
∫

Ω

b(x)u−δϕdx ≥ 〈η, ϕ〉, for all ϕ ∈ W 1,Φ
0 (Ω),

that is,

〈η, ϕ〉 = −
∫

Ω

b(x)u−δϕdx, for all ϕ ∈ W 1,Φ
0 (Ω).

This ends the proof of item (ii).
Now, we are ready to prove (iii). First, let us denote by c0 := M (P(u)) > 0
and consider the problem

− ΔΦv =
μ

c0
b1(x)(v + 1)−δ in Ω, v = 0 on ∂Ω, (19)
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where b1(x) = min{1, b(x)}. We know from Lemmas 4.2 and 5.1 in [15] that
there exist a unique solution of (19), say ũ1 ∈ W 1,Φ

0 (Ω), and C = Cu > 0 such
that ũ1 ≥ Cd in Ω.

On the other hand, we obtain from (14) that∫
Ω

a(|∇u|)∇u∇ϕdx ≥
∫

Ω

μ

c0
b(x)u−δϕdx

≥
∫

Ω

μ

c0
b1(x)(u + 1)−δϕdx for all 0 ≤ ϕ ∈ W 1,Φ

0 (Ω),

that is, u is a supersolution for the problem (19). Hence,

0 ≤
∫

Ω

(a(|∇ũ1|)∇ũ1 − a(|∇u|)∇u) ∇ (ũ1 − u)+ dx

≤ μ

c0

∫
Ω

b1(x)
(
(ũ1 + 1)−δ − (u + 1)−δ

)
(ũ1 − u)+ dx ≤ 0,

which implies that Cd ≤ ũ1 ≤ u in Ω and this proves (iii).
Let us prove (iv). By (f1) and property H̃−1 (H(t)) ≤ 2h̃−1(t) = 2h(t) for all
t ∈ R (the equality is due h being continuous), we obtain

|ρ| ≤ a2H̃
−1 ◦ H(a3(|u| + |ϕ|)) + a1 ≤ 2a2h(a3|u|) + a1 ≤ C

(
1 + uh+−1

)
,

(20)

for some C > 0, where the last inequality is a consequence of (3) in (f1).
Hence, we obtain from (20), W 1,Φ

0 (Ω) ↪→ Lφ∗
−(Ω) and h+ ≤ φ∗

−/2 + 1 that
ρ ∈ L2

loc(Ω). So, combining the fact that ρ ∈ L2
loc(Ω) together with (i) above,

the proof of (iv) follows. This ends the proof of lemma. �

Lemma 3.2. (Almost everywhere solutions) Assume (φ0) − (φ3), (M), (f0),
(f1) and bd−δ ∈ LH̃(Ω). Let u ∈ W 1,Φ

0 (Ω) be a critical point of I and ρ ∈
LH̃(Ω) as in Lemma 3.1. Then:

(i) −(M ◦ P)(u)ΔΦu ∈ (LH(Ω)
)′,

(ii) there exists a unique representative of −(M ◦ P)(u)ΔΦu in LH̃(Ω), still
denoted by −(M ◦ P)(u)ΔΦu, such that

− (M ◦ P)(u)ΔΦu = λρ + μbu−δ a.e. in Ω. (21)

Proof of (i) We have from (13) that

〈−(M ◦ P)(u)ΔΦu, ϕ〉 = λ〈ρ, ϕ〉 − μ〈η, ϕ〉 for all ϕ ∈ W 1,Φ
0 (Ω),

where η ∈ ∂Ψ2(u) ⊂
(
W 1,Φ

0 (Ω)
)′

and ρ ∈ ∂J2(u) ⊂ (
LH(Ω)

)′ with this

last inclusion due to the Lemma 2.1-(ii). Since bd−δ ∈ LH̃(Ω), we obtain from
Lemma 3.1-(ii) and (iii) that η ∈ (LH(Ω)

)′ as well. Thus, we obtain from these

information and W 1,Φ
0 (Ω)

‖·‖H

= LH(Ω) that −(M ◦ P)(u)ΔΦu ∈ (LH(Ω)
)′.

This proves (i).
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Let us prove (ii). It follows from item (i) and the Riesz theorem for
Orlicz spaces that there exist a unique element in LH̃(Ω), still denoted by
−(M ◦ P)(u)ΔΦu, such that

〈−M ◦ P(u)ΔΦu, ϕ〉 =
∫

Ω

(−M ◦ P(u)ΔΦu)ϕdx for all ϕ ∈ W 1,Φ
0 (Ω),

which implies by (12) that∫
Ω

(
− M ◦ P(u)ΔΦu − λρ − μbu−δ

)
ϕ = 0 for all ϕ ∈ W 1,Φ

0 (Ω).

This ends the proof of lemma.
Proof of Theorem 1.1-Conclusion. The proof of item (i) is inspired on ideas
from [9], while for the proof of (ii) we borrow strategies from [22]. The item
(iii)–(v) are consequences of Lemmas 3.1 and 3.2.
Proof of (i): We just consider the case when u is a local minimum for I. Similar
arguments work when u is a local maximum for I. In this case, it is readily
that

λ

∫
Ω

F (x, u + εϕ) − F (x, u)
ε

dx − μ

∫
Ω

G(x, u + εϕ) − G(x, u)
ε

ϕdx

≤
∫

Ω

M̂(P(u + εϕ)) − M̂(P(u))
ε

dx (22)

holds for any ϕ ∈ W 1,Φ
0 (Ω) and any ε > 0 given.

Below, let us consider two cases. First, fix 0 ≤ ϕ ∈ C∞
0 (Ω). So, we obtain

from Lebourg’s theorem that there exist t0(x) ∈ (0, 1) and ξε ∈ ∂F (x, u+t0εϕ)
such that

F (x, u + εϕ) − F (x, u)
ε

= ξεϕ, (23)

for each x ∈ Ω.
By using (f1), we are able to estimate ξε by

|ξε| ≤ a2H̃
−1 ◦ H(a3(|u| + |ϕ|)) + a1 := g,

where g ∈ L1(Ω) is independent of ε > 0. Hence, coming back to (23), we
obtain ∣∣∣∣F (x, u + εϕ) − F (x, u)

ε

∣∣∣∣ ≤ gϕ ∈ L1(Ω)

for every ε > 0 small enough.
Besides this, the right derivative of F (x, ·) at u is given by

lim
ε→0+

F (x, u + εϕ) − F (x, u)
ε

= f(x, u(x) + 0)ϕ a.e. x ∈ Ω,

because ϕ ≥ 0.
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So, we are in position to apply the Lebesgue theorem, combined with
Fatou’s lemma and Lemma 3.2, in (22) to show that∫

Ω

(
λf(x, u(x) + 0) + μ

b(x)
uδ

)
ϕdx ≤ (M ◦ P)(u)

∫
Ω

φ(|∇u|)∇u∇ϕdx

=
∫

Ω

−(M ◦ P)(u)ΔΦuϕdx

holds for any 0 ≤ ϕ ∈ W 1,Φ
0 (Ω), that is,

−(M ◦ P)(u)ΔΦu(x) ≥ λf(x, u(x) + 0) + μ
b(x)
uδ

a.e. x ∈ Ω.

On the other hand, it follows from (21) and Lemma 2.1-(ii) that

−(M ◦ P)(u)ΔΦu(x) ≤ λf(x, u(x) + 0) + μ
b(x)
uδ

a.e. x ∈ Ω,

due to the fact that u is a critical point of I.
After these two inequalities, we obtain

− (M ◦ P)(u)ΔΦu = λf(x, u(x) + 0) + μ
b(x)
uδ

, a.e. x ∈ Ω. (24)

Secondly, let us fix ϕ ∈ C∞
0 (Ω) with ϕ ≤ 0. By similar arguments as

those done to prove the case ϕ ≥ 0, we are able to show that

− (M ◦ P)(u)ΔΦu = λf(x, u(x) − 0) + μ
b(x)
uδ

a.e. x ∈ Ω. (25)

holds.
Finally, if meas{x ∈ Ω : u(x) = ã} > 0, then it would have from (24)

and (25) that

f(x, a − 0) = f(x, ã + 0) a.e. x ∈ {x ∈ Ω : u(x) = ã},

but this is impossible by (f0) so meas{x ∈ Ω : u(x) = ã} = 0. This ends the
proof of (i).
Proof of (ii): Since u ∈ W 1,Φ

0 (Ω) is a critical point of I, we obtain from Lemmas
3.2-(ii) that

− (M ◦ P)(u)ΔΦu = λρ + μbu−δ := h(x) a.e. in Ω. (26)

with ρ ∈ [f(x, u − 0), f(x, u + 0)]. So, it follows from Lemma 3.1 and [6,
Theorem 2.1], that

a(|∇u|)|∇u| ∈ W 1,2
loc (Ω).

Besides this, we have
∣∣∣∇( a(|∇u|)|∇u|

ε+a(|∇u|)|∇u|
)∣∣∣ = ε

∣∣∇(a(|∇u|)|∇u|)|
[ε+a(|∇u|)|∇u|]2 ≤ 1

ε |∇(a(|∇u|)|∇u|)|,
which shows that

a(|∇u|)|∇u|
ε + a(|∇u|)|∇u| ∈ W 1,2

loc (Ω)
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for each ε > 0 given and so

a(|∇u|)|∇u|
ε + a(|∇u|)|∇u|ϕ ∈ W 1,2

0 (Ω)

can be used as a test function for any ε > 0 and any ϕ ∈ C∞
0 (Ω) given.

By doing this, we get from (26) that
∫
Ω

h(x)
(

a(|∇u|)|∇u|
ε+a(|∇u|)|∇u|ϕ

)
=
(
M ◦ P)(u)

∫
Ω

a(|∇u|)∇u∇
(

a(|∇u|)|∇u|
ε+a(|∇u|)|∇u|ϕ

)
dx

=
(
M ◦ P)(u)

∫
Ω

a(|∇u|) a(|∇u|)|∇u|
ε+a(|∇u|)|∇u|∇u∇ϕdx

+
(
M ◦ P)(u)

∫
Ω

a(|∇u|)ϕ ε
[ε+a(|∇u|)|∇u|]2 ∇(a(|∇u|)|∇u|)∇udx.

(27)

Since, ∣∣∣a(|∇u|)ϕ ε
[ε+a(|∇u|)|∇u|]2 ∇(a(|∇u|)|∇u|)∇u

∣∣∣
≤ |ϕ| ε2+(a(|∇u|)|∇u|)2

2[ε+a(|∇u|)|∇u|]2 |∇(a(|∇u|)|∇u|)|
≤ 1

2 |ϕ∇(a(|∇u|)|∇u|)|
holds for any ε > 0, we are able to apply Lebesgue’s theorem to the equalities
in (27) to infer that∫

Ω\{∇u
=0}
hϕdx =

(
M ◦ P)(u)

∫
Ω\{∇u
=0}

a(|∇u|)∇u∇ϕ

=
(
M ◦ P)(u)

∫
Ω

a(|∇u|)∇u∇ϕ =
∫

Ω

hϕdx,

holds, which lead us to have h(x) = 0 a.e. in {x ∈ Ω : ∇u = 0}. As
we already know from Lemma 3.1-(ii) that h(x) > 0 in Ω, we obtain that
meas{x ∈ Ω : ∇u = 0} = 0. So, it follows from Morey-Stampacchia’s
theorem that {x ∈ Ω : u = c} ⊂ {x ∈ Ω : ∇u = 0} for any real constant c
given, which shows that meas{x ∈ Ω : u = c} = 0.

So, as a consequence of (i) and (ii) above, ρ(x) = f(x, u(x)) if u(x) �= a
and ρ(x) ∈ [f(x, a−0), f(x, a+0)] if u(x) = a, we obtain that ρ(x) = f(x, u(x))
a.e. in Ω. Finally, by applying Lemma 3.1, we have (iii) and (iv), while Lemma
3.2 implies (v). This ends the proof. �

As a consequence of our above approach, we proved an abstract result of
regularity that is itself important.

Theorem 3.1. Assume (M) and (φ0)− (φ2) hold. Let h ∈ L2
loc(Ω) be such that

h �= 0 a.e. in Ω. If u ∈ W 1,Φ
0 (Ω) is a weak solution of

(Q)
{−M

(∫
Φ(|∇u|)dx

)
ΔΦu = h(x) in Ω,

u > 0 in Ω, u = 0 on ∂Ω,

then meas{x ∈ Ω : |∇u(x)| = 0} = 0. In particular, meas{x ∈ Ω : u(x) =
c} = 0 for each c > 0.
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4. Proof of Theorem 1.2

In this section, let us begin proving the equivalences among (i), (ii) and (iii).
To prove (i =⇒ ii), we borrow ideas from Yijing [31], who treated this situation
in the context of homogeneous operators. The principal difficulty in doing this
is to find appropriated assumptions under the N-function Φ to become possible
to obtain compactness results for minimizing sequences on Nehari sets type,
while the main obstacles to prove (ii =⇒ iii) were already got over in the last
section. The (iii =⇒ i) is immediately. We will end this section ensuring that
the discontinuity of the nonlinearity f(x, ·) may be attained.

Let us begin by defining the set

A :=
{

u ∈ W 1,Φ
0 (Ω) :

∫
Ω

b(x)|u|1−δdx < ∞
}

,

which turns well-defined the functional

J(u) =
∫

Ω

Φ(|∇u|)dx +
1

δ − 1

∫
Ω

b(x)|u|1−δdx, u ∈ A

and the subsets

N :=
{

u ∈ W 1,Φ
0 (Ω) :

∫
Ω

(
a(|∇u|)|∇u|2 − b(x)|u|1−δ

)
dx ≥ 0

}

and

N ∗ :=
{

u ∈ W 1,Φ
0 (Ω) :

∫
Ω

(
a(|∇u|)|∇u|2 − b(x)|u|1−δ

)
dx = 0

}
.

Lemma 4.1. Assume (φ1) and A �= ∅. Then N ∗ and N are non-empty sets
and N is unbounded set.

Proof. Take u ∈ A. So, it follows from (φ1) and Lemma 5.1 in [14], that∫
Ω

φ(t|∇u|)|∇u|dx ≥ φ−
t

∫
Ω

Φ(t|∇u|)dx

≥ min{tφ−−1, tφ+−1}φ−
∫

Ω

Φ(|∇u|)dx (28)

and ∫
Ω

φ(t|∇u|)|∇u|dx ≤ φ+

t

∫
Ω

Φ(t|∇u|)dx

≤ max{tφ−−1, tφ+−1}φ−
∫

Ω

Φ(|∇u|)dx (29)

hold for t > 0 large enough.
So, we obtain from (28) and (29) that σ′(t) → ∞ as t → ∞ and σ′(t) →

−∞ as t → 0+. Besides this, we have from (φ1) again that σ′′(t) > 0 for all
t > 0, where

σ(t) := J(tu) =
∫

Ω

Φ(t|∇u|)dx +
t1−δ

δ − 1

∫
Ω

b(x)|u|1−δdx, t > 0
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and so there exists a unique t∗ = t∗(u) (which is a global minimum of σ) such
that σ′(t∗) = 0. This shows that t∗u ∈ N ∗. As another consequence of the
above information, we have that σ′(t) ≥ 0 for all t > 0 large enough, that is,
tu ∈ N for all t > 0 large enough. In particular, N is unbounded as well. This
ends the proof. �

By using similar ideas as done Yijing [31] for the homogeneous case,
we are able to prove the below lemma in the context of non-local and non-
homogeneous operator.

Lemma 4.2. Assume (φ1) and A �= ∅. Then:
(i) the set N is strong closed,

(ii) 0 is not an accumulation point of N .

To complete our basics tools to prove Theorem 1.2, let us prove the below
lemma that is interesting itself.

Lemma 4.3. Assume that 0 < b ∈ L1(Ω), (φ0) and (M) hold. Let g : Ω ×
(0,∞) −→ R be a Carathéodory function such that(

g(x, s) − g(x, t)
)
(s − t) ≤ 0 for all s, t > 0. (30)

Then the problem{
−M

(∫
Ω

Φ(|∇u|)dx
)
ΔΦu = λ b(x)

uδ + g(x, u), in Ω
u > 0 in Ω, u = 0 on ∂Ω

(31)

has at most one solution in W 1,Φ
0 (Ω).

Proof. First, we note that the fact of M being non-increasing implies that M̂
is convex. With similar arguments together with the hypotheses (φ0), we show
that Φ convex as well. These facts and the hypotheses (M) lead us to infer
that the functional

J1(u) := M̂

(∫
Ω

Φ(|∇u|)dx

)
, u ∈ W 1,Φ

0 (Ω)

is convex as well.
Let u, v ∈ W 1,Φ

0 (Ω) be two different solutions of the problem (31). So, it
follows from (30) and the convexity of J1, that

0≤〈J ′
1(u) − J ′

1(v), u−v〉 = λ

∫
Ω

(
b

uδ
− b

vδ

)
(u−v)dx+

∫
Ω

(g(x, u) − g(x, v))(u − v)dx

≤ λ

∫
Ω

(
b

uδ
− b

vδ

)
(u − v)dx < 0,

where the last inequality follows from b, δ > 0. This is impossible and so the
proof of Lemma 4.3 is done. �
Proof of Theorem 1.2-Conclusion. We begin proving the first implication.
Proof of (i) =⇒ (ii). First, we note that the assumption (i) implies that A �= ∅.
So, it follows from Lemmas 4.1 and 4.2 that N is a nonempty complete metric
space. Moreover, by Lemmas 2.1 (vi), Lemma 2.2 and the fact that

J(u) ≥ min{‖∇u‖φ−
Φ , ‖∇u‖φ+

Φ }
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we have that J is lower semicontinuous and bounded below. Thus, by the
Ekeland Variational Principle there exists a minimizing sequence (un) ⊂ N to
J constrained to N such that:

(i) J(un) ≤ infN J + 1
n ;

(ii) J(un) ≤ J(w) + 1
n‖∇(un − w)‖Φ, ∀w ∈ N .

Besides this, we may assume un(x) > 0 a.e in Ω, because J(|un|) = J(un) and
if we assume that un = 0 in a measurable set Ω0 ⊂ Ω, with |Ω0| > 0, then we
would have from un ∈ N , b(x) > 0 a.e in Ω and reverse Hölder inequality that

∞ > φ+

∫
Ω

Φ(|∇un|)dx ≥
∫

Ω0

b(x)u1−δ
n ≥

(∫
Ω0

b(x)1/δdx
)δ(∫

Ω0

|un|dx
)1−δ

= ∞,

which is an absurd. Thus, un(x) > 0 a.e in Ω.

Since J(un) → inf
N

J ≥ 0, we have

min{‖∇un‖φ−
Φ , ‖∇un‖φ+

Φ } ≤
∫

Ω

Φ(|∇un|)dx ≤ ε + inf
N

J

for all n large enough, which implies that (un) is bounded. As a consequence
of this, we have that

⎧⎨
⎩

un ⇀ u∗ in W 1,Φ
0 (Ω);

un → u∗ strongly in LG(Ω) for all N-function G ≺≺ Φ∗;
un → u∗ a.e in Ω

for some u∗ ∈ W 1,Φ
0 (Ω).

By standard arguments, we are able to show that J(u∗) = infN J , that
is,

∫
Ω

Φ(|∇un|)dx +
1

δ − 1

∫
Ω

b(x)|un|1−δdx
n→∞−→

∫
Ω

Φ(|∇u∗|)dx

+
1

δ − 1

∫
Ω

b(x)|u∗|1−δdx (32)

holds. So, as a consequence of (32), Fatou’s lemma and Lemma 2.1-(vi), we
obtain

lim
n→∞

∫
Ω

Φ(|∇un|)dx =
∫

Ω

Φ(|∇u∗|)dx. (33)
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Thus, it follows from the assumption (φ1), Theorem 2.4.11 and Lemma
2.4.17 in [10] that W 1,Φ

0 (Ω) is uniformly convex. This together with the weak
convergence and (33), lead us to conclude that un → u∗ in W 1,Φ

0 (Ω). After this
strong convergence, we are able to follow similar arguments as done in Yijing
[31] in the homogeneous case to prove that

∫
Ω

a(|∇u∗|)∇u∗∇ϕdx ≥
∫

Ω

b(x)u−δ
∗ ϕdx

holds for any 0 ≤ ϕ ∈ W 1,Φ
0 (Ω) given. Hence, it follows from the same argu-

ments as used to prove Lemma 3.1 that u∗ is a W 1,Φ
0 (Ω)-solution of (S) such

that u∗ ≥ Cd for some C > 0 independent of u.
Proof of (ii) =⇒ (iii). By Corollary 2.1, there exist three critical points to
functional I, being two of them local minima and the other one a mountain
pass point to energy functional I. So, by Theorem 1.1 we know that each one
of these critical point is a solution for the problem (Qλ,μ) that satisfy the
qualitative properties claimed.

Proof of (iii) =⇒ (i). Let 0 < u0 ∈ W 1,Φ
0 (Ω) be a solution of (Qλ,μ). Then u0 ∈

Dom(Ψ2), that is,
∫
Ω

bu1−δ
0 dx < ∞. These ends the proof of the equivalences.

Below, let us prove the items (iv) and (v). We are going to prove (iv)
first. Let u = ua be a solution of problem (Qλ,μ). Assume by contradiction
that u ≤ a a.e. in Ω for any a > 0. So, it follows from f(x, t) = f(x) for all
0 < t < 1 and a.e. x ∈ Ω that ua ∈ W 1,Φ

0 (Ω) is a solution of

{
−M

(∫
Ω

Φ(|∇u|)dx
)
ΔΦu = λ b(x)

uδ + f(x) in Ω,
u > 0 in Ω, u = 0 on ∂Ω,

that is, ua is constant in a > 0 by Lemma 4.3.
On the other hand, by taking β > δ > 1, we have that uβ

a > 0 can be
used as a test function in (Qλ,μ) and this yields the inequality

βM
(∫

Ω
Φ(|∇ua|)dx

) ∫
Ω

a(|∇ua|)|∇ua|uβ−1
a dx =

∫
Ω

buβ−δ
a dx +

∫
Ω

f(x, ua)uβ
a

≤ |b|1aβ−δ + C|Ω|(1 + H̃−1 ◦ H(a))aβ

for any a > 0 given.
So, by doing a > 0 small enough we get an absurd, because the first term

of the above inequality is a positive number that does not depends on a > 0.
This ends the proof of this item.

Finally, we are going to prove v). Let ua be a solution of problem (Qλ,μ).
Assume by contradiction that u ≤ a a.e. in Ω for any a > 0 again. So, it follows
that ua is a super solution to problem
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{−M
(∫

Ω
Φ(|∇u|)dx

)
ΔΦu = λb(x) in Ω,

u > 0 in Ω, u = 0 on ∂Ω,
(34)

whenever a < 1.
On the other hand, we are able to show that the associated-energy func-

tional to Problem (34) is coercive due the assumption �α > 1. So, by following
standard arguments, we show that there exists a non-trivial 0 ≤ v ∈ W 1,Φ

0 (Ω)
solution for the problem (34). That is, we have

{−M
(∫

Ω
Φ(|∇ua|)dx

)
ΔΦua ≥ −M

(∫
Ω

Φ(|∇v|)dx
)
ΔΦv in Ω,

u = v = 0 on ∂Ω.

So, it follows from the hypotheses that M is such that a Comparison
Principle holds, that ua ≥ u > 0 for all 0 < a ≤ 1. This fact together with the
contradiction assumption lead us to have 0 ≤ u ≤ ua ≤ a for all 0 < a ≤ 1,
which is impossible for a > 0 small enough, because u is non-trivial. This ends
the proof of item v) and the proof of Theorem 1.2. �

Proof of Corollary 1.1. By the implication (i =⇒ ii) in Theorem 1.2, it suffices
to exhibit a u0 ∈ W 1,Φ

0 (Ω) such that
∫
Ω

bu1−δ
0 dx < ∞. Let us construct a such

one. First, we note that the regularity of the domain Ω implies that there
exists an ε > 0 sufficiently small such that d ∈ C2(Ω2ε) and |∇d(x)| = 1 in
Ω2ε, where d(x) := dist(x, ∂Ω) and Ω2ε = {x ∈ Ω : d(x) < 2ε}. With these,
define

u0(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d(x)θ if d(x) < ε,

εθ +
∫ d(x)

ε
θεθ−1

(
2ε−t

ε

)2/(φ−−1)

dt if ε ≤ d(x) < 2ε,

εθ +
∫ 2ε

ε
θεθ−1

(
2ε−t

ε

)2/(φ−−1)

dt if ε ≤ d(x) < 2ε

for each ε > 0 given, where 0 < θ < 1 will be chosen later.
A simple calculation yields

∇u0(x) =

⎧⎪⎨
⎪⎩

θd(x)θ−1∇d(x) if d(x) < ε,

θεθ−1
(

2ε−d(x)
ε

)2/(φ−−1)

∇d(x) if ε ≤ d(x) < 2ε,

0 if ε ≤ d(x) < 2ε,

which implies that u0 ∈ W 1,Φ
0 (Ω) if

∫
Ωε

Φ(θd(x)θ−1|∇d(x)|)dx < ∞. (35)

Since |∇d| = 1 in Ωε, we obtain from Lemma 5.1 in (8) that
∫

Ωε

Φ(θd(x)θ−1|∇d(x)|)dx =
∫

Ωε

Φ(θd(x)θ−1)dx
θ<1≤ C

∫
Ωε

d(x)(θ−1)φ+dx

that lead us to show (35) for θ such that (θ − 1)φ+ > −1, due well-known



NoDEA Discontinuous perturbations of nonhomogeneous Page 25 of 28    68 

result in [19]. That is, for such θ, we have that u0 ∈ W 1,Φ
0 (Ω).

To complete the exhibition, if 0 < θ < 1 is such that θq(1 − δ) > 1 − q,
we have∫

Ωε

b(x)d(x)θ(1−δ)dx ≤
(∫

Ω

b(x)qdx
)1/q(∫

Ωε

d(x)θ(1−δ)q′
dx < ∞

)1/q′

< ∞,

because b ∈ Lq(Ω) and the result in [19] again.
Finally, to occur (35) and (4) simultaneously, we have to be able to choose

a 0 < θ < 1 satisfying at same time (θ − 1)φ+ > −1 and θq(1 − δ) > 1 − q.
We can do these by controlling the range of δ. Since

1 − 1
φ+

<
q − 1

q(δ − 1)
if, and only if, 0 < δ <

q(2φ+ − 1) − φ+

q(φ+ − 1)
,

we are able to pick a

θ ∈
(
1 − 1

φ+
,min

{
1,

q − 1
q(δ − 1)

})
⊂ (0, 1),

whenever δ range as above. This proves that u0, defined as above, satisfies the
condition of item (i) in Theorem 1.2. This finishes the proof. �
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