Problem 11073, American Mathematical Monthly, 3/111 (2004)
Proposed by Vicentiu Radulescu, University of Craiova, Romania

Let a and b be positive real numbers. Let f and g be functions from R into R, twice
differentiable, with initial conditions f(0) = a, f'(0) =0, g(0) =0, ¢’(0) = b, and satisfying
the differential equations

"=—f1-1=¢%), ¢ =—9(1-f =4

(a) Show that there is a nontrivial polynomial function E(X,Y’) such that for all a,b > 0,
E(f2(t) 4+ g2(t), f(t) + g"(t)) is independent of t.

(b)  Show that if f and g are both periodic in t, with period T, and if att = 0, f2(t)+g*(t)
is not at a local minimum, then a < 1, b < a?(1 — a?), and T > 2.

(c) Give an example of f and g satisfying the premises of part (b).

(d) Prove that there exist choices of a and b such that the resulting (f, g) is periodic, and
min(f2 + ¢%) < (1/2) max(f? + ¢?).

SOLUTION. (a) This statement is a kind of energy conservation law.
Let r = \/f2+ g% and s = \/f2 + ¢’2. Then

(f2+ 01— 1/2)(f* + %) + (f2+g%) =r*(1 = r?/2) + 5
Define E(X,Y) = X — X2/2+ Y. It follows that

%E(fQ( )+ g (1), () + g%(0) = 2 [(f '+ 99") (1 = > = ¢*) + (F "+ 4'9")] (1).

Using now the differential equation fulfilled by f and g we obtain

LBt + g 0), £20) + g2(0) = 2FF + 99) (1 — 12 — g*) (8)-

d
t D[FF(L— f2 — g% + g'g(1— 2 — %) (t) =0,

for any ¢t € R. Hence
E(f2(t) + g*(t), f2(t) + (1)) = E(f*(0) + ¢°(0), f*(0) + g*(0)) = a® — a"/2 + ",

Alternative proof of (a). We multiply by f’ the differential equation f” = —f(1 —
f? — ¢?) and then we integrate on [0,¢]. Using the assumptions f(0) = a and f/(0) = 0 w
obtain

@

£ - # )+ g /f >=f—f.

Similarly, using the differential equation satisfied by g we find

4 t
0= 55 4 g0~ [ Pl (s)ds =



By addition we obtain, for any t € R,

(f2(t) + ¢%(1))” 4

P + () - . FP0 ) = - S

(b) We first prove that a < 1. Indeed, arguing by contradiction, let us assume the
contrary. Set u := f? 4 ¢g%. The assumption a > 1 enables us to choose M > 1 such that

min{u(z); = € R} < M? < a®.
Let I C R be a bounded interval such that v > M? in I, and u = M? on 0I. But
' =2u(u—1)+2(f?+4¢?) >2u(u—1)>0 inl

So, u is convex in I and uw = M? on OI. Hence v < M?, which contradicts the choice of I.
Applying Taylor’s formula we have

and
g(x) = bx + O(z%), as x — 0.

So
u(z) = a® + [bQ —a?(1— az)] 2%+ 0(z?), as ¢ — 0.
Since z = 0 is a local maximum point of u, it follows that b2 < a?(1 — a?).

An alternative proof of this statement is based on the fact that v”(0) < 0 (since z =0
is a local maximum point of u) combined with v”(0) = 2 [b* + a*(a® — 1)].

The above arguments also show that a < 1. Indeed, if a = 1, then u”(0) = 2b*> > 0, a
contradiction with the fact that the origin is a local maximum point of u.

Let us now prove that 7" > 27. We first notice that f (or g) cannot have the same sign
on an unbounded interval. Indeed, in this case, f” (or ¢”) would have the same sign. But,
due to the periodicity, this is possible only for constant functions, which is impossible in
our case.

Let x1, 9 be two consecutive zeros of f. We can assume that f > 0 in (z1,z2), so that
f'(z1) > 0 and f’(z2) < 0. Denote by x3 the smallest real number greater than x5 such
that f(x3) = 0. Hence f < 0 in (x2,z3). If we prove that o — 1 > =, it will also follow
that o3 — zo > 27 and there does not exist « € (z1,z3) such that f(z) =0 and f'(x) > 0.
This implies that the principal period of f must be greater than 27. For our purpose, we
multiply by ¢(z) := sin % in f”"+ f(1— f?—g?) = 0 and then we integrate on [z, x2].
Hence

< T )2/:2 f(x)@(x)deLTQ F(z) (1 - (@) — () @(x)dx</:2f(x)w(x)d$

T2 — I

It follows that 9 — x1 > 7.

Alternative proof of (b). Define u : R — [0,00) by u(z) = f%(z) + ¢*(z), = € R.
Clearly, u is a T-periodic function of class C2(R), and

u'(2) = 2u(@)(u(z) = 1) + (f'(2))* + (¢'(2))” (1)



for all real z. In particular, u”(0) = 2 [a?(a® — 1) + b?]. Since u has a local maximum
at the origin, it follows that u”(0) < 0, which yields immediately * < a?(1 — a?) by the
preceding. This establishes the first inequality in (ii).

The proof of the second is a bit more tricky, so let us first outline the strategy. The
main idea consists in showing that the distance between two ‘consecutive’ zeros of f must
exceed 7. To be more precise, we shall prove:

Claim 1: If x1 < zo are real numbers such that f(x1) = f(x2) = 0, but f(xz) # 0 for
T < x < X9, then xo —x1 > .

Therefore, if we are able to produce two disjoint open subintervals, say I and J, of an
interval of length T, with the property that f does not vanish on I U J, but f = 0 on
0I U dJ, then the length of each of these subintervals exceeds m, by Claim 1, and we are
done: T > length I + length J > 7 + m = 2.

The easiest way to produce such intervals consists in showing that f must take on values
of either sign on each interval of length T'. We shall prove:

Claim 2: The function f takes on values of either sign on each interval of length T.

Assuming this, let us see how it applies to produce the desired subintervals. First, let
I = (a, ) be the connected component of the open set {z : f(z) > 0} which contains the
origin (recall that f(0) = a > 0). Then f(a) = f(5) = 0 by continuity of f and maximality
of I. Next, by Claim 2, f(z¢) < 0 for some xy € [0,7]. But since f(T) = f(0) =a > 0,
xo must be an interior point of [0,7]. Now let J = (,0) be the connected component of
the open set {x : 0 <z < T and f(x) < 0} which contains xg. Again, f(y) = f(0) =0 by
continuity of f and maximality of J. Finally, observe that 8 <y and § < a+ T (here we
use the T-periodicity of f), to conclude that I and J are indeed disjoint open subintervals
of [a, a + T7, satisfying the required conditions.

So all it remains to prove are Claims 1 and 2 above. Both proofs rely upon
Claim 3: u(x) <1 for all x € R.

Proof of Claim 3. Recall the inequality b> < a?(1 — a?), proved in the first part. Since
b > 0, we deduce that a? < 1, so u(0) = a® < 1. Now we argue by reductio ad absurdum.
Suppose, by contradiction, that u(zg) > 1 for some real zyg. Then U = {z : u(x) > 1} is an
open non-empty set. Let K denote the connected component of U which contains xg. Since
u is periodic and u(0) = a? < 1, it follows that o = inf K > —o0 and 3 = sup K < oo.
Observe now that u(a) = u(f) = 1, by continuity of v and maximality of K, while u(z) > 1
for o < & < [. This leads to the following two contradictory facts: on the one hand, by
virtue of (1),

o' (x) > 2u(z)(u(x) — 1) >0 (2)

for @ < & < ; on the other hand, since u is continuous, it must attain a mazimum value
on the compact set [, 5] at some interior point 1, so u”(z1) < 0 thus contradicting (2) at
x1. Consequently, u(z) <1 for any x € R.

Proof of Claim 1. To make a choice, let f(z) > 0 for 1 < < z2; in case when
f(x) < 0 for x1 < = < w9, we merely replace f by —f everywhere. Now set ¢(z) =
sin(m(z — x1)/(x2 — 1)) for 1 < x < x9, and note that ¢(x1) = ¢(x2) = 0 and ¢(x) > 0



for x1 < x < x9. Then

Jog f@)p(z)dz > [72 f(2)(1 = u(z))p(z)dz (by Claim 3)

= — [ f"(@)p(x)de for f" 4+ f(1 —u) =0

= T fff f'(x) cos %dw for p(x1) = @(x2) =0

r2—x1

= (%) I f@e@)dr for fa1) = f(zz) = 0,

which shows that x9 — x1 is indeed strictly greater than .

Proof of Claim 2. Since f is T-periodic, there is no loss in considering the interval [0, T7.
Clearly, f takes on positive values around the origin, for f(0) = a > 0 by hypothesis. To
prove that it also takes on negative values, we argue by reductio ad absurdum. Suppose,
if possible, that f(x) > 0 for all x € [0,7]. By Claim 3, it then follows that f”(z) =
—f(z)(1 —u(z)) <0 for all z € [0,T7], that is, f’ is decreasing on [0,7]. But f’ is itself
T-periodic, so it must be constant on [0, 7], which implies in turn that f must be constant
on [0, 7], by T-periodicity. Thus, f” vanishes on [0, T], and since f” + f(1 — f? — ¢%) = 0,
we deduce that g is itself constant [0, T; that is, ¢’ vanishes on [0, 7] thus contradicting the
hypothesis ¢’(0) = b > 0. We conclude that f must take on values of either sign on [0, 7.

bx

a

(c) Choose a, b > 0 such that b*> = a?(1—a?). Define f(x) = a cos %x and g(z) = asin
It follows that T' = 2ma/b. In particular, we observe that T' > 2.

(d) We shall prove the following more general result.
Fiz arbitrarily 6 > 0. Then there exist choices of a and b such that the resulting (f, g)
is periodic, and min(f2 + ¢?) < & max(f? + ¢?).
Denote
Q:={(a,b) € (0,1] x [0,1]; b* < a*(1 —da?)}.

Let (a,b) € IntQ and set v(x) := f(z) + ig(x). Since v(0) = a # 0, it follows that, for

small zx,
v(z) = e¥Wr(@),  r(@) =/ 1(2) + ¢(@),

where ¢(0) = 0 and r > 0. Then r satisfies

while ¢ is given by
ab
¢=—3 #0)=0

Hence, if the problem (3) has a global positive solution, it follows that v is global. Moreover,
if r is periodic of period Ty, then

v(nTo +x) = ei"‘p(TO)ei“”(x)r(x), VO<z<Ty VneN,

so that (3) gives a periodic solution if and only if p(Tp) € 7Q.



We prove in what follows the global existence. More precisely, if (a,b) € Int Q, then (3)
has a global positive periodic solution. We first observe that the assumption made on (a, b)
implies r”/(0) < 0. So, multiplying in (3) by /, we obtain, for small x > 0,

4 272 4
2_ .2, T a“b 2 a 2
rT =-r +?*7+a*?+b (4)
and
4 272 4
N B S A S 5
' \/T+2 2 Tyt (5)

Now, relation (4) implies that r and 7’ are bounded as far as the solution exists and,
moreover, that
inf{r(z); r exists} > 0.

It follows that r is a global solution.

Set

to :=sup{z > 0; 7’(y) <0 forall 0<y<ux}.

Note that (5) is valid if 0 < z < .

Let 0 < ¢ < a be the unique root of

4 212 4
T 9 ab 9 a 9

Since ¥(z) < 0 if z € (0,¢) or if z > a, x close to a, it follows from relation (4) that
c<r(z)<a forall zeR. (6)
Claim 4. We have lim r(z) =c.

x,'to

Proof of Claim 4. If ¢y < oo, it follows that 7'(t9) = 0. Now, relation (4) in conjunction
with the definitions of tp and ¢ shows that r(t9) = c¢. If tg = 400, then we have lim r(z) > c.
T— 00

If lim r(x) > ¢, then there exists a constant M > 0 such that »'(z) < —M for each x > 0.
rT— 00
The latest inequality contradicts (6) for large .
For any 0 < x < tg, relation (5) yields

¢ dt
r= 4 2p2 4 )
(@) \/—t2—|—%—“b +a? - % +b?

+2

Therefore
dt

a
to—/ 9 , th a2b2 5 gt 5
¢ —t +§—t72+a —?—Fb

It follows by a reflection argument that r(2tg) = r(0) = a, r'(2tg) = /(0) = 0, so that r is
(2to)—periodic. This concludes the proof of Claim 4.

Denote ¥ (z) := 22%¢(z) = 2% — 221 — 24202 + (2a® — a* + 2b)2%. Taking into account
Claim 4 and observing that ¥(0) < 0, it follows that it is enough to show that ¥(e) > 0,
for some € > 0 and for a convenient choice of (a,b) € Int Q2. But

< Q.

U(e) > e?[e* — 2e% + a?(2 — a?)] — 2a%V°.



For a = 271/2 we obtain
82
U(e) > e?[e* =22 +3-471 - > E—bQ > 0,

provided that € > 0 is sufficiently small and b = /2. It is obvious that this choice of a and
b guarantees (a,b) € Int .



