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Let a be a positive real number. Assume that f is a twice differentiable function from
R into R such that f(0) = a and satisfying the differential equation f" = —f(1 — f2).
Moreover, we suppose that f is periodic with principal period T = T(a) and that f? achieves
its mazimum at the origin.

(a) Prove that a <1 and deduce that f is well defined on the real azis.
(b)  Prove that T > 2.

(c) Denote to(a) := sup{t > 0; f > 0 in (0,t)}. Show that f is decreasing on (0,to(a))
and express T in terms of to(a).
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(d) Prove that a* + (;) > 1.

(e) Show that the mapping ty : (0,1) — R is increasing and compute li{%to(a) and
a
lim ¢ .
lim o(a)

(f) Deduce that for any T > 27, there exists a unique periodic function f : R — R with
principal period T such that f" = —f(1 — f2) and f? achieves its mazimum at the
origin.

SOLUTION. (a) Arguing by contradiction, let us assume that a > 1. Using the differen-
tial equation satisfied by f, it follows that f”(0) > 0 which contradicts our hypothesis that
f? achieves its maximum at the origin. If a = 1, we get only the trivial solution f = 1.
That is why we shall assume in what follows that a € (0,1). Multiplying by f’ in the
differential equation satisfied by f and integrating, we find

1 1
f'2=—f2+§f4+a2—§a4. (1)

It follows that, as far as a function f with the required properties exists, we have |f(z)| < a
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and |f'(z)] < (a2 - a—;) , for all z € R. Hence f is globally defined.

(b) We first observe that f cannot be positive (resp, negative) on an infinite interval,
provided that f is periodic. Indeed, in this case, f would be a periodic concave (resp.,
convex) function, that is, a constant function. But this is impossible, due to our choice
of a.

Let 1, x2 be two consecutive zeros of f. We may suppose that f(z) > 0if 21 < x < x9,
so that f'(z1) > 0 and f/(z2) < 0. If z3 denotes the smallest = > x5 such that f(z3) =0, it
follows that f(x) < 0, for any = € (x2,x3). If we prove that xo — z1 > 7, it will also follow
that x3 —z1 > 27 and that there is no « € (21, x3) such that f(z) =0 and f’(z) > 0. This



means that the principal period of f must be greater than 27. This will be done in the
following auxiliary result.

Lemma 1. Let ¥ : R — [0, 1] be such that the set {z; ¥(z) =0 or ¥(zx) =1} contains
only isolated points. Let f be a real function such that f(z1) = f(x2) =0, and f > 0 in
(1, 22). Assume that —f"” = fW¥ in [z1,x9]. Then x9 — x1 > 7.

Proof of Lemma. We may assume that 1 = 0. Multiplying by ¢(x) := sin % in the
differential equation —f” = f¥ and integrating by parts, we obtain

xo o 772 o
/ fedx > / fYodr = 2/ fedr,
0 0 T3 Jo
that is, xzo > 7.

(c) Since f'(0) = 0 and f”(0) < 0, it follows that f decreases for small z > 0. Moreover,
f'(x) <0 for 0 <z < to(a). Indeed, suppose the contrary. Then, taking into account
relation (1), we obtain the existence of some 7 > 0 with 7 < ¢y(a) and such that f(7) = a.
If we consider the smallest 7 > 0 such that the above equality holds true, then f(z) < a
for any 0 < z < 7. Since f(0) = f(7) = a, it follows that there exists some 0 < t; < 7 such
that f/(t1) = 0, which is the desired contradiction. Hence
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f a 5 f4+ 5 <0 in (0,tp(a)).

It follows that, for any 0 < = < to(a),

/ a dt .
f(@) \/%#1 —t2+a?—Lat ’
which yields

a dt ! d¢
to(a) = =
’ /0 \/%t4—t2+a2—%a4 /0 \/(1—52)[1—%(1+§2)]

: (3)

Taking into account the differential equation satisfied by f we first deduce that

ftola) + ) = —f(to(a) — z). (4)
Indeed, both functions g(x) = f(to(a) + x) and h(x) = —f(to(a) — x) are solutions of the
Sturm-Liouville problem
{ 2= —2(1 - 2%), in (0,%0(a))
2(0) =0, 2'(0) = f'(to(a)) -

Using now the uniqueness of the solution to the above boundary value problem we deduce
relation (4). Next, similar arguments imply f(2to(a)—z) = — f(x) and f(4to(a)+2z) = f(z).
It follows that f is periodic and its principal period is T'(a) = 4ty(a).

We observe that (b) easily follows from the above results. Indeed, relation (3) yields

1
(o) > [ - a7,



So, by T'(a) = 4tp(a), we obtain (b).

We may give the following alternative proof in order to justify that f decreases on the
interval (0,t9(a)). Using the differential equation f” = —f(1 — f?) in conjunction with
f > 0on (0,tg(a)) and f? < a® < 1, it follows that f” < 0 on (0,tg(a)). Hence f’ is
decreasing on (0,tp(a)), that is, f'(z) < f/(0) = 0 for any z € (0,to(a)).

(d) Since T'(a) = 4to(a), it is enough to show that v'1 —a?ty(a) < 5. Relation (3)
yields
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(e) Relation (3) implies that the mapping a — tp(a) is increasing and limg\ o to(a) = F,
lima/l to(a) = +00.

(f) Since ty(a) > 0, it follows that the mapping T'(a) — a := a(T) is analytic. Taking
into account relation (2), we conclude the proof. Moreover, we have limz\ 2, a(T') = 0 and
limT/+oo a(T) =1.



