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variational inclusions.
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vicentiu.radulescu@imar.ro; vicentiu.radulescu@math.cnrs.fr

Boualem Alleche
alleche.boualem@univ-medea.dz; alleche.boualem@gmail.com

1 Laboratoire LPTEA, Faculté des Sciences, Université de Médéa, 26000 Médéa, Algeria

2 Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza
30, 30-059 Kraków, Poland

3 Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, 014700
Bucharest, Romania

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-018-1233-2&domain=pdf
http://orcid.org/0000-0003-4615-5537


1790 B. Alleche, V. D. Rădulescu

1 Introduction

Set-valued equilibrium problems are increasingly drawing the attention of many
authors since they not only generalize the single-valued equilibrium problems, but also
serve as unified models to study multivalued variational inequalities. These inequal-
ities include as a special case Browder variational inclusions which appear in the
literature as a generalization of Browder–Hartman–Stampacchia variational inequal-
ities and have many applications, including applications to the surjectivity of set
valued-mappings and to nonlinear elliptic boundary value problems, see for exam-
ple [1,2,6,8,9,16–19,22–25], and the references therein. It is worthwhile recalling
that equilibrium problems have also many applications to different areas of math-
ematics, including optimization problems, fixed point theory and Nash equilibrium
problems.

Let C be a nonempty subset of a real topological Hausdorff vector space in the
general settings, and � : C × C ⇒ R ∪ {+∞} a set-valued mapping called a set-
valued bifunction. The strong set-valued equilibrium problem is a problem of the
form

find x0 ∈ C such that �(x0, y) ⊂ R+ ∀y ∈ C. (Ssvep)

The weak set-valued equilibrium problem is a problem of the form

find x0 ∈ C such that �(x0, y) ∩ R+ �= ∅ ∀y ∈ C. (Wsvep)

Due to the importance of the pseudo-monotone case, and motivated by our own
recent investigations on the continuity and convexity properties of real set-valuedmap-
pings in [8], we continue in this paper developing our ideas in order to apply them
to set-valued equilibrium problems in the pseudo-monotone case. Note that although
pseudo-monotone single-valued equilibrium problems have been intensively investi-
gated in the literature, there does not seem to be any study of set-valued equilibrium
problems in the pseudo-monotone case.

Our objective is twofold. The first is to obtain results on the existence of solu-
tions of set-valued equilibrium problems generalizing those for pseudo-monotone
single-valued equilibrium problems. The second objective is to investigate Browder
variational inclusions involving pseudo-monotone operators which have already been
considered in [24].

In this paper, we extend, in Sect. 2, some notions of convexity introduced recently in
[8] to the extended real set-valuedmappings case, and introduce different other notions
such as strict quasi-convexity, upper hemicontinuity and pseudo-monotonicity. We
obtain, in Sect. 3, different results on the existence of solutions of both strong andweak
set-valued equilibrium problems generalizing those in the literature for the single-
valued equilibrium problems in the pseudo-monotone case. Section 4 of this paper
is devoted to the study of Browder variational inclusions involving pseudo-monotone
operators. Our results generalize both those in [24] on Browder variational inclusions,
and those obtained in [7] on Browder–Hartman–Stampacchia variational inequalities.
The reflexivity of the Banach space is omitted, and the improvement concerns also
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Further on set-valued equilibrium... 1791

different other conditions including the continuity and the pseudo-monotonicity of the
involved set-valued operator. We obtain in particular, that the upper semicontinuity
from line segments of the set-valued operator as well as the weak* compactness of
the images of compact sets are no longer needed in the whole space when solving
Browder variational inclusions involving pseudo-monotone set-valued operators.

2 Notations and preliminary results

In all the paper, R =] − ∞,+∞[ denotes the set of real numbers and R =
[−∞,+∞] = R ∪ {−∞,+∞}. We also make use of the following notation:
R+ = [0,+∞[, R∗+ =]0,+∞[, R− = −R+, R∗− = −R

∗+, and R+ = [0,+∞].
In the sequel,Rwill be endowedwith the topology extended from the usual topology

of R, and with the usual operations involving +∞ and −∞. For a subset A of a
Hausdorff topological space X , we denote by cl A, the closure of A.

By a set-valued mapping F : X ⇒ Y , we mean a mapping F from a set X to the
collection of nonempty subsets of a set Y . In the present paper, a mapping f : X → Y
and the set-valued mapping F : X ⇒ Y defined by F (x) = { f (x)} for every x ∈ X ,
will be identified and both will be called a single-valued mapping. That is, a single-
valuedmapping is a ”classical”mappingor a set-valuedmappingwith singleton values.
By a real set-valued mapping, we mean a set-valued mapping with values in R. A real
single-valued mapping is a single-valued mapping with values in R. When R is used
instead of R, we talk about extended real single-valued or extended real set-valued
mappings.

2.1 Concepts of convexity

As mentioned in [8], the notions of convexity and concavity of set-valued mappings
considered in the literature as a generalization of convexity and concavity of real
single-valued mappings, are in fact not limited to real set-valued mappings and not
really adapted to them. Applied to real single-valued mappings, they are stronger than
the convexity and concavity and produce a sort of ”linearity on line segments”. For
more details on the rich field about convexity and related notions of real single-valued
mappings, we refer to [10,13].

Let C be a nonempty convex subset of a real topological Hausdorff vector space.
Recall that in the literature, a real set-valued mapping F : C ⇒ R is said to be convex
on C if whenever {x1, . . . , xn} ⊂ C and {λ1, . . . , λn} ⊂ R+ such that

∑n
i=1 λi = 1,

we have

n∑

i=1

λi F (xi ) ⊂ F

(
n∑

i=1

λi xi

)

,

where the sum denotes here the usual Minkowski sum of sets. The real set-valued
mapping F : C ⇒ R is said to be concave on C if whenever {x1, . . . , xn} ⊂ C and
{λ1, . . . , λn} ⊂ R+ such that

∑n
i=1 λi = 1, we have
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1792 B. Alleche, V. D. Rădulescu

F

(
n∑

i=1

λi xi

)

⊂
n∑

i=1

λi F (xi ) .

Let F : C ⇒ R be an extended real set-valued mapping. Following [8], we say that
F is convexly quasi-convex on C if whenever {x1, . . . , xn} ⊂ C and {λ1, . . . , λn} ⊂
R+ such that

∑n
i=1 λi = 1, then for every {z1, . . . , zn} with zi ∈ F (xi ) for every

i = 1, . . . , n, there exists z ∈ F
(∑n

i=1 λi xi
)
such that

z ≤ max {zi | i = 1, . . . , n} .

Clearly, the convex quasi-convexity of extended real set-valued mappings general-
izes both the convexity of set-valued mappings and the quasi-convexity of extended
real single-valued mappings.

Forλ ∈ R, we set [F ≤ λ] = {x ∈ C | F (x) ∩ [−∞, λ] �= ∅}.With a similar proof
to that of [8, Proposition 2.1] but adapted to the extended real set-valued mappings,
we obtain the following characterization.

Proposition 2.1 Let C be a nonempty convex subset of a real topological Hausdorff
vector space. An extended real set-valued mapping F : C ⇒ R is convexly quasi-
convex on C if and only if the set [F ≤ λ] is convex, for every λ ∈ R.

Following [8], we say that F is concavely quasi-convex on C if whenever
{x1, . . . , xn} ⊂ C and {λ1, . . . , λn} ⊂ R+ such that

∑n
i=1 λi = 1, then for every

z ∈ F
(∑n

i=1 λi xi
)
, there exist {z1, . . . , zn} with zi ∈ F (xi ) for every i = 1, . . . , n

such that

z ≤ max {zi | i = 1, . . . , n} .

Clearly, the concave quasi-convexity of extended real set-valued mappings gener-
alizes both the concavity of set-valued mappings and the quasi-convexity of extended
real single-valued mappings.

For λ ∈ R, we set [F ⊆ λ] = {x ∈ C | F (x) ⊂ [−∞, λ]}. With a similar proof to
that of [[8], Proposition 2.2] but adapted to the extended real set-valued mappings, we
obtain the following characterization.

Proposition 2.2 Let C be a nonempty convex subset of a real topological Hausdorff
vector space. If an extended real set-valued mapping F : C ⇒ R is concavely quasi-
convex on C, then the set [F ⊆ λ] is convex, for every λ ∈ R.

Note that if F is a real single-valued mapping, then [F ≤ λ] = [F ⊆ λ], for every
λ ∈ R. Furthermore, the quasi-convexity, the convex quasi-convexity and the concave
quasi-convexity of F on C are all equivalent.

Now, we introduce the following notion of semistrict quasi-convexity of extended
real set-valued mappings. We say that F is semistrictly convexly quasi-convex on C
if whenever x1, x2 ∈ C such that F (x1) �= F (x2) and λ ∈]0, 1[, then for every
z1 ∈ F (x1) and z2 ∈ F (x2), the following holds
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(1) there exists z ∈ F (λx1 + (1 − λ) x2) such that

z < max {z1, z2} ,

(2) whenever z′ ∈ F (λx1 + (1 − λ) x2), we have

if z′ ≤ max {z1, z2} , then z′ < max {z1, z2} .

Every convex extended real set-valuedmapping and every semistrictly quasi-convex
extended real single-valued mapping is semistrictly convexly quasi-convex extended
real set-valuedmapping. It is known that there is not any inclusion relationship between
the class of semistrictly quasi-convex real single-valued mappings and that of quasi-
convex real single-valued mappings, see [13]. It follows that there is not any inclusion
relationship between the class of semistrictly convexly quasi-convex extended real
set-valued mappings and that of convexly quasi-convex extended real set-valued map-
pings.

Example 1 Let C = [−1, 1] and F : C ⇒ R be the set-valued defined by

F (x) =
{[ 1

2 , 1
]

if x �= 0,
[ 3
2 , 2

]
if x = 0.

The set-valued F is not convexly quasi-convex since for x1 = −1, x2 = 1 and
λ1 = λ2 = 1

2 ,we haveλ1x1+λ2x2 = 0. Then clearly, for z1 ∈ F (x1) and z2 ∈ F (x2),
we have

z > max {z1, z2} ,

for every z ∈ F (λ1x1 + λ2x2). However, F is semistrictly convexly quasi-convex.
Indeed, take x1, x2 ∈ C , and in order to apply the definition, we must assume (without
loss of generality) that x1 = 0 and x2 �= 0. Then for λ ∈]0, 1[, we have

F (λx1 + (1 − λ) x2) = F ((1 − λ) x2) =
[
1

2
, 1

]

and F (x1) =
[
3

2
, 2

]

.

Clearly, for every z1 ∈ F (x1), z2 ∈ F (x2) and z ∈ F (λx1 + (1 − λ) x2), we have
z < max {z1, z2}.
Remark 1 The notion of semistrictly convexly quasi-convex extended real set-valued
mapping will be used in Proposition 3.2 and Proposition 3.4 below where we need
only the Condition 2. The Condition 1 has been used in order to make this notion a
generalization of the notion of semistrictly quasi-convex extended real single-valued
mapping.

In the sequel, an extended real set-valued mappings will be said explicitly convexly
quasi-convex if it is both convexly quasi-convex and semistrictly convexly quasi-
convex. One can consult [11] where the techniques related to explicit quasi-convex
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single-valued mappings have been first used for solving single-valued equilibrium
problems.

2.2 Concepts of continuity

Here, we recall some old and new concepts of continuity of set-valued mappings we
need in the paper.

Let X and Y be two Hausdorff topological spaces and F : X ⇒ Y a set-valued
mapping. Let X and Y be two Hausdorff topological spaces and F : X ⇒ Y
a set-valued mapping. For a subset B of Y , the lower inverse set of B by F is
F− (B) = {x ∈ X | F (x) ∩ B �= ∅}. The upper inverse set of B by F is F+ (B) =
{x ∈ X | F (x) ⊂ B}.

The set-valued mapping F is said to be lower semicontinuous at a point x ∈ X if
whenever V is an open subset of Y such that F (x) ∩ V �= ∅, the lower inverse set
F− (V ) of V by F is a neighborhood of x . The set-valued mapping F is said to be
upper semicontinuous at a point x ∈ X if whenever V is an open subset of Y such
that F (x) ⊂ V , the upper inverse set F+ (V ) of V by F is a neighborhood of x . For
further details on the rich field about continuity of set-valued mappings with different
characterizations, we refer to [20].

Following [6], the set-valued mapping F is lower semicontinuous (resp.upper
semicontinuous) on a subset S of X if it is lower semicontinuous (resp.upper semi-
continuous) at every point of S. In particular, it is proved that a set-valued mapping
F : X ⇒ Y is upper semicontinuous on a subset S of X if and only if for every closed
subset B of Y , F− (B) ∩ S = cl

(
F− (B)

) ∩ S, see [[6], Proposition 2.4.].
Let X be a Hausdorff topological space and F : X ⇒ R an extended real set-

valued mapping. Following [8], the extended real set-valued mapping F is said to
be l-lower (resp.l-upper, resp.u-lower, resp.u-upper) semicontinuous at x ∈ X if for
every λ ∈ R such that F (x) ∩]λ,+∞] �= ∅ (resp.F (x)∩[−∞, λ[�= ∅, resp.F (x) ⊂
]λ,+∞], resp.F (x) ⊂ [−∞, λ[), there exists an open neighborhood U of x such
that F

(
x ′) ∩]λ,+∞] �= ∅ (resp.F

(
x ′) ∩ [−∞, λ[�= ∅, resp.F (

x ′) ⊂]λ,+∞],
resp.F

(
x ′) ⊂ [−∞, λ[), for every x ′ ∈ U .

Obviously, for an extended real single-valued mapping f : X → R, the lower
semicontinuity, the l-lower semicontinuity and the u-lower semicontinuity of f at
x ∈ X are all equivalent. Also, the upper semicontinuity, the l-upper semicontinuity
and the u-upper semicontinuity of f at x ∈ X are all equivalent.

The extended real set-valued mapping F is said to be l-lower (resp.l-upper, resp.u-
lower, resp.u-upper) semicontinuous on a subset S of X if it is l-lower (resp.l-upper,
resp.u-lower, resp.u-upper) semicontinuous at every point of S. One can consult [8]
for the proof of the following results and characterizations.

Proposition 2.3 Let X be a Hausdorff topological space, S a subset of X and F :
X ⇒ R a set-valued mapping. Then, F is

(1) l-lower semicontinuous on S if and only if for every λ ∈ R, we have

F+ ([−∞, λ]) ∩ S = cl
(
F+ ([−∞, λ])

) ∩ S.
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(2) l-upper semicontinuous on S if and only if for every λ ∈ R, we have

F+ ([λ,+∞]) ∩ S = cl
(
F+ ([λ,+∞])

) ∩ S.

(3) u-lower semicontinuous on S if and only if for every λ ∈ R, we have

F− ([−∞, λ]) ∩ S = cl
(
F− ([−∞, λ])

) ∩ S.

(4) u-upper semicontinuous on S if and only if for every λ ∈ R, we have

F− ([λ,+∞]) ∩ S = cl
(
F− ([λ,+∞])

) ∩ S.

2.3 Concepts of continuity on line segments

In the literature, various concepts related to continuity on line segments of single-
valued and set-valued mappings defined on real topological Hausdorff vector spaces
have been introduced and used in different works. Recently in [3], a weak-
ened notion of hemicontinuity of extended real single-valued mappings have been
introduced and employed for the existence of solutions of pseudo-monotone and
quasi-monotone single-valued equilibrium problems. Also in [5], the notion of lower
quasi-hemicontinuity has been introduced and employed for the existence of solutions
of quasi-hemivariational inequalities.

Here, we introduce the notions of upper hemicontinuous and quasi-upper hemi-
continuous extended real set-valued mappings which generalize both the upper
hemicontinuity of extended real single-valued mapping and the lower semicontinuity
of set-valued mappings.

Let X be a real topological Hausdorff vector space. For x, y ∈ X , we put [x, y] =
{λx + (1 − λ) y | λ ∈ [0, 1]}, the line segment starting at x and ending at y. We also
put ]x, y[= [x, y] \ {x, y}. We say that a set-valued mapping F : X ⇒ R is

(1) upper hemicontinuous at a point x ∈ X if whenever x ′ ∈ X , there exists a
sequence (tn)n in ]0, 1[ converging to 0 such that for every z ∈ F (x), there exists
a sequence (zn)n with zn ∈ F

(
tnx ′ + (1 − tn) x

)
for every n, and such that

z ≥ lim sup
n→+∞

zn,

where lim supn→+∞ zn = infn sup
k≥n

zk .

(2) quasi-upper hemicontinuous at a point x ∈ X if whenever x ′ ∈ X there exist a
sequence (tn)n in ]0, 1[ converging to 0, a point z ∈ F (x), and a sequence (zn)n
with zn ∈ F

(
tnx ′ + (1 − tn) x

)
for every n such that

z ≥ lim sup
n→+∞

zn .
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The set-valued mapping F will be said upper hemicontinuous (resp.quasi-upper
hemicontinuous) on X if it is upper hemicontinuous (resp.quasi-upper hemicontin-
uous) at every point of X . It will be said upper hemicontinuous (resp.quasi-upper
hemicontinuous) on a subset S ⊂ X , if it is upper hemicontinuous (resp.quasi-upper
hemicontinuous) at every point of S.

Remark 2 Note that when x �= x ′ in the above definition, then we have tnx ′ +
(1 − tn) x ∈]x ′, x[, for every n.

Proposition 2.4 Let X be a real topological Hausdorff vector space, x ∈ X, and
F : X ⇒ R a set-valued mapping.

1. If F is lower semicontinuous at x, then F is upper hemicontinuous at x.
2. If F has a selection which is upper hemicontinuous at x, then F is quasi-upper

hemicontinuous at x.

Proof The second statement is obvious. The first one comes from the fact that F is
lower semicontinuous at x ∈ X if and only if for every generalized sequence (xλ)λ∈�

converging to x , and for every z ∈ F (x), there exists a generalized sequence (zλ)λ∈�

converging to z such that zλ ∈ F (xλ), for every λ ∈ �, see [[20], Proposition 6.1.4].
��

Even if the existence of continuous selections is subject which is not limited to
lower semicontinuous set-valued mapping, Michael’s selection theorem remains the
pioneering work in this direction which guarantees that every lower semicontinuous
set-valued mapping with nonempty, closed and convex values from a paracompact
space to a Banach space has a continuous selection.

Proposition 2.5 Let X be a real topological Hausdorff vector space and F : X ⇒ R

a set-valued mapping. Suppose that for every x ∈ S and x ′ ∈ X, the restriction of F on[
x ′, x

]
has a upper hemicontinuous selection. Then, F is quasi-upper hemicontinuous

on S.

Remark 3 We remark that in Proposition 2.5, we are interested in the restriction of F
on the line segment

[
x ′, x

]
which is a space that enjoys different important properties.

In comparaison with Michael’s selection theorem, it should be interesting to look for
conditions on F in order to obtain such a upper hemicontinuous selection without
being necessarily continuous.

In many applications, upper hemicontinuous set-valued mappings will be con-
structed from upper semicontinuous set-valued operators from line segments as in
the results of the last section of this paper. However, by modifying an example from
[21], we construct here a quasi-upper hemicontinuous set-valued mapping which is
not lower semicontinuous.

Example 2 Let X = {
(x, y) ∈ R

2 | y > 0
}∪ {(0, 0)} ⊂ R

2 and define the set-valued
mapping F : X ⇒ R

2 by

F ((x, y)) =
{[

4x2
y ,+∞

[
×

[
x4

y2
,+∞

[
if y > 0,

R
2 if y = 0.
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The function f : X ⇒ R
2 defined by

f ((x, y)) =
{(

4x2
y , x4

y2

)
if y > 0,

(0, 0) if y = 0,

is upper hemicontinuous selection of F which is not continuous. Indeed, the hemi-
continuity being obvious, we will just prove that f is not continuous at (0, 0). We
have

lim
x→0
x>0

f
((√

x, x
)) = lim

x→0
x>0

(
4
√
x, 1

) = (0, 1) �= (0, 0) = f ((0, 0)) .

The set-valued mapping F is not lower semicontinuous at (0, 0). Indeed, let V =
B ((0, 0) , 1) be the open ball around (0, 0)with radius 1.We have F ((0, 0))∩V �= ∅,
but for any open neighbourhoodU of (0, 0), we can choose a small enough a > 0 such
that

(√
a, a

) ∈ U . Now, for every (x, y) ∈ F
((√

a, a
))
, we have x ≥ 4

√
a and y ≥ 1.

Then
√
x2 + y2 ≥ 1. It follows that (x, y) /∈ V , and then F

((√
a, a

)) ∩ V = ∅.

3 Existence of solutions of pseudo-monotone set-valued equilibrium
problems

In this section, we deal with the existence of solutions of both strong set-valued equi-
librium problems and weak set-valued equilibrium problems in the pseudo-monotone
case. Not only these results generalize most of the corresponding results in the litera-
ture for single-valued equilibrium problems, including our recent results obtained in
[3–5,7] withmild continuity on the set of coerciveness, but also open theway to further
investigations on set-valued equilibrium problems in the pseudo-monotone case.

We need in the sequel the notion ofKKMmappings and thewell-known intersection
lemma due to Ky Fan, see [15].

Let X be a real topological Hausdorff vector space and M a subset of X . Recall
that a set-valued mapping F : M ⇒ X is said to be a KKMmapping if for every finite
subset {x1, . . . , xn} of M , we have

conv {x1, . . . xn} ⊂
n⋃

i=1

F (xi ) .

It is well known by Ky Fan’s lemma [15] that if

(1) F is a KKM mapping,
(2) F (x) is closed for every x ∈ M and
(3) there exists x0 ∈ M such that F (x0) is compact,

then
⋂

x∈M F (x) �= ∅.
We define the following set-valued mappings �+,�++ : C ⇒ C by

�+ (y) =
{
x ∈ C | �(x, y) ∩ R+ �= ∅

}
∀y ∈ C,
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and

�++ (y) =
{
x ∈ C | �(x, y) ⊂ R+

}
∀y ∈ C.

We remark that �++ (y) ⊂ �+ (y), for every y ∈ C . We also remark that

(1) x0 ∈ C is a solution of the weak set-valued equilibrium problem (Wsvep) if and
only if x0 ∈ ⋂

y∈C �+ (y), and
(2) x0 ∈ C is a solution of the strong set-valued equilibrium problem (Ssvep) if and

only if x0 ∈ ⋂
y∈C �++ (y).

In the sequel, we set

cl�+ (y) = cl
(
�+ (y)

)
and cl�++ (y) = cl

(
�++ (y)

)
,

the closure of �+ (y) and �++ (y) respectively, for every y ∈ C .

Lemma 3.1 Let C be a nonempty convex subset of a real topological vector space.
Let � : C ×C ⇒ R∪ {+∞} be a set-valued mapping, and assume that the following
conditions hold:
(1) �(x, x) ⊂ R+, for every x ∈ C;
(2) � is convexly quasi-convex in its second variable on C.

Then, the set-valuedmappings cl�++:C ⇒ C and cl�+:C ⇒ C areKKMmappings.

Proof It suffices to prove that the set-valued mapping �++:C ⇒ C is a KKM map-
ping. Let {y1, . . . , yn} ⊂ C and {λ1, . . . , λn} ⊂ R+ be such that

∑n
i=1 λi = 1. Put

ỹ = ∑n
i=1 λi yi . By assumption (2), for {z1, . . . , zn} with zi ∈ �(ỹ, yi ) for every

i = 1, . . . , n, there exists z ∈ �(ỹ, ỹ) such that

z ≤ max {zi | i = 1, . . . , n} .

We have z ≥ 0 since �(ỹ, ỹ) ⊂ R+ by assumption (1). It follows that there exists
i0 ∈ {1, . . . , n} such that �

(
ỹ, yi0

) ∩ R
∗− = ∅, which implies that �

(
ỹ, yi0

) ⊂ R+.
Otherwise, all the zi can be taken in R

∗−, and therefore z ∈ R
∗−, which is impossible.

We conclude that

n∑

i=1

λi yi = ỹ ∈ �++ (
yi0

) ⊂
n⋃

i=1

�++ (yi ) ,

which proves that �++ is a KKM mapping. ��
First, we deal with strong set-valued equilibrium problems. The following result
emphasizes the role of upper hemicontinuity when solving set-valued equilibrium
problems. It generalizes [[3],Proposition 1.3] for single-valued mappings.

We define the following set-valued mapping �−− : C ⇒ C by

�−− (y) = {x ∈ C | �(y, x) ⊂ R−} ∀y ∈ C,
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and we set

cl�−− (y) = cl
(
�−− (y)

)
,

the closure of �−− (y), for every y ∈ C .

Proposition 3.2 Let C be a nonempty convex subset of a real topological vector space.
Let � : C × C ⇒ R ∪ {+∞} be a set-valued mapping and suppose the following
assumptions hold:

(1) �(x, x) ⊂ R+, for every x ∈ C ;
(2) � is explicitly convexly quasi-convex in its second variable on C ;
(3) � is upper hemicontinuous in its first variable on a subset S of C.

Then,

⋂

y∈C

(
�−− (y) ∩ S

) ⊂
⋂

y∈C
�++ (y) .

Proof Without loss of generality, we may assume that

⋂

y∈C

(
�−− (y) ∩ S

) �= ∅.

Take x ∈ ⋂
y∈C

(
�−− (y) ∩ S

)
and let y ∈ C be an arbitrary point. By upper hemi-

continuity of � in its first variable on S, let (tn)n be a sequence in ]0, 1[ converging to
0, and for z ∈ �(x, y), let (zn)n be a sequence with zn ∈ �(xn, y) for every n, and
such that

z ≥ lim sup
n→+∞

zn,

where xn = tn y + (1 − tn) x . We have in particular that x ∈ �−− (xn) for every n.
Thus, �(xn, x) ⊂ R−, for every n. By convex quasi-convexity of � in its second
variable, for zn ∈ �(xn, y) and wn

x ∈ �(xn, x), there exists wn ∈ �(xn, xn) such
that

wn ≤ max
{
zn, w

n
x

}
.

We have wn ≥ 0 since �(xn, xn) ⊂ R+. We also have zn ≥ 0. Indeed, assume
that zn < 0. Then wn

x ≥ 0, otherwise wn < 0 which is impossible. This yields that
wn
x = 0 and then, zn < wn

x . Since zn and wn
x are arbitrary in �(xn, y) and �(xn, x)

respectively, then �(xn, y) �= �(xn, x). By semistrict convex quasi-convexity of �

in its second variable, we obtain wn < max
{
zn, wn

x

} = wn
x = 0, which is impossible.

We conclude that

z ≥ lim sup
n→+∞

zn ≥ 0.
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Since z is arbitrary in �(x, y), then x ∈ �++ (y). Since y is arbitrary in C , then
x ∈ ⋂

y∈C �++ (y), which completes the proof. ��
Now,weobtain a result on the existenceof solutions of strong set-valued equilibrium

problems generalizing [[3], Theorem 2.1] and [[7], Theorem 3.2] obtained for single-
valued equilibrium problems.

We say that a bifunction � : C ×C ⇒ R∪ {+∞} is strongly pseudo-monotone on
C if for every x, y ∈ C ,

�(x, y) ⊂ R+ �⇒ �(y, x) ⊂ R−.

Example 3 Define the set-valued mapping � : R × R ⇒ R by

�(x, y) =

⎧
⎪⎨

⎪⎩

[
y2 − x2,+∞[

if |y| > |x | ,
{0} if |y| = |x | ,
]−∞, y2 − x2

]
if |y| < |x | .

Clearly, �(x, x) = �(−x,−x) = �(x,−x) = �(−x, x) = {0}, for every x ∈ R.
If�(x, y) ⊂ R+, then necessarily, we have |y| ≥ |x |. It follows that�(y, x) is either
equal to {0} or to ] − ∞, x2 − y2] which are included in R−. That is, � is strongly
pseudo-monotone on R.

Theorem 3.3 Let C be a nonempty, closed and convex subset of a real topological
vector space. Let � : C ×C ⇒ R∪ {+∞} be a set-valued mapping, and assume that
the following conditions hold:

(1) �(x, x) ⊂ R+, for every x ∈ C ;
(2) � is strongly pseudo-monotone on C,
(3) � is explicitly convexly quasi-convex in its second variable on C ;
(4) there exist a compact set K of C and a point y0 ∈ K such that�(x, y0)∩R

∗− �= ∅,
for every x ∈ C\K ;

(5) � is l-lower semicontinuous in its second variable on K ;
(6) � is upper hemicontinuous in its first variable on K .

Then, the set of solutions of the set-valued equilibrium problem (Ssvep) is nonempty
compact set. It is also convex whenever � is concavely quasi-convex in its second
variable on C and K is convex.

Proof Assumption (1) yields �++ (y) is nonempty, for every y ∈ C . Clearly,
cl�++ (y) is closed for every y ∈ C , and cl�++ (y0) is compact since it lies in
K by assumption (4). Also, the set-valued mapping cl�++ is a KKM mapping by
Lemma 3.1. By using Ky Fan Lemma, we have

⋂

y∈C
cl�++ (y) �= ∅.
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Since the subset cl�++ (y0) is contained in the compact K , then

⋂

y∈C
cl�++ (y) =

⋂

y∈C

(
cl�++ (y) ∩ K

)
.

By strong pseudo-monotonicity, we have �++ (y) ⊂ �−− (y), for every y ∈ X .
We remark that for every y ∈ C , �−− (y) is the upper inverse set �+ (y, ] − ∞, 0])
of ] − ∞, 0] by the set-valued mapping �(y, .) which is l-lower semicontinuous on
K . Then, by Proposition 2.3, we have cl�−− (y)∩K = �−− (y)∩K . It follows that

⋂

y∈C

(
cl�++ (y) ∩ K

) ⊂
⋂

y∈C

(
cl�−− (y) ∩ K

) =
⋂

y∈C

(
�−− (y) ∩ K

)
.

By Proposition 3.2, we have

⋂

y∈C

(
�−− (y) ∩ K

) ⊂
⋂

y∈C
�++ (y) .

This yields that

⋂

y∈C
cl�++ (y) =

⋂

y∈C
�++ (y).

That is, the set of solutions of the set-valued equilibrium problem (Ssvep) is the
nonempty set

⋂
y∈C cl�++ (y) which is compact since it is closed and contained in

the compact set K .
By applyingProposition 2.2, the concave quasi-convexity of� in its second variable

on C yields that the set �−− (y) is convex, for every y ∈ C . Since we also have

⋂

y∈C
cl�++ (y) =

⎛

⎝
⋂

y∈C
�−− (y)

⎞

⎠ ∩ K ,

then the set of solutions of the set-valued equilibrium problem (Ssvep) is convex
whenever K is convex. ��
Now,wedealwithweak set-valued equilibriumproblems. The following result empha-
sizes the role of quasi-upper hemicontinuity when solving set-valued equilibrium
problems. It also generalizes [[3],Proposition 1.3] for single-valued mappings.

We define the following set-valued mapping �− : C ⇒ C by

�− (y) = {x ∈ C | �(y, x) ∩ R− �= ∅} ∀y ∈ C,

and we set

cl�− (y) = cl
(
�− (y)

)
,
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the closure of �− (y), for every y ∈ C .

Proposition 3.4 Let C be a nonempty convex subset of a real topological vector space.
Let � : C × C ⇒ R ∪ {+∞} be a set-valued mapping and suppose the following
assumptions hold:

(1) �(x, x) ⊂ R+, for every x ∈ C ;
(2) � is explicitly convexly quasi-convex in its second variable on C ;
(3) � is quasi-upper hemicontinuous in its first variable on a subset S of C.

Then,

⋂

y∈C

(
�− (y) ∩ S

) ⊂
⋂

y∈C
�+ (y) .

Proof As in the proof of Proposition 3.2, take x ∈ ⋂
y∈C

(
�− (y) ∩ S

)
and let y ∈ C

be an arbitrary point. By quasi-upper hemicontinuity of � in its first variable on S,
let (tn)n be a sequence in ]0, 1[ converging to 0, a point z ∈ �(x, y), and a sequence
(zn)n with zn ∈ �(xn, y) for every n, such that

z ≥ lim sup
n→+∞

zn,

where xn = tn y + (1 − tn) x . By convex quasi-convexity of � in its second variable,
for zn ∈ �(xn, y) and wn

x ∈ �(xn, x) ∩ R−, there exists wn ∈ �(xn, xn) such that

wn ≤ max
{
zn, w

n
x

}
.

By using the semistrict convex quasi-convexity of � in its second variable, we obtain
that zn ≥ 0, and we conclude that

z ≥ lim sup
n→+∞

zn ≥ 0,

which completes the proof. ��
Now,we obtain a result on the existence of solutions of weak set-valued equilibrium

problems generalizing [[3], Theorem 2.1] and [[7], Theorem 3.2] obtained for single-
valued equilibrium problems.

We say that a bifunction � : C × C ⇒ R ∪ {+∞} is weakly pseudo-monotone on
C if for every x, y ∈ C ,

�(x, y) ∩ R+ �= ∅ �⇒ �(y, x) ∩ R− �= ∅.

Example 4 Define the set-valued mapping � : R × R ⇒ R by

�(x, y) =
{
[0,+∞[ if y ≥ x,

]−∞, x − y] if y < x .
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We remark that �(x, y) ∩R− �= ∅, for every x, y ∈ R. Then, � is obviously weakly
pseudo-monotone onR. However,� can not be strongly pseudo-monotone onR since
�(1, 2) = [0,+∞[⊂ R+, but �(2, 1) =] − ∞, 1] �⊂ R−.

We note that for real single-valued mappings, the weak pseudo-monotonicity
coincideswith the strong pseudo-monotonicity, and it is called, in this case, the pseudo-
monotonicity.

Theorem 3.5 Let C be a nonempty, closed and convex subset of a real topological
vector space. Let � : C ×C ⇒ R∪ {+∞} be a set-valued mapping, and assume that
the following conditions hold:
(1) �(x, x) ⊂ R+, for every x ∈ C ;
(2) � is weakly pseudo-monotone on C,
(3) � is explicitly convexly quasi-convex in its second variable on C ;
(4) there exist a compact set K of C and a point y0 ∈ K such that �(x, y0) ⊂ R

∗−,
for every x ∈ C\K ;

(5) � is u-lower semicontinuous in its second variable on K ;
(6) � is quasi-upper hemicontinuous in its first variable on K .

Then, the set of solutions of the set-valued equilibrium problem (Wsvep) is nonempty
compact set. It is also convex whenever K is convex.

Proof As in the proof of Theorem 3.3, cl�+ (y) is nonempty and closed for every
y ∈ C , cl�+ (y0) is compact and the set-valued mapping cl�+ is a KKM mapping.
By using Ky Fan Lemma and since the subset cl�+ (y0) is contained in the compact
K , we have

⋂

y∈C

(
cl�+ (y) ∩ K

) =
⋂

y∈C
cl�+ (y) �= ∅.

By weak pseudo-monotonicity, we have �+ (y) ⊂ �− (y), and by Proposition 2.3,
since� is u-lower semicontinuity in its second variable on K , we have cl�− (y)∩K =
�− (y) ∩ K , for every y ∈ X . It follows that

⋂

y∈C

(
cl�+ (y) ∩ K

) ⊂
⋂

y∈C

(
cl�− (y) ∩ K

) =
⋂

y∈C

(
�− (y) ∩ K

)
.

By Proposition 3.4, we have

⋂

y∈C

(
�− (y) ∩ K

) ⊂
⋂

y∈C
�+ (y) .

This yields that

⋂

y∈C
cl�+ (y) =

⋂

y∈C
�+ (y).
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Then, the set of solutions of the set-valued equilibrium problem (Wsvep) is the
nonempty compact set

⋂
y∈C cl�+ (y). ByProposition 2.1,we have that the set�− (y)

is convex, for every y ∈ C . Since we also have

⋂

y∈C
cl�+ (y) =

⎛

⎝
⋂

y∈C
�− (y)

⎞

⎠ ∩ K ,

then the set of solutions of the set-valued equilibrium problem (Wsvep) is convex
whenever K is convex. ��

4 Browder variational inclusions

In this section, we deal with Browder variational inclusions involving pseudo-
monotone set-valued operators. Browder variational inclusions which generalize
Browder–Hartman–Stampacchia variational inequalities, have many applications,
including applications to nonlinear elliptic boundary value problems and the surjec-
tivity of set-valued mappings, see for example [12,24] and the references therein.

In the sequel, for a real normed vector space X , we denote by X∗, the dual space
of X , and by 〈·, ·〉 the duality pairing between X∗ and X .

Let C be a nonempty, closed and convex subset of a real normed vector space
X . In the literature, some notions of coerciveness for set-valued operators have been
introduced a generalizations of those for linear operators and bilinear forms on Hilbert
spaces. A set-valued operator F : C ⇒ X∗ is said to be coercive on C if there exists
y0 ∈ C such that

lim‖x‖→+∞
x∈C

inf
x∗∈F(x)

〈x∗, x − y0〉 > 0,

or if the stronger condition

lim‖x‖→+∞
x∈C

infx∗∈F(x)〈x∗, x − y0〉
‖x‖ = +∞.

is satisfied. It is not hard to see that under both the two notions of coerciveness of
F , there exists R > 0 such that y0 ∈ KR and infx∗∈F(x)〈x∗, y0 − x〉 < 0, for
every x ∈ C\KR , where KR = {x ∈ C | ‖x‖ ≤ R}. Clearly, KR is weakly compact
whenever X is reflexive. The set KR is called a set of coerciveness, and the couple
(y0, KR) may not be unique. We will never need such a set of coerciveness KR , but a
weakly compact set of coerciveness without requiring the space X to be reflexive.

Recall that a set-valued operator F : C ⇒ E∗ is called pseudo-monotone on C if
for every x, y ∈ C

〈x∗, y − x〉 ≥ 0 �⇒ 〈y∗, x − y〉 ≤ 0 ∀x∗ ∈ F (x) ,∀y∗ ∈ F (y) .
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In the sequel, for x ∈ X and a subset A of X∗, we set

〈A, x〉 = {〈x∗, x〉 | x∗ ∈ A
}
.

Problems of the form: “find x0 ∈ C such that 〈A, x0〉 ⊂ R+” or “find x0 ∈ C such
that 〈A, x0〉 ∩ R+ �= ∅” are called Browder variational inclusions.

Let X and Y be two real Hausdorff topological vector spaces and C is a nonempty
convex subset of X . Following [24], recall that F : C ⇒ Y is said to be upper
semicontinuous from line segments in C at x ∈ C if for every x ′ ∈ C , the restriction
of F on the line segment

[
x ′, x

]
is upper semicontinuous at x . That is, for every

x ′ ∈ C , there exists an open neighborhood U of x such that F (z) ⊂ V , for every
z ∈ U ∩ [

x ′, x
]
. We say that F is upper semicontinuous from line segments in C on

a subset S of C if it is upper semicontinuous from line segments in C at every point
of S.

The following result generalizes [[24], Theorem 1] about the existence of solutions
of Browder variational inclusions in the pseudo-monotone case. It also generalizes
[[7], Proposition 3.1] for the single-valued case corresponding to Browder–Hartman–
Stampacchia variational inequality. We note that a weak* compact set S of X∗ is
norm bounded whenever X is a Banach space or S is convex, see for example [14].
In our result, we do not need the weak* compactness of the images of compact sets
by the set-valued operator, but only the norm boundedness of the images of some line
segments.

Theorem 4.1 Let C be a nonempty, closed and convex subset of a real Banach space
X, and F : C ⇒ X∗ a set-valued operator. Suppose that the following conditions
hold:
(1) F is pseudo-monotone on C ;
(2) there exist a weakly compact subset K of C and y0 ∈ K such that

supz∗∈F(x)〈z∗, y0 − x〉 < 0, for every x ∈ C\K ;
(3) F upper semicontinuous from line segments in C on K to X∗ endowed with the

weak* topology;
(4) F has weak* compact values on C,
(5) For every x ∈ K and x ′ ∈ C, F

([
x ′, x

])
is norm bounded.

Then, there exists x0 ∈ K such that 〈F (x0), y − x0〉 ∩ R+ �= ∅, for every y ∈ C.

Proof First, we define the following extended real single-valued mapping � : C ×
C ⇒ R ∪ {+∞} by

�(x, y) = sup
z∗∈F(x)

〈z∗, y − x〉,

which also, it can be seen as an extended real set-valued mapping. Now, we will verify
for � and X endowed with the weak topology the assumptions of Theorem 3.3 or
Theorem 3.5, where the five first conditions are the same in this case.

Clearly, �(x, x) = 0 ∈ R+, for every x ∈ C . For z ∈ C fixed, the function
z∗ �→ 〈z∗, y − z〉 is weak* continuous on X∗ and therefore, by Weierstrass theorem,
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it attains its maximum on weak* compact sets. Thus, for every x ∈ C , there exists
x∗ ∈ F (x) such that

�(x, y) = 〈x∗, y − x〉,

which provides easily that � is pseudo-monotone on C .
For every x ∈ C and x∗ ∈ F (x), the function y → 〈x∗, y− x〉 is linear and weakly

continuous. Then � being the superior envelope of a family of convex and weakly
lower semicontinuous functions, it is then convex and weakly lower semicontinuous
in its second variable on C .

It remains just to prove that � is upper hemicontinuous in its first variable on K .
We note that the strong topology and the weak topology coincide on line segments of
X . Let y ∈ C be fixed, x ∈ K and x ′ ∈ C . Take a sequence (xn)n in

[
x ′, x

]
converging

to x . Take x∗ ∈ F (x) such that �(x, y) = 〈x∗, y − x〉, and x∗
n ∈ F (xn) such that

�(xn, y) = 〈x∗
n , y − xn〉, for every n.

Suppose first that there exists a ∈ R such that �(xn, y) ≥ a, for every n. We claim
that the sequence

(
x∗
n

)
n has a weak* cluster point x̃∗ ∈ F (x). Indeed, suppose the

contrary holds. Then the weak* compactness of F (x) yields the existence of a weak*
open set V containing F (x) and n0 ∈ N such that x∗

n /∈ V , for every n ≥ n0. The
upper semicontinuity of F from line segments in C at x yields the existence of an
open neighborhood U of x such that F (z) ⊂ V , for every z ∈ U ∩ [

x ′, x
]
. Since

(xn)n is converging to x , let n1 ∈ N be such that xn ∈ U , for every n ≥ n1. Then,
x∗
n ∈ F (xn) ⊂ V , for every n ≥ n1. A contradiction.
Let now

(
x∗
nλ

)
λ∈�

be a subnet of
(
x∗
n

)
n converging to x̃∗ in the weak* topology of

X∗. The subnet
(
xnλ

)
λ∈�

also converges to x , and therefore, for ε > 0, let λ0 ∈ � be
such that for every λ ≥ λ0, we have

‖x − xnλ‖ ≤ ε

2 (‖F ([x ′, x]) ‖ + 1)
,

where ‖F ([
x ′, x

]) ‖ = supz∗∈F([x ′,x]) ‖z∗‖. Let also λ1 ∈ � be such that

‖x̃∗ − x∗
nλ

‖ ≤ ε

2 (‖y − x‖ + 1)
.

Let λ̃ ∈ � be such that λ̃ ≥ λ0 and λ̃ ≥ λ1. It result that for every λ ≥ λ̃, we have

∣
∣〈x̃∗, y − x〉 − 〈x∗

nλ
, y − xnλ〉

∣
∣ = ∣

∣〈x̃∗ − x∗
nλ

, y − x〉 + 〈x∗
nλ

, xnλ − x〉∣∣
≤ ‖x̃∗ − x∗

nλ
‖‖y − x‖ + ‖x∗

nλ
‖‖x − xnλ‖

≤ ε

2
+ ε

2
= ε.

We conclude that

�(x, y) ≥ 〈x̃∗, y − x〉 = lim
λ

〈x∗
nλ

, y − xnλ〉 = lim
λ

� (xλ, y) ≥ a.
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Now,we claim that�(x, y) ≥ lim supn→+∞ �(xn, y). Suppose the contrary holds
and let λ > 0 be such that

�(x, y) + λ < lim sup
n→+∞

�(xn, y) .

Put a = �(x, y) + λ which is then in R (but this also holds from the fact that F (x)
is weak* compact). Now if a subsequence

(
xnk

)
k of (xn)n is such that �

(
xnk , y

) ≥ a
for every k, then by the above statement, we obtain

�(x, y) ≥ a > �(x, y) ,

which is impossible. Then, there exists n0 ∈ N such that �(xn, y) < a, for every
n ≥ n0. It results that

lim sup
n≥n0

n→+∞
�(xn, y) ≤ a < lim sup

n→+∞
�(xn, y) ,

whichyields a contradiction since lim sup n≥n0
n→+∞

�(xn, y) = lim supn→+∞ �(xn, y).

We conclude that �(x, y) ≥ lim supn→+∞ �(xn, y), which completes the proof. ��
Remark 4 We remark that in the proof of Theorem 4.1 above, if we assume the mild
condition of F has weak” compact values only on K instead of all C , we can still
prove that

�(x, y) ≥ a.

Indeed, for δ > 0, let x∗
n ∈ F (xn) be such that 〈x∗

n , y−xn〉 > a−δ, for every n. Using
similar arguments, we state that the sequence

(
x∗
n

)
n has a subnet

(
x∗
nλ

)
λ∈�

converging
to some x̃∗ ∈ F (x) in the weak* topology of X∗. We also obtain that

�(x, y) ≥ 〈x̃∗, y − x〉 = lim
λ

〈x∗
nλ

, y − xnλ〉 ≥ a − δ.

By letting δ go to zero, we conclude that �(x, y) ≥ a.
We note that all the other statements of Theorem 4.1 remain true under this mild

condition except the pseudo-monotonicity of F . In this case, we can assume the fol-
lowing condition:

sup
z∗∈F(x)

〈z∗, y − x〉〉 ≥ 0 �⇒ sup
z∗∈F(y)

〈z∗, x − y〉 ≤ 0 ∀x, y ∈ C,

instead of the pseudo-monotonicity of F .

In order to make further discussion in this subject about the existence of solutions
of Browder variational inclusions, recall that an open half-space in a real Hausdorff
topological vector space E is a subset of the form

{u ∈ E | ϕ (u) < r}
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for some continuous linear functional ϕ on E , not identically zero, and for some real
number r .

Let X be a Hausdorff topological space and E a real Hausdorff topological vector
space. Following [18], a set-valued operator F : C ⇒ Y is said to be upper demi-
continuous at x ∈ X if for every open half-space H containing F (x), there exists
a neighborhood U of x such that F (z) ⊂ H for every z ∈ U . It said to be upper
demicontinuous on X if it is upper demicontinuous at every point of X .

We say that a set-valued operator A : X ⇒ Y is upper demicontinuous from line
segments in X at x ∈ C if for every x ′ ∈ C and every open half-space H containing
F (x), there exists a neighborhoodU of x such that F (z) ⊂ H for every z ∈ U∩[x ′, x].
We say that F is upper demicontinuous from line segments in X on a subset S of C if
it is upper demicontinuous from line segments in X at every point of S.

Proposition 4.2 Let X be a real normed vector space, C a nonempty convex subset
of X and S ⊂ C. If F : C ⇒ X∗ is upper semicontinuous from line segments in X on
S to X∗ endowed with the weak* topology, then F is upper demicontinuous from line
segments in X on S to X∗ endowed with the weak* topology.

Proof Let x ∈ K and consider an open half-space H in X∗ of the form

{
u ∈ X∗ | ϕ (u) < r

}

such that F (x) ⊂ H , where ϕ is a weak* continuous linear functional on X∗, not
identically zero, and r ∈ R. Then, ϕ (F (x)) ⊂] − ∞, r [. Put O = ϕ−1 (] − ∞, r [),
which is aweak* open subset containing F (x). By the upper semicontinuity of F from
line segments in X on S to X∗ endowed with the weak* topology, for every x ′ ∈ C ,
there exists a neighborhood U of x such that F (z) ⊂ O , for every z ∈ U ∩ [

x ′, x
]
.

That is, F (z) ⊂ H , for every z ∈ U ∩ [
x ′, x

]
. ��

It is not clear at the stage of development whether upper semicontinuity from line
segments in C in Theorem 4.1 can be weakened to upper demicontinuity or to upper
demicontinuity from line segments in C .

5 Conclusion

In order to better understand the optimal conditions for solving Browder variational
inclusions, we have been led to consider and study set-valued equilibrium problems.
Our investigations have brought to light various concepts of convexity, semicontinuity
and hemicontinuity involving half intervals rather than open sets. We have obtained
results on the existence of solutions of set-valued equilibrium problems in the pseudo-
monotone case generalizing the corresponding ones for single-valued equilibrium
problems. Browder variational inclusions in the pseudo-monotone case rather than
the monotone one have been investigated without the reflexivity of the real normed
vector spaces and under weakened conditions on the involved set-valued operator.
More advancements and applications to nonlinear elliptic boundary value problems
and to the surjectivity of set-valued mappings as well as to other important real world
problems, constitute a challenge for further investigations.
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