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Abstract. We are concerned with the study of the Lane-Emden equation
with variable exponent and Dirichlet boundary condition. The feature of this
paper is that the analysis that we develop does not assume any subcritical
hypotheses and the reaction can fulfill a mixed regime (subcritical, critical,
and supercritical). We consider the radial and the nonradial cases, as well as
a singular setting. The proofs combine variational and analytic methods with

a version of the Palais principle of symmetric criticality.

1. Introduction and abstract setting

Let Ω ⊆ R
N be a bounded regular connected open set and assume that p, q ∈

(1,∞). The Lane-Emden problem

(1)

⎧⎨
⎩

−Δpu = |u|q−2u in Ω,
u = 0 on ∂Ω,
u �≡ 0 in Ω,

and its numerous versions play a central role in the qualitative analysis of nonlinear
elliptic equations. Usually, this analysis is developed in relationship with the values
of q with respect to the Sobolev critical exponent p∗ of p, which is defined by

p∗ =

{ Np
N−p if 1 < p < N,

+∞ if p � N.

The following three basic situations can occur:
(i) q < p∗ (subcritical case). Then the associated energy functional is either

coercive (if q < p) or has a mountain pass geometry and satisfies the Palais-Smale
condition (if q > p), hence problem (1) has at least one solution. The case p = q
corresponds to an eigenvalue problem, so we cannot exclude a nonexistence prop-
erty.

(ii) q = p∗, provided that 1 < p < N (critical case). In this case, the topology
of Ω plays a crucial role. We recall the following basic result of Bahri and Coron
[2]. Let Hd(Ω;Z2) denote the homology of dimension d of Ω with Z2-coefficients.
The Bahri-Coron theorem states that if there exists a positive integer d such that
Hd(Ω;Z2) �= 0, then problem (1) has at least one positive solution. In particular,
if p = 2, N = 3, q = 6, and Ω is not contractible, then problem (1) has at least one
positive solution.

Received by the editors November 11, 2019.
2010 Mathematics Subject Classification. Primary 35J20; Secondary 35J75, 35J92, 35P30.
Key words and phrases. Lane-Emden equation, double-phase energy, variable exponent, non-

homogeneous differential operator, Palais principle of symmetric criticality.

c©2020 American Mathematical Society

2937

https://www.ams.org/proc/
https://www.ams.org/proc/
https://doi.org/10.1090/proc/15050


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2938 C. O. ALVES AND V. D. RĂDULESCU

(iii) q > p∗, provided that 1 < p < N (supercritical case). This situation is
delicate and a major role is played by the geometry of Ω. For instance, if Ω is
starshaped then problem (1) does not have any solution (by Pohozaev’s identity).
Also, if Ω is an annulus, problem (1) always has at least one solution.

In the case of variable exponents, the Lane-Emden problem (1) becomes

(2)

⎧⎨
⎩

−Δp(x)u = |u|q(x)−2u in Ω,
u = 0 on ∂Ω,
u �≡ 0 in Ω,

where Δp(x)u := div (|∇u|p(x)−2∇u). In this case, the critical exponent of p(x)
depends on the point and it is defined by

p∗(x) =

{
Np(x)
N−p(x) if 1 < p(x) < N,

+∞ if p(x) � N.

Problem (2) and its versions have been intensively studied in several recent
works, in relationship with numerous applications to non-Newtonian fluids, image
reconstruction, etc. We refer to Rădulescu and Repovš [25] for a comprehensive
study of several classes of nonlinear problems with variable exponent. For instance,
in [25] the problem

(3)

⎧⎨
⎩

−Δp(x)u = λ |u|q(x)−2u in Ω,
u = 0 on ∂Ω,
u �≡ 0 in Ω,

is studied under the following hypotheses:
(h1) 1 < minx∈Ω q(x) < minx∈Ω p(x) < maxx∈Ω q(x);

(h2) q(x) < p∗(x) for all x ∈ Ω.
Theorem 3 in [25, p. 43] studies the case of low perturbations of the reaction and

establishes that there exists λ∗ > 0 such that problem (3) has at least one solution
for all λ ∈ (0, λ∗).

Hypothesis (h2) corresponds to the subcritical case. However, the presence of
variable exponents allows the following almost critical case: there is z ∈ Ω such that
q(x) < p∗(x) for all x ∈ Ω\{z} and q(z) = p(z). In this direction, we refer to Alves,
Ercole, and Huamán Bolaños [1], where the problem (3) has been considered with
p(x) = 2 and q(x) a functional that has a critical growth in a subset Ω. By using
variational methods combined with the Lions concentration-compactness principle
[15], the authors proved the existence of ground state solutions.

Furthermore, problem (2) can fulfill even a “subcritical-critical-supercritical”
triple regime, in the sense that Ω = Ω1 ∪ Ω2 ∪ Ω3 and

q(x) < p∗(x) if x ∈ Ω1;

q(x) = p∗(x) if x ∈ Ω2;

q(x) > p∗(x) if x ∈ Ω3.

To the best of our knowledge, nonlinear PDEs with variable exponent and multiple
regime (subcritical, critical, and supercritical) have not been considered in the
literature. The present paper is the first study dedicated to the qualitative analysis
of the Lane-Emden equation with variable exponent and multiple regime. We
consider the radial and the nonradial cases, as well as a singular setting. More
precisely, in Section 2 we study the case where Ω is a ball centered at origin. In
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this abstract framework, a key role in the proofs is played by a recent version of
the Palais principle of symmetric criticality developed by Kobayashi and Ôtani
[14, Theorem 2.2]. Let E be a Banach space on which a symmetric group G acts
and let J be a G-invariant functional defined on E. We recall that Palais [21] gave
some sufficient conditions to guarantee the principle of symmetric criticality, in the
sense that every critical point of J restricted to the subspace of G-symmetric points
becomes also a critical point of J on the whole space E. This principle has been
generalized by Kobayashi and Ôtani [14] to the case where J is not differentiable
within the setting that does not require the full variational structure, under the
hypothesis that the action of G is isometry or G is compact. In Sections 3 and 4,
we study the case where Ω is not a ball centered at origin, which is more delicate
because we cannot use the principle of symmetric criticality mentioned above. In
both sections we are concerned with the existence of nontrivial solutions in the
nonradial case. We overcome the lack of symmetry properties by developing a new
strategy; see the proof of Theorem 5 for more details. In the last section of the
present paper we are concerned with a singular setting, which corresponds to a
vanishing potential.

1.1. Variable exponent Lebesgue and Sobolev spaces. In this subsection, we
recall some results on variable exponent Lebesgue and Sobolev spaces. For more
details we refer to [10, 11, 25] and their references.

Let p ∈ L∞(RN ) with p− := essinfx∈RN p(x) > 1. The variable exponent
Lebesgue space Lp(x)(RN ) is defined by

Lp(x)(RN ) =

{
u : RN → R

∣∣∣∣u is measurable and

∫
RN

|u|p(x) dx < ∞
}

endowed with the norm

|u|p(x) = inf

{
λ > 0

∣∣∣∣
∫
RN

∣∣∣u
λ

∣∣∣p(x) dx � 1

}
.

The variable exponent Sobolev space is defined by

W 1,p(x)(RN ) =
{
u ∈ Lp(x)(RN )

∣∣∣ |∇u| ∈ Lp(x)(RN )
}

with the norm

‖u‖1,p(x) = |u|p(x) + |∇u|p(x) .

With these norms, the spaces Lp(x)(RN ) and W 1,p(x)(RN ) are reflexive and sepa-
rable Banach spaces.

Proposition 1. The functional ρ : W 1,p(x)(RN ) → R defined by

(4) ρ(u) =

∫
RN

(
|∇u|p(x) + |u|p(x)

)
dx

has the following properties:

(i) If ‖u‖1,p(x) � 1, then ‖u‖p−
1,p(x) � ρ(u) � ‖u‖p+

1,p(x).

(ii) If ‖u‖1,p(x) � 1, then ‖u‖p+

1,p(x) � ρ(u) � ‖u‖p−
1,p(x).

In particular, ρ(u) = 1 if and only if ‖u‖1,p(x) = 1 and if (un) ⊂ W 1,p(x)(RN ), then

‖un‖1,p(x) → 0 if and only if ρ(un) → 0.
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Remark 1. For the functional ξ : Lp(x)(RN ) → R given by

ξ(u) =

∫
RN

|u|p(x) dx,

the conclusion of Proposition 1 also holds, for example, if (un) ⊂ Lp(x)(RN ), then
|un|p(x) → 0 if and only if ξ(un) → 0. Moreover, from (i) and (ii),

(5) |u|p(x) � max

{(∫
RN

|u|p(x) dx
)1/p−

,

(∫
RN

|u|p(x) dx
)1/p+

}
.

Related to the Lebesgue space Lh(x)(RN ), we have the following generalized
Hölder-type inequality.

Proposition 2 ([20, p. 9]). For p ∈ L∞(RN ) with p− > 1, let p′ : RN → R be
such that

1

p(x)
+

1

p′(x)
= 1, a.e. x ∈ R

N .

Then, for any u ∈ Lp(x)(RN ) and v ∈ Lp′(x)(RN ),

(6)

∣∣∣∣
∫
RN

uv dx

∣∣∣∣ �
(

1

p−
+

1

p′−

)
|u|p(x) |v|p′(x) .

Proposition 3 ([11, Theorems 1.1, 1.3]). Let p : RN → R be a Lipschitz continuous
satisfying 1 < p− � p+ < N and let t : RN → R be a measurable function.

(i) If p � t � p∗, the embedding W 1,p(x)(RN ) ↪→ Lt(x)(RN ) is continuous.

(ii) If p � t � p∗, the embedding W 1,p(x)(RN ) ↪→ L
t(x)
loc (RN ) is compact.

The Lebesgue and Sobolev spaces with variable exponents coincide with the usual
Lebesgue and Sobolev spaces provided that p is constant. According to [25, pp. 8-9],
these function spaces Lp(x)(RN ) and W 1,p(x)(RN ) have some nonusual properties,
such as:

(i) Assuming that 1 < p− � p+ < ∞ and p : Ω → [1,∞) is a smooth function,
then the following co-area formula:∫

Ω

|u(x)|pdx = p

∫ ∞

0

tp−1 |{x ∈ Ω; |u(x)| > t}| dt

has no analogue in the framework of variable exponents.
(ii) Spaces Lp(x)(RN ) do not satisfy the mean continuity property. More exactly,

if p is nonconstant and continuous in an open ballB, then there is some u ∈ Lp(x)(B)
such that u(x+ h) �∈ Lp(x)(B) for every h ∈ R

N with arbitrary small norm.
(iii) Function spaces with variable exponent are never invariant with respect to

translations. The convolution is also limited. For instance, the classical Young
inequality

|f ∗ g|p(x) � C |f |p(x) ‖g‖L1

remains true if and only if p is constant.
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1.2. Double-phase problems and their historical traces. Let Ω be a bounded
domain in R

N (N � 2) with a smooth boundary. If u : Ω → R
N is the displacement

and Du is the N ×N matrix of the deformation gradient, then the total energy can
be represented by an integral of the type

(7) I(u) =

∫
Ω

f(x,Du(x))dx,

where the energy function f = f(x, ξ) : Ω×R
N×N → R is quasiconvex with respect

to ξ; see Morrey [19]. One of the simplest examples considered by Ball is given by
functions f of the type

f(ξ) = g(ξ) + h(det ξ),

where det ξ is the determinant of the N × N matrix ξ, and g, h are nonnegative
convex functions, which satisfy the growth conditions

g(ξ) � c1 |ξ|p; lim
t→+∞

h(t) = +∞,

where c1 is a positive constant and 1 < p < N . The condition p � N is necessary
to study the existence of equilibrium solutions with cavities, that is, minima of
the integral (7) that are discontinuous at one point where a cavity forms; in fact,
every u with finite energy belongs to the Sobolev space W 1,p(Ω,RN ), and thus it
is a continuous function if p > N . In accordance with these problems arising in
nonlinear elasticity, Marcellini [16–18] considered continuous functions f = f(x, u)
with unbalanced growth that satisfy

c1 |u|p � |f(x, u)| � c2 (1 + |u|q) for all (x, u) ∈ Ω× R,

where c1, c2 are positive constants and 1 � p � q. Regularity and existence of
solutions of elliptic equations with p, q–growth conditions were studied in [17].

The study of nonautonomous functionals characterized by the fact that the en-
ergy density changes its ellipticity and growth properties according to the point
has been continued by Mingione et al. [4–6, 8, 9], Rădulescu et al. [3, 7, 22–24, 27],
etc. These contributions are in relationship with the work of Zhikov [28,29], which
describe the behavior of phenomena arising in nonlinear elasticity. In fact, varia-
tional problems with nonstandard integrands were introduced at the beginning of
the 1980s and were studied in the context of averaging and the Lavrent’ev phenom-
enon. Zhikov provided models for strongly anisotropic materials in the context of
homogenization. In particular, he considered the following model functional:

(8) Pp,q(u) :=

∫
Ω

(|Du|p + a(x)|Du|q)dx, 0 � a(x) � L, 1 < p < q,

where the modulating coefficient a(x) dictates the geometry of the composite made
of two differential materials, with hardening exponents p and q, respectively.

Another significant model example of a functional with (p, q)–growth studied by
Mingione et al. is given by

u �→
∫
Ω

|Du|p log(1 + |Du|)dx, p � 1,

which is a logarithmic perturbation of the p-Dirichlet energy.
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2. Problem 1: The radial case

In this section we consider p, q,m, a : BR(0) → R four continuous functions
satisfying:

(H1)

{
1 < p− = minx∈BR(0) p(x) � maxx∈BR(0) p(x) = p+ < N,

1 < m− = minx∈BR(0) m(x) � maxx∈BR(0)m(x) = m+ < N,

(H2) 0 � a(x) � L ∀x ∈ BR(0),

(H3) p(x) = p(|x|), a(x) = a(|x|) and q(x) = q(|x|) ∀x ∈ BR(0).

We assume that there exists 0 < r < R such that
(H4)
q(x) � 0 ∀x ∈ Ω and p+ < qr− = min

x∈Br(0)
q(x) � max

x∈Br(0)
q(x) = qr+ < min

x∈Ω
p∗(x).

Note that q is subcritical in Br(0), but there is no hypotheses on the function q
in the annulus AR,r = BR(0) \Br(0), hence q can have a supercritical growth close
to the boundary. However, note that for any t ∈ (0, R) we have the continuous
embedding

W 1,p(x)(BR(0)) ↪→ W 1,p−(AR,t)

and the compact embedding

W
1,p−
rad (AR,t) ↪→ C(AR,t),

which is due to Strauss [26].
Therefore the embedding

(9) W
1,p(x)
rad (BR(0)) ↪→ C(AR,t)

is compact, where

W
1,p(x)
rad (BR(0)) = {u ∈ W 1,p(x)(BR(0)) u(x) = u(|x|) a.e x ∈ BR(0)}.

Hence, it follows that the embedding

(10) W
1,p(x)
rad (BR(0)) ↪→ Lq(x)(BR(0))

is also compact, which is crucial in our approach.
In what follows, Δp(x) denotes the well-known p(x)-Laplacian operator and

Δm(x),a(x) is the differential operator defined by

Δm(x),a(x)u = div (a(x)|∇u|m(x)−2∇u).

Moreover, when a �= 0, we set

E = W
1,p(x)
0 (BR(0)) ∩W

1,m(x)
a(x),0 (BR(0)),

where W
1,m(x)
a(x),0 (BR(0)) is the usual space W

1,m(x)
0 (BR(0)), endowed with the norm

‖∇u‖m(x),a(x) = inf

{
λ > 0

∣∣∣∣∣
∫
RN

a(x)

∣∣∣∣ |∇u|
λ

∣∣∣∣
m(x)

dx � 1

}
.

Hereafter, we endow E with the norm

‖u‖ = ‖∇u‖p(x) + ‖∇u‖m(x),a(x).
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We observe that if a = 0, then E = W
1,p(x)
0 (BR(0)) and ‖ ‖ is exactly the usual

norm in W
1,p(x)
0 (BR(0)).

From the definition of E, we have the continuous embedding

E ↪→ W
1,p(x)
0 (BR(0)).

This fact combined with (10) implies that the embedding

(11) Erad(BR(0)) ↪→ Lq(x)(BR(0))

is also compact, where

Erad = W
1,p(x)
rad,0 (BR(0)) ∩W

1,m(x)
rad,0 (BR(0)).

In what follows, BR denotes the ball BR(0).

Theorem 4. Assume that conditions (H1)-(H4) are fulfilled. Then the following
nonhomogeneous boundary value problem:

(P1)

{
−Δp(x)u−Δm(x),a(x)u = |u|q(x)−2u in BR,
u = 0 on ∂BR,

has a nontrivial solution in E.

Proof. The natural candidate to be the energy associated to problem (P1) is the
following double-phase functional with variable exponents:

I(u) =

∫
BR

(
1

p(x)
|∇u|p(x) + a(x)

m(x)
|∇u|m(x)

)
dx−

∫
BR

1

q(x)
|u|q(x) dx.

However, this functional is not well defined on the whole space E because we do
not assume any growth condition on q in the annulus AR,r. In what follows we will
restrict I to Erad, because I ∈ C1(Erad,R) and for all u, v ∈ Erad

I ′(u)v =

∫
BR

(|∇u|p(x)−2∇u∇v + a(x)|∇u|m(x)−2∇u∇v) dx−
∫
BR

|u|q(x)−2uv dx.

Now, it is easy to prove that I satisfies the mountain pass geometry and also the
(PS) condition, because we have the compact embedding (10). From this, we can
apply the mountain pass theorem to find a nontrivial critical point u ∈ Erad.

Our goal is to prove that u is in fact a critical point of I in the whole space
E. However, we cannot apply directly the Palais principle of symmetric criticality,
because I is not well defined in whole E. In order to overcome this difficulty, we
will use the following trick: consider the function

g(x, t) = ξ(|x|)|t|q(x) + (1− ξ(|x|))|u(x)|q(x) ∀x ∈ BR,

where ξ ∈ C∞([0, R],R) satisfies

ξ(x) =

{
1, x ∈ x ∈ B r

2
(0),

0, x ∈ x ∈ BR(0) \B 3r
5
(0).

Since u ∈ C(AR, r2
) ( see (9)), it follows from (H4) that

|g(x, t)| � C(|t|qr+ + 1) ∀(x, t) ∈ BR × R.

This fact implies that g has a subcritical growth. Consider the nonlinear problem

(Pg)

{
−Δp(x)w −Δm(x),a(x)w = g(x,w) in BR,
w = 0 on ∂BR,
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whose associated energy is given by

J(w) =

∫
BR

(
1

p(x)
|∇w|p(x) + a(x)

m(x)
|∇w|m(x)

)
dx−

∫
BR

G(x,w) dx,

where G(x, t) =
∫ t

0
g(x, s) ds.

Since g is subcritical, it follows that J is well defined in the whole space E,
J ∈ C1(E,R) and

J ′(u)v =

∫
BR

(|∇w|p(x)−2∇w∇v + a(x)|∇w|m(x)−2∇w∇v) dx

−
∫
BR

g(x,w)v dx ∀u, v ∈ E.

Since

g(x, u(x)) = |u|q(x)−2u(x) ∀x ∈ BR,

we see that u is a critical point of J restricted to Erad. Now we can apply the Palais
principle of symmetric criticality developed by Kobayashi and Ôtani [14, Theorem
2.2] to conclude that u is a nontrivial critical point of J in the whole E. �

3. Problem 2: The nonradial case

In this section, we study the existence of nontrivial solutions for the following
problem:

(P2)

{
−Δp(x)u−Δm(x),a(x)u = |u|q(x)−2u in Ω,
u = 0 on ∂Ω,

where Ω is a bounded domain with smooth boundary. We assume that there exist
positive numbers r < R such that BR ⊂ Ω and

a(x) = a0 for all x ∈ AR,r.

Related to the functions p, q,m, a : Ω → R, we assume that they are continuous
and satisfy the following conditions:

(H5)

{
1 < p− = minx∈Ω p(x) � maxx∈Ω p(x) = p+ < N,
1 < m− = minx∈Ω m(x) � maxx∈Ω m(x) = m+ < N,

(H6) 0 � a(x) � L ∀x ∈ Ω,

(H7) p(x) = p(|x|) and q(x) = q(|x|) ∀x ∈ AR,r,

and
(H8)
q(x)�0 ∀x∈Ω and p+|! <qA−= min

x∈Ω\AR,r

q(x)=qA+ � max
x∈Ω\AR,r

q(x)<min
x∈Ω

p∗(x).

We point out that we are not assuming any growth condition on q in the annulus
AR,r, hence q can have a supercritical growth in that region.

Theorem 5. Assume that hypotheses (H5)-(H8) are fulfilled. Then problem (P2)
has a nontrivial solution in E.
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Proof. The energy associated to problem (P2) is the following double-phase varia-
tional integral with variable exponents:

I(u) =

∫
Ω

(
1

p(x)
|∇u|p(x) + a(x)

m(x)
|∇u|m(x)

)
dx−

∫
Ω

1

q(x)
|u|q(x) dx.

However, since we do not assume any growth condition on q in the annulus AR,r

I is not well defined on the whole E. Keeping this in mind, we will restrict the
function I to the closed subspace X ⊂ E given by

X = {u ∈ E : u(x) = u(|x|) a.e. x ∈ AR,r}.
Arguing as in Section 2, we observe that the compact embedding (10) still holds in
the present case, hence I ∈ C1(X,R) and

I ′(u)v =

∫
Ω

(|∇u|p(x)−2∇u∇v + a(x)|∇u|m(x)−2∇u∇v) dx

−
∫
Ω

|u|q(x)−2uv dx ∀u, v ∈ X.

Moreover, I also satisfies the (PS) condition in X. Therefore, we can use the
mountain pass theorem to get a nontrivial critical point u0 ∈ X of I, that is,
(12)∫

Ω

(|∇u0|p(x)−2∇u∇v + a(x)|∇u0|m(x)−2∇u∇v) dx =

∫
Ω

|u0|q(x)−2uv dx ∀v ∈ X.

Now, we are going to show that u0 is, in fact, a critical point of I. For this purpose
we cannot use the Palais principle used in Section 2, because Ω is not a ball. Here,
the trick is the following: for all ϕ ∈ X0(AR,r) = {u ∈ X : u = 0 on ∂(AR,r)}
we have∫
AR,r

(|∇u0|p(x)−2∇u∇v+ a(x)|∇u0|m(x)−2∇u∇v) dx−
∫
AR,r

|u0|q(x)−2u0ϕdx = 0.

Since p(x) = p(|x|), q(x) = q(|x|), and a(x) = a0, the regularity theory ensures
that the function

f(s) = sN−1(|u′(s)|p(s)−2u(s) + a0|u′
0(s)|p(s)−2u(s))

is of class C1 in the interval (r, R) and satisfies the following equality, in the classical
sense:

(sN−1(|u′
0(s)|p(s)−2u(s) + a0|u′

0(s)|p(s)−2u(s)))′

= sN−1|u0(s)|q(s)−2u0(s), s ∈ (r, R).

It follows that for all ψ ∈ E0(AR,r)
(13)∫
AR,r

(|∇u0|p(x)−2∇u0∇ψ+a(x)|∇u0|m(x)−2∇u∇ψ) dx−
∫
AR,r

|u0|q(x)−2u0ψ dx = 0,

where E0(AR,r) = {u ∈ E : u = 0 on ∂(AR,r)}.
Using the above information, we are ready to prove that∫

Ω

(|∇u0|p(x)−2∇u0∇v + a(x)|∇u0|m(x)−2∇u∇v) dx

−
∫
Ω

|u0|q(x)−2u0v dx = 0 ∀v ∈ E.
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In what follows, we consider an even function φ ∈ C∞(R,R) satisfying

0 � φ(s) � 1 ∀s ∈ R,

φ(s) = 0 ∀s ∈ [−1, 1],

and

φ(s) = 1 ∀s ∈ (−∞,−2] ∪ [2,+∞).

For ε > 0 small enough and v ∈ C∞
0 (BR) ⊂ E0(BR) = {u ∈ E : u =

0 on ∂(BR)}, we set the function

vε(x) = φ((|x| − r)/ε)v(x) ∀x ∈ Ω.

From the definition of vε, we have that vε ∈ E0(Br(0)) ⊂ X and vε ∈ E0(AR,r).
Thus, by (12) and (13),∫
Br(0)

(|∇u0|p(x)−2∇u0∇vε+a(x)|∇u0|m(x)−2∇u∇vε) dx−
∫
Br(0)

|u0|q(x)−2u0vεdx=0

and∫
AR,r

(|∇u0|p(x)−2∇u0∇vε + a(x)|∇u0|m(x)−2∇u∇vε) dx−
∫
AR,r

|u0|q(x)−2u0vεdx=0,

leading to∫
Ω

(|∇u0|p(x)−2∇u0∇vε ++a(x)|∇u0|m(x)−2∇u∇vε) dx−
∫
Ω

|u0|q(x)−2u0vε dx = 0

or equivalently

(14)

∫
Ω
|∇u0|p(x)−2∇u0∇vφε dx+

∫
Ω
|∇u0|p(x)−2∇u0∇φεv dx

+
∫
Ω
|∇u0|p(x)−2∇u0∇vφε dx+

∫
Ω
a(x)|∇u0|m(x)−2∇u0∇φεv dx

−
∫
BR

|u0|q(x)−2u0vφε dx = 0,

where

φε(x) = φ((|x| − r))/ε) ∀x ∈ R
N .

The Lebesgue dominated convergence theorem ensures that

(15) lim
ε→0

∫
Ω

|∇u0|p(x)−2∇u0∇vφε dx =

∫
Ω

|∇u0|p(x)−2∇u0∇v dx,

(16) lim
ε→0

∫
Ω

a(x)|∇u0|m(x)−2∇u0∇vφε dx =

∫
Ω

a(x)|∇u0|m(x)−2∇u0∇v dx,

and

(17) lim
ε→0

∫
Ω

|u0|q(x)−2u0vφε dx =

∫
Ω

|u0|q(x)−2u0v dx.

On the other hand, it is very important to observe that∫
Ω

|∇u0|p(x)−2∇u0∇φεv dx =

∫
Aε

|∇u0|p(x)−2∇u0∇φεv dx,

where

Aε = {x ∈ Ω : ||x| − r| � 2ε}.
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Thus, by the Lebesgue dominated convergence theorem,

lim
ε→0

∫
Aε

|∇u0|p(x) dx = 0,

and so,

lim
ε→0

‖∇u0‖p(x),Aε
= 0.

On the other hand, since v ∈ C∞
0 (BR), we have that∫

RN

|∇φε(x)|p+ |v(x)|p+ dx � |v|p+
∞

∫
RN

|∇φε(x)|p+ dx

� |v|p+
∞ εN−p+

∫
Aε

∣∣∣φ′
(
|z| − r

ε

)∣∣∣p+

dz;

then ∫
RN

|∇φε(x)|p+ |v(x)|p+ dx

� CN |φ′|p+
∞ |v|p+

∞ εN−p+((r + 2ε)N − (r − 2ε)N ) → 0 as ε → 0.

A similar argument works to prove that∫
RN

|∇φε(x)|p− |v(x)|p− dx → 0 as ε → 0.

From this,

‖|∇φε||v|‖p(x) → 0 as ε → 0.

Hence, by using again Hölder’s inequality, we get

(18) lim
ε→0

∫
Ω

|∇u0|p(x)−2∇u0∇φεv dx = 0.

A similar argument gives

(19) lim
ε→0

∫
Ω

a(x)|∇u0|m(x)−2∇u0∇φεv dx = 0.

Taking the limit of ε → 0 in (14) and using (15)-(19), we obtain for all v ∈
C∞

0 (BR)∫
Ω

(|∇u0|p(x)−2∇u0∇v + a(x)|∇u0|m(x)−2∇u0∇v) dx−
∫
Ω

|u0|q(x)−2u0v dx = 0;

then by density∫
Ω

(|∇u0|p(x)−2∇u0∇v + a(x)|∇u0|m(x)−2∇u0∇v) dx(20)

−
∫
Ω

|u0|q(x)−2u0v dx = 0 ∀v ∈ E0(BR).

Now, we show that the above equality holds for any w ∈ C∞
0 (Ω) ⊂ E. The idea

is as above; we set the function

wε(x) = φ((|x| −R)/ε)w(x) ∀x ∈ Ω,

which belongs to E0(BR) and E0(Ω \BR) ⊂ E. Since wε|Ω\BR
∈ E, it follows that∫

Ω\BR

(|∇u0|p(x)−2∇u0∇wε+|∇u0|m(x)−2∇u0∇wε) dx−
∫
Ω\BR

|u0|q(x)−2u0wε dx=0.
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On the other hand, as wε|BR
∈ E0(BR), by (20),∫

BR

(|∇u0|p(x)−2∇u0∇wε+a(x)|∇u0|m(x)−2∇u0∇wε) dx−
∫
BR

|u0|q(x)−2u0wε dx=0.

Combining the last two equalities we obtain
(21)∫
Ω

(|∇u0|p(x)−2∇u0∇wε+a(x)|∇u0|m(x)−2∇u0∇wε) dx−
∫
Ω

|u0|q(x)−2u0wε dx = 0.

Now, the same argument used for function vε works to conclude that taking the
limit ε → 0 in (21) we obtain∫

Ω

(|∇u0|p(x)−2∇u0∇w + a(x)|∇u0|m(x)−2∇u0∇w) dx

−
∫
Ω

|u0|q(x)−2u0w dx = 0 ∀w ∈ C∞
0 (Ω).

Again by density, we have that∫
Ω

(|∇u0|p(x)−2∇u0∇w + a(x)|∇u0|m(x)−2∇u0∇w) dx

−
∫
Ω

|u0|q(x)−2u0w dx = 0 ∀w ∈ E,

showing that u0 is a nontrivial solution of (P2). �

4. Problem 3: The case where q vanishes close to the boundary

In this section, we study the existence of nontrivial solutions for the following
class of problems:

(P3)

{
−Δp(x)u−Δm(x),a(x)u = λ|u|q(x)−2u in Ω,
u = 0 on ∂Ω,

where λ > 0 is a parameter and Ω is a bounded domain with smooth boundary.
We assume that there exist positive numbers r < R such that BR(0) ⊂ Ω,

AR,r ⊂ Ωδ and a(x) = a0 ∀x ∈ AR,r,

where

Ωδ = {x ∈ Ω : dist (x, ∂Ω) > δ}.
Related to the functions p, q,m, a : Ω → R, we assume that they are continuous

and satisfy the following conditions:

(H9)

{
1 < p− = minx∈Ω p(x) � maxx∈Ω p(x) = p+ < N,
1 < m− = minx∈Ω m(x) � maxx∈Ω m(x) = m+ < N.

(H10) max{p+,m+} < qA− = min
x∈Ωδ\AR,r

q(x) � qA+ = max
x∈Ωδ\AR,r

q(x) < min
x∈Ω

p∗(x),

(H11) 0 � a(x) � L ∀x ∈ Ω,

and

(H12) q(x) � 0 ∀x ∈ Ω and lim
dist (x,∂Ω)→0

q(x) = 0.
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Theorem 6. Assume that hypotheses (H9)-(H12) are fulfilled. Then there exists
λ∗ > 0 such that for all λ ∈ (0, λ∗) problem (P3) has at least two nontrivial solutions
in E.

As in the previous section, the natural candidate to be the energy associated to
problem (P3) is the following double-phase functional with variable exponents:

I(u) =

∫
Ω

(
1

p(x)
|∇u|p(x) + a(x)

m(x)
|∇u|m(x)

)
dx−

∫
Ω

λ

q(x)
|u|q(x) dx.

Since we do not assume any growth condition on q in the annulus AR,r, this func-
tional is not well defined in the whole space E. That is why we restrict the functional
I to the closed subspace X ⊂ E given by

X = {u ∈ E : u(x) = u(|x|) a.e. x ∈ AR,r}.
Arguing as in Section 2, we deduce that the compact embedding (10) still holds in
the present case, hence I ∈ C1(X,R) and

I ′(u)v =

∫
Ω

(|∇u|p(x)−2∇u∇v + a(x)|∇u|m(x)−2∇u∇v) dx

− λ

∫
Ω

|u|q(x)−2uv dx ∀u, v ∈ X.

Moreover, I also satisfies the (PS) condition in X.

Lemma 7. Given τ > 0, there are ρ = ρ(τ ) > 0 and λ∗ = λ∗(τ ) such that

Iλ(u) � ρ for ‖u‖ = τ and λ ∈ (0, λ∗).

Proof. By our assumptions we know that there exists C > 0 such that∫
Ω

|u|q(x) dx � Cmax{‖u‖q+ , ‖u‖q−}.

From this, for ‖u‖ = τ ,∫
Ω

|u|q(x) dx � Cmax{τ q+ , τ q−} = Cτ ,

and so,
Iλ(u) � min{τp+ , τp−} − λCτ , ‖u‖ = τ.

Setting λ∗ = min{τp+ ,τp−}
2Cτ

and λ ∈ (0, λ∗), we get

Iλ(u) � min{τp+ , τp−}
2

= ρ(τ ) > 0, ‖u‖ = τ.

The proof of this auxiliary result is now concluded. �
Lemma 8. Setting Aλ = inf{Iλ(u) : ‖u‖ � τ}, we have that Aλ < 0 for all
λ ∈ (0, λ∗).

Proof. Let φ ∈ C∞
0 (Bα(x0)) such that

q1 = max
x∈Bα(x0)

q(x) < min{p−,m−}.

Here, we are using the fact that limdist(x,∂Ω)→0 q(x) = 0. If t > 0 is small enough,
a simple computation gives

Iλ(tφ) �
∫
Ω

(
tp−

p(x)
|∇φ|p(x) + tm−a(x)

m(x)
|∇φ|m(x)

)
dx− tq1

∫
Ω

λ

q(x)
|φ|q(x) dx.
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It follows that

Iλ(tφ) < 0 for t ≈ 0+,

showing the desired result. �

The last two lemmas permit one to apply the Ekeland variational principle to
conclude that there exists uλ ∈ X such that

I ′λ(uλ)v = 0, ∀v ∈ X and Iλ(uλ) = Aλ < 0.

Repeating the same arguments of the last section, it follows that uλ is a critical
point of Iλ in E for all λ ∈ (0, λ∗).

Lemma 9. Fix φ ∈ C∞
0 (Ωδ \AR,r); we have that

Iλ(tφ) → −∞ as t → +∞.

Proof. If φ ∈ C∞
0 (Ωδ \AR,r) and t > 0 is large enough, by (H10) we have that

Iλ(tφ) �
∫
Ω

(
tp+

p(x)
|∇φ|p(x) + tm+a(x)

m(x)
|∇φ|m(x)

)
dx− tq

A
−

∫
Ω

λ

q(x)
|φ|q(x) dx.

Hence

lim
t→+∞

Iλ(tφ) = −∞,

showing the desired result. �

Proof of Theorem 6. From Lemmas 7 and 9, we derive that Iλ satisfies the moun-
tain pass geometry. Applying [12, Theorem 1.1] (see also [13]), we obtain that for
almost every λ ∈ (0, λ∗) there is a bounded (PS)cλ sequence for Iλ, where cλ is the
mountain level of Iλ. Since Iλ verifies the (PS) condition, it follows that for almost
every λ ∈ (0, λ∗) the level cλ is a critical level, that is, there is uλ ∈ X such that

I ′λ(u
λ) = 0 and Iλ(u

λ) = cλ > 0.

We conclude that problem (P3) has at least two solutions uλ and uλ for almost
every λ ∈ (0, λ∗) with

Iλ(uλ) = Aλ < 0 and Iλ(u
λ) = cλ > 0.

Finally, we can repeat the same arguments developed in Section 3 to conclude
that uλ and uλ are, in fact, critical points of Iλ in E, hence two nontrivial solutions
of problem (P3). �
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