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Abstract

In this paper, we consider the steady incompressible Navier—Stokes equations in a smooth
bounded domain Q C R” with the dimension n > 3. We first establish asymptotic expan-
sion formulae of Sobolev regular finite energy solutions in €. In the second part of this
paper, explicit representation formulae of Sobolev regular solutions are showed in the reg-
ular polyhedron Q := [0, T]".

Keywords Navier—Stokes equations - Sobolev regular solution - Nash—-Moser iteration -
Calderon—Zygmund theory

Mathematics Subject Classification 35Q31 - 35A01 - 76D05
1 Introduction and main results
In this paper, we consider the steady incompressible Navier—Stokes equations:

—VAU+U - VU + VP =f,
V.U=0, (1.1
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where x € Q, and Q c R” is a smooth bounded domain, U : RT x Q — R” is the fluid
velocity, and it is of the form U(x) = (U;(x), Uy(x),...,U,(x)), P(x) : R*xQ - R
stands for the pressure in the fluid, and the constant v is the viscosity. We denote by
f =15, ... .f,) an external force. The divergence free condition in second equations of
(1.1) guarantees the incompressibility of the fluid.

We supplement the steady incompressible Navier—Stokes equations (1.1) with the
Dirichlet boundary condition

Ul ieo0 =0, (1.2)
and the pressure takes the form
" oU.0U;
AP(x)=— Yy ——2 (1.3)
iJZ=1 0x; 0x;

In particular, when the external force f = 0 in equations (1.1), then our problem reduces to
the steady incompressible Navier—Stokes equations

U-vAU+U-VU+ VP =0,
vV-U=0.

The question of whether a solution of the 3D incompressible Navier—Stokes equations can
develop a finite time singularity from smooth initial data with finite energy is one of the
Millennium Prize problems, see[8]. In 1934, Leray[22] showed that the 3D incompress-
ible Navier—Stokes equations (1.1) admit global-forward-in-time weak solutions of the
initial value problem. Caffarelli, Kohn and Nirenberg[6] established a e-regularity crite-
rion for equations (1.1). After that, Lin[23] gave a new and simpler proof for the result
of Caffarelli, Kohn and Nirenberg. Koch and Tataru[21] proved the global well-posedness
for the equations (1.1) in a space of arbitrary dimension with small initial data in BMO™!
space. Recently, Buckmaster and Vicol[5] proved that the Leray weak solutions of the 3D
Navier—Stokes equations are not unique in the class of weak solutions with finite kinetic
energy. We refer the readers to[2—4, 9, 19, 28, 34-34] for more related results on this
equations.

Much attention attracted the existence and the regularity properties of stationary
solutions for the incompressible Navier—Stokes equations. These solutions depend on
the force f and the domain Q. Gerhardt[15] proved that the steady four-dimensional
problem admits a solution in W?? by assumption the force f € L”. Frehse and Ruz-
icka[11] and Struwe[31] got the existence and regularity of the solutions in the five-
dimensional case, respectively. Frehse and Ruzicka[10] also obtained the existence of
regular solutions in a bounded domain of six-dimension. The fifteen dimensional torus
case was given in[12]. Maz’ya and Rossmann[25] showed the existence of weak solu-
tions in the three-dimensional case for a polyhedral domain. Kim[20] considered the
existence of very weak solutions in a bounded domain of dimension d = 2, 3,4. Farwig
and Sohr[7] proved the existence, uniqueness and very low regularity of solutions to
the inhomogeneous Navier—Stokes equations with special external force in a bounded
domain of d > 3 dimension. Recently, Hou and Pei[18] got the existence of weak solu-
tions in a bounded connected polygon or polyhedron of two or three dimension. Luo[24]
obtained the non-uniqueness of weak solutions for this kind of problems in the case of
the d-torus with d > 4. We cannot list all the contributions to this field, but we refer the
readers to[12—-14] and the references therein.
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As pointed out in[24], the question of uniqueness of regular solutions to the steady
incompressible Navier—Stokes equations (1.1) remains mostly an open problem. The non-
uniqueness of the weak solution has been given in[24]. In this paper, under the assumption
of the external force f being small and f # 0, we give asymptotic expansion formulae of
Sobolev regular solution with finite energy for the steady incompressible Navier—Stokes
equations (1.1) in a smooth bounded domain Q of dimension n > 3. Next, we give explicit
representation formulae of the Sobolev regular solution in a special domain, namely if
Q = ([0,T])

‘We now state the main result in this paper.

Theorem 1.1 Ler the viscous constant v > 1 and s > 1. Asssume that the external force
J € H(Q) with ||flysq) S € and [ #0. Then the steady incompressible Navier-Stokes
equations (1.1) with the Dirichlet boundary conditions (1.2) admit a Sobolev regular solu-
tion with finite energy U € H*(Q2). Here, the pressure is given by (1.3).
Moreover, there exists a small constant 0 < € < 1 such that
||U(X)||Hs(£2) Se,
||P(x)||H»\(Q) Se,

forany x € Q C R"(n > 3).

Remark 1.1 The main feature of Theorem 1.1 is that it gives explicit representation formu-
lae as follows

U = U0 + Y ") = U00) + OE), (1.4)

m=1

where the function U (x) satisfies the assumption

V- UOx) =0,
NN s S € (1.5)
U)o = 0.

and
D ||aj§iuj°>(x)||m Sep Vij=1,2,....n, (1.6)
k=0

and h™(x) (m = 1,2, 3, ...) is obtained by solving the linearized problem with the Dirichlet
boundary condition in Sobolev space H*(L2) with s > 1

LIU™ T = EmD(x),
V -h =0,
h(m)(x)|x609 =0,

and E”~D(x) denotes the error term, while the linear operator L[U™'Th" is defined in
(2.7). The index s of the Sobolev regularity depends on the higher derivative estimate of
solution for the linearized equations. From (1.4), we remark that the solution depends
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998 W.Yan, V. D. Radulescu

strongly on the initial approximation function U®(x). Our proof is based on the Nash-
Moser iteration scheme, by using some ideas developed in [37, 38]. For the general Nash-
Moser implicit function theorem, we refer to the seminal papers of Nash [27], Moser [26]
and Hormander [17], and to Rabinowitz [29] for a singular perturbation problem of elliptic
equations by using the Nash-Moser implicit function theorem.

In particular, if we consider the domain Q := ([0, T])" (a regular polyhedron) with the
finite constant 7 > 0, then we have the following explicit representation formulae.

Corollary 1.1 Let the integers p > 1 and q > 2, and the parameter 0 < € < 1. Then the
steady incompressible Navier—Stokes equations (1.1) admit an explicit expansion of the
Sobolev regular solution with finite energy as follows

U (x) = <U(10)(x), v, .., U;°>(x)> +R(),

SJorall x = (x;,x5,...,x,) € Q :=([0,T])", and

UEE;(X) = SXZ(XI - T)qg(x2)g(x3)€_rixl'XZV‘S}
= - Ty —7(X] X5,%
U%())(X) EXZ(X%I T) g(xl)g(x3)e ir(zx 3 ’x)
J U () 1= —2ex;(x3 — T)1g(x;)g(xy)e™" 172/,
U =0,
UO) :=0,

where
g0 ==y y -T2y - T)(q _2(p + 12Dy — T)Q(I,H))’
3
r(xy, Xy, x3) 1= 2 XZ(pH)(xk — TY20+D),
k=1

and the remainder term R(x) € H*(Q) satisfies
V-Rx) =0,
R®)|xeaa =0
IR0y ~ OE?).

Moreover, the pressure is determined by

3 *

oU? oU;
*(x) = — i J
AP (x) == o

ij=1

Notations Throughout this paper, we assume that Q C R” with n > 3 and we denote the
usual norms of 1.2(Q) and H*(®) by || - ||;2 and || - ||, respectively. The norm of the Sobolev
space H*(Q) := (H*(Q))" is denoted by || - || ;.- The symbol a < b means that there exists a
positive constant C such that a < Cb. We denote by (x,x,,x3, ... ,xn)T the column vector
in R”. The letter C with subscripts to denote dependencies stands for a positive constant
that might change its value at each occurrence.
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The paper is organized as follows. In Sect. 2, we first give a class of initial approxi-
mation functions, then the Carleman-type estimate of solution for the linearized equations
about the initial approximation functions is shown. Next, we prove the existence of the
Sobolev regular solution for the linearized equations. In Sect. 3, we establish the general
approximation step for the construction of the Nash-Moser iteration scheme. In the final
section of this paper, we show how to construct a small Sobolev regular solution for the
incompressible steady Navier—Stokes equations (1.1) by the proof of convergence for the
Nash-Moser iteration scheme.

2 The first approximation step
We introduce a family of smooth operators possessing the following properties.

Lemma 2.1 [1, 17] There is a family {Il,} 4 of smoothing operators in the space H*(Q)
acting on the class of functions such that

I Ul < COC ™4[ U I giays V515 82 2 0,
1, U — U”Hsn(g) < Cas'_SZ”U”Hsz(Q), 0<s <,

2.1
1L, Ul @ < COO Ul ¥, 52 20,
where C is a positive constant and (s, — s,), = max(0, s, — s,).
In our iteration scheme, we set
0=N,=Ny, ¥vm=0,12,...,
where N, is a fixed positive constant, then by (2.1), it follows that
”HNMUHH“I(Q) SN2 Uy V81 2 55 (2.2)

We consider the approximation problem of the steady incompressible Navier—Stokes equa-
tions (1.1) as follows

JU) 1= —vAU+HNm<U~ VU+VP> -f, 2.3)

with the Dirichlet boundary condition (1.2) and the incompressible condition

V-U=0.

2.1 The initial approximation function

Let s > 1be a fixed finite constant and 0 < ¢, < €2 < 1. For any x € Q, we choose the ini-
tial approximation functions

T
U0 = (U0, U000, ... UV € HQ).
Meanwhile, we require
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1000 W.Yan, V. D. Radulescu

V-UO%) =0,
NUON s S €65 2.4)
UOx)|,c90 = 0.

Moreover, for any fixed constant s > 1 and x € Q and i,j = 1,2, ...,n, we also need the
condition

DN U@l S &g Virj=1,2,..,m, 2.5)
k=0

and the initial error term
IEO N S €, (2.6)
where E© denotes the error term taking the form
E© = JU),
with
. oy U
APO(x) = — Z a);. a;. i

ij=1 i

and
©) _ 0 0) £(0) (ON\T
E© = EOEQEY, ... EOY.

A family of explicit examples In fact, many vector functions can be chosen to satisfy
(2.4)—(2.6). We now give a family of exact examples of the initial approximation function
satisfying (2.4)—(2.6).

Let the integers p > 1 and g > 2. We choose the initial approximation functions of
the form

U0 = U@, U0 W), ..., U%w), VxeQ :=(0,T]),

where

UO() 1= e (r, — T)gry)gly e i),
UP(x) 1= egxd(xy — T)g(x) )glaz)e™ @),
Ugo)(x) —280)(;/()63 - T)‘Ig(xl)g(xz)e—r(xl.,xz,XS)’

vOw =0,

(U0 =0,

and
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gy =y y -T2y - T)(q —2(p 4 1)y2PtD(y — T)Z(p+l)),
3
r(xy, Xy, x3) 1= sz(pﬂ)(xk — T)*P+D),
k=1

By direct computations, it follows that

0, UP(x) = 0, UY(x) = £0g0x))g(x)g(xy )12,
0, UL(x) = —2e0(x))g0x)g ;e "5,

hence
VU0 =3 0,0 @
k=1
3
=30, U W)
k=1
=0,
and

U9x)|,c0 = 0.

Moreover, we observe that these functions decay to 0 as |x| - +o0, and for every fixed
integer p, the assumptions (2.4)—(2.6) are fulfilled.
Here, the initial approximation pressure satisfies

* ou© U
APOW == 3
o,

ij=1 i

2.2 The Carleman estimate of linearized equations

We now construct the first approximation solution denoted by UV (x) of (2.3). The first
approximation step between the initial approximation function and first approximation
solution is denoted by

hPw) 1= UD(x) — UO).

Then we linearize the nonlinear system (2.3) around U to get the linearized operators as
follows

LIUID 1= —vARD + 11, [(U<°> : V>h<1> + (h<1> : V>U<°> + V(DU«»P)h(”],
2.7)
where D, denotes the Fréchet derivatives on U, By (1.3), we obtain

V(Dyo P 1= -vaT Y (6x,h§l)0x, v +o, Uf°>axih§”>. 2.8)

ij=1
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1002 W.Yan, V. D. Radulescu

We now consider the linear system

LU =11, E©,

V . h(l) — 0’ (29)
and the boundary condition
hP ()] .cp0 = 0. (2.10)

The solution of this problem gives the first approximation step of the steady incompress-
ible Navier—Stokes equations (1.1).

Before we carry out some a priori estimates, for j =1,2,3,...,n, we rewrite equa-
tions of (2.9) into a coupled system as follows

z n
(1) (0) 1 " o
—var® 410y Y U0, n" 411, Y W0, U
- - @.11)
+ l—INI axj ((DU«])P)h(l)) = HN, E](.O),
with the Dirichlet boundary condition

h;”(x)hm =0. (2.12)

We now derive the Carleman-type estimate of the solution to the linear system (2.11).

Lemma 2.2 Let v > 1. Assume the initial approximation function U satisfying (2.4)—
(2.6). Then the solution h\V(x) of the linear system (2.11) satisfies

/ @, hVYdx + 11, Z / (K" dx S TI, Z / EPYdx.  (2.13)

Proof Let y(x,) be a function with x; € Q such that

j—ll

0 <x < (e — W) — w'oe)l < L,

1 (2.14)

and e™¥™) is bounded for X, € Q. Here the constant x belongs to (0, ) The condition
(2.14) implies w" (x;) > - 7>0.In fact, there are many functions satlsfymg these condi-
tions. We give in what follows a simple example. Since x; € Q, there exists a suitable posi-
tive constant b > 1 such that the function

w(x,) = 2abx, — 4bIn(e:™*? — 1)

is well defined. Here, we take the constanta := (% —K) 2
Direct computations give that
W'(x) = —2ab(ei ™ — 1)),

thus the ODE inequality (2.14) holds for a suitable b > 1. Meanwhile, there exists a posi-
tive constant C,, such that
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e—'ll(xl) S C()'
Multiplying both sides of equations in (2.11) by e“”("l)h;]), respectively, then integrating

over Q, by noticing the Dirichlet boundary condition (2.10), for j = 1,2,3, ..., n, it follows
that

vy / O VeV + / (w0 = W) ) e
i=1 Y Q Q

n
+ 10y, ), / (Uf(»axlhj(.l))hj(.De“"("l)dx
i=1 JQ
n
1 0 - 2.1
+ I, 21 /Q (100, U Y1V eveas 2.15)

+ 10, /g 0, ((Dyo PV )V e v
= HN] /E(.O)h(.l)e“”(xl)dx.
o 1
We sum up (2.15) from j = 1to j = n, then it follows that

/ (0, " Y2e ¥ dx + 2 2 / W) = )R ) V)P

jlll

(0) MY D —w(x))
+ 1, Z Z /Q<Ui 0, b )hj ey
1 0 1) -
+ I, E Z /g(h< )ax[l];))hj(. JeV @ dx

j=1 i=1

+ 1_[Nl Z[zax_,((DU<”)P)h(]))h;l)e_‘l’(xl)dx
j=1

=1l EQRWD v 00 gy
N P

(2.16)

On the one hand, note that we have chosen the initial approximation function U© satisfy-
ing (2.4)—(2.6). We integrate by parts to get

/ U“’)a h“> WD ey =—-ZZ / 9, UL (WP e x

j=1 i=1
1 / ©) 1 (D\2 —w(x,)
—;‘,/Qw(xl)ul (RY2ev ) dx,

2.17)

since the initial approximation function U© satisfies V - U, inequality (2.17) is reduced
into

]lll
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1004 W.Yan, V. D. Radulescu

n n

_ 1 B
ZZA(Ufo)aXIhj(l)>hj(])e W(Xl)dx= zz[)w/(xl)Ug())(hj(l))Ze W(Xl)dx’ (218)

j=1 i=1 j=1
and direct computation gives that

33 [iautiter s =3 [0, uud e
Q j=17Q

j=1 i=1

(2.19)

n

My 770, —
+22 / B0, Ul eV,
j=1 i# 49

and noticing the incompressible condition
v-h" =0,

it follows that

n n
3 / ax_((DUm)P)h(l)>h(.1)e_"’(xl)dx ==y / ((DU(O)P)h(l)>0X_h(.1)e_"’("l)dx
=de ! j=17/e Y

+ / w/(x1)<(DU(0)P)h(l))h(ll)e_W(xl)dx
Q

=/V//(xl)(('DU(mP)h(l))h(]l)e‘_v/(x‘)dx.
Q
(2.20)

Furthermore, by (2.8), using the standard Calderon-Zygmund theory and Young’s inequal-
ity, it follows that

| / v/(xl)((DU(O)P)hﬂ))h<11>e—w<xl>dx|
Q

SIS 3 [ (0,100,600 + 0,000 1 e via
i=1 j=1JQ
n n

1 / ©) ON| (N2 ~w(xy)

5. Z/ﬂ“/’()‘l)@i’]j +0, Ul )|(h1 eV gy

i=1 j=1

A

+ IR [ i(10,U010 0 +10,00 10,112 e s,
j=1 7%

n
i=1 |

0=

(2.21)
On the other hand, by the Young inequality, we obtain

n
> / hPo, UKD v dy
Q ! iJ

=1 i

1 ¥ O ( (D2 M2\, —w(x)
<3 XX [ 100100 60 jervevas,

=i

(2.22)

and
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> / EQpVev @ gy
J J
=178
. (2.23)
1 - —yx
<3 2 [ (070 R + 1 IR e s
“ o _ ;
Thus we substitute (2.17)—(2.23) into (2.16) and we find
/ V= S e0I00, U1+ 10, U0D )0 K e ds 204
Jj=1 i=1
+ 10y, ) / ARV eV D dx
i1 Q
! (2.25)
STy, Y / " ) IE e d,
=170
where the coefficients are given by
Ay : (w”(xl)—(w (xl))z) ——Iu/”(xl)l + = U(O)u/’(xl)+d U
22|w(x1)(6 u® +0,u")| -2 Y S, v,
i=1 j=1 J I i
1
A0 1= 3 (W) = W' @)? ) + U ) +0, U = 2 2 10,001 = 21" ),
j:l i#
A = 2 (v ) = W )R ) + U ) + 0, U ZZw U - Sl ),
1 1 i#f
o _ 2 0) o _ ©)
AW = (v ) = W )R ) + U ) + 0, U ZZw U - Sl )l

L=

Since the weighted function y (x, ) satisfies (2.14), the main term of A;(x) (i = 1,2,3, ... ,n)

is
2 (v ) - @ )R ) = Sl @)l

Thus, it follows that

v 1 1
41002 3 (w0 = 0D ) = S 1)l = 3 DIV e = 10, U ey

3 3
1
= 5 2 2 W @I, U e + 10, U le) = Z D10, U

i=1 j=1 j=l i#j

2 (e - 0 @)?) = Su )l - enly’ )l - en.
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Combining this estimate with (2.14) and the fact that v > 1, we deduce that there exists a
positive constant C,, . , depending on v, €, n such that

M0 2 3 (W) = )P — W @)l ) —en 2 S —en2 ., >0,

where k € (0, i). Similarly, it follows that

Ay(0), A3(x), ... A0 R C s

and
1
V=W @I, U +10, U7 2 €.,

Thus, it follows from (2.24) that

n n n
Y Y [@n e e, m, Y [ 60re v
@ j=17e

j=1 =1

. (2.26)
O\2 —w(x))
sHNIZ/(Ej yetdx.
=178
Combining this estimate with the fact that e™¥™V is a bounded function, we obtain
1 1 0

> / @, h ") dx+Toy, Y / (K")Ydx STy Y / (E)dx.

j=1 i=1 7/ j=17Q j=1 78
The proof is now complete. a

Furthermore, we derive the higher order derivatives estimates of elliptic equations. For
a fixed constant s > 1, applying Df 1=0; (Vi=1,2,3,...,n) to both sides of (2.11), it fol-
lows that

n
1 0 1) 1 0
—vADKY + 11y ' UP9, DAY + Ty Y DKM, U
P i 2.27)
+ HN]c)x/Dj<(DU(O)P)h“)) =F, forj=1,23,..,n,

n
i=

with the boundary condition
DI (®)]xeaq = 0, (2.28)

wherel <[ < sand

n
P (0) s1770) 52 7,(1)
Fi=TyDE” -1, Y D'U0,D’h

S1+5,=s, 0<s5,<s—1 i=1

n
- HNI Z Z(szhfl))(Djl ax’. (];0)).

S1+5,=s, 0<s,<s—1 i=1

Next, we derive higher derivative estimates of solutions to the coupled system (2.11).
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Lemma 2.3 Let v > 1. Assume the initial approximation function U satisfying (2.4)—
(2.6). Then the solution h\V(x) of the linear system (2.11) satisfies

j—l i= 1 i=1 j=1
(2.29)
Iy 10
<0, 333 [@herva
Jj=1 i=1 [,=0
Proof This proof is based on the induction. Let s = 1, by (2.27), it follows that
n n
—vAD!A" +11y Y 0¥, DA + 11, Y DInVa, U
i=1 i=1
n
0 1
+ Ty, 9, D} ((DUm)P)h(')) +Ty, . DU, n" (2.30)
i=1
+ 10, Z n'Dlo, UY =Ty DIEY,  forj=1,2,3,
with the boundary condition
Dl.lh](.l)(x)lxem =0. (2.31)

Let us choose the weighted function satisfies (2.14). We multiply both sides of (2.30) by
D}h@e“"(xl), respectively, then integrating over Q by noticing (2.31), and summing up
those equalities from j = 1to j = n, it follows that

/ (0, DI Pev iy + ¥ Z / () = /) )DL eV

J_lll

+ Ty, Z Z /Q U (0, D1 YD} e dx
1 0 1) —
+ 10, ZZ/QD}hf 9, U D VeV Vdx
Jj=1 i=1

+ 10, Z /Q anDl.l<(DU(O)P)h(1>>D;h;l)e_"’(xl>dx

3
+ Iy, )1, =0,
a=1

(2.32)

where
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1008 W.Yan, V. D. Radulescu

n

=

— O Myl M —y(x))
= 2/ Ui 6X‘hj Dihj e VWdx,
j=1 i=1
n n
=y / h"Dlo, UVD! hVe™v ) dx
i Ci%Y it >
S5 o J j
n
y =11y / DIE”D}hVe v *Vdx.
Q

Jj=

We now estimate each term in (2.32). On the one hand, since we have chosen the initial
approximation function U© satisfying (2.4)—(2.6), using the similar method of getting
(2.17)—(2.20), we obtain

n

/ U0, D H YD} h e Vx = = Z / W' (U (DI AV) e dx,
24 g i

1111 j=1

(2.33)

n n

/ DK 9, UODIH eV = Z / 9, U(D} VeV
17/Q

%) /Qax[U;O)(Dilhgl))(D;h,(‘l))e_l"(x‘)dx.

j=1 i=

J=1 i#
(2.34)
By the incompressible condition V - h) = 0 and integrating by parts, we find
D / 6X,Di1<(DU«»P)h<1))D}hjl)e_"’(xl)dx
=18 (2.35)

= / y/(xl)Dil((DU(O)P)h(”>(D}h(ll))e_"’("')dx,
Q
from which, by the standard Calderon-Zygmund theory and Young’s inequality we find

| / w'()D} (Do PR )DL e (2.36)
Q

= / ll/(xl)D 9, (9, U(O)+aijfo)dxih;l))(D}hﬁl))e“”("l)dx|
i=1 j=I Q

=

l\-)lv—‘
ES \

‘W'(xl)(ax,.U;O) +aiji<0) +5x,.Dil U;o) +f)x,D,~l UEO))|(D;h<11))2e—w(xl>dx

j=1

1% .
+5 2 > / 1w/l (10, U010, DY) +10, UC10, D) e
i=1 j=1 Q '
1 n n
EDIP) / /@)l (10, DL U 10, h)? +10, DIUL 10, ") v,

i=1 j=1

2.37)
and
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2 D / 0, UK YD1 e ¥ dx

=1 i

= Z Y / 10, UC (DI + DIHVP )eroax.
19U _

j=1 ij

On the other hand, it follows that

5 = / U(O)(D h(1>)2 —w ) gy, (2.38)

j—ll

1y ‘ 10, U1 ) (D Y2e—v e SETRP— 1, (0N2—w(x))
EZ/Q<Z:4|D" U |)(h Pe v dx+zl (Z;'Dfafof |>(Dihj el gy
1= J= =

j=1

<e / (hj.”)"’e-Wﬂdx+_§; /Q <z;IDJGX‘U;OH)(D;hj(.w)ze"”(xl)dx,
= i=

~.

(2.39)

1 - _ i
<3 / (17" ) IDLECY + 1y @I ) vedx. 2.40)
=17

Thus, summing up (2.32) from i = 1toi = n, we use (2.33)—(2.40) to derive

/ V= W G100, U +10, U1 )@, DL e

n
Jj=1 i=1
+ nlly, Z Z / Zj(x)(D}h;U)ze—w(x,)dx
j=1 i=1 /&
HN, ZZ/ |(]I/H(x )) l|(D E(O))Z —W(X1>dx+62/(h(l))2 W(X‘)dx
j=1 i=1
i=1 j=
(2.41)
where
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Loy +o, U

A0 = 2w - W e?) + 3
1
2

- w'(x, Oy + +
ZZ| )0, U +0, U +0,D1U +0,D1U)|
n

- %1 210,71 Lyl + ZD} o - 21 D10, U,
Ay (x) —%( ") = (w (xl))2)+2U(0) '(x)) + 0, Uy

: %Fl 210,01~ v +ZD}U,F°)— ;m;ain;%,
Ay(0) 1= %( ") = (v (xl))z) + 10O @) + 0, U

- % D 10,001 - %w/"(xm + ZD; v - 2 D)0, U,

=1 i#f i=1 i=1

A0 %(w"(xl)—w/(xl))z) U )+ 0, U
1
2

1
>y 10, U7 = S lw" )l + Y-y Djo, U"|
i=1 i=1

=1 i

We notice that the main term of Zi(x) (i=1,2,3,...,n)is given by
14 " ' 2 Loy
S\ () = (@' (x)” ) — 5 [y ()l
Combining this fact with the assumption (2.5), we deduce that
- v 1
4002 3 (w00 = /0P = 31w el = enly' )] - en.
Thus, by (2.14), there exists a positive constant C, . , depending on v, &, n such that
- v
A0 2 3 (w0 = W )P = W) ) —en 2 €,y > 0,
where k € (0, i). Similarly, it follows that

A, (), Ay(%), ..., A,(x) 2 C

V,E,n°

and
1
V=W @I, U+ 10, U 2 €.,

Therefore
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n n

/ @, DA eV Vdx+ C, Ty Y / (D} y?ev ) dx
Q

j—l i=1 Jj=1 i=1

n

n n
sy XY [0 e ace Y [ o revas (2.42)

=1 i=1/Q j=17¢
+ Ty, ) / (@K 7 + @ 1) e vevar.
i=1 j=17/€

Furthermore, one can see that the last two terms in the right-hand side of (2.42) can be
controlled by using (2.13). Thus, it follows that

n n n n

12(DN2 ,—y(x)) 17,(DN2 —w(x))
ZZ/g(a"fD"hf Ye 1dx+HNlZZ/Q(Dihj Ye Ve dx
Jj=1 =1

=1 i=1

n (2.43)
ST, 2 Z / (DIE”Y e ™dx + Ty, Y / (E) eV Vdx.
j=1 i=1 4 Q j=17Q
Assume that the 2 < [ < s — 1 derivative case holds, that is,
/ (0, DKV ?e™V “Vdx + T, Z 2 / (DIVyP e dx
Jj= 1 i= 1 i=1 j=1
(2.44)

STy, Z Z 2 / (DPEP ) ey,

Jj=1 i=1 [,=0

‘We now prove that the sth derivative case holds. Multiplying both sides of equations (2.27)
by Dyh(l)e“”("l) then integrating over Q by using the boundary condition (2.28), and sum-
ming up those equalities from j = 1to j = n, it follows that

/ (0, D" Pe s+ ¥ Z [ (w60 = i e s

j_lll

+ HNI Z Z A Ufo)(ax’D;h;l))(D;hﬁl))e—w(xl)dx

1 0) ys 7, (1) _—
+ 10 Z Z /Q D0, UP DIk e dx

j=1 i=1
+ 10y Z / aX_D‘i‘<(DU(0)P)h(1))D‘l?h(.l)e“”("l)dx
lj=l o ! J
= Z/Fijh(1)67W(xl)dx.
Q J

(2.45)
We notice that
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| / v D} (Dyo PR (D3 )

133 /Qw’uouf(oxfhﬁ”ax, 0+, 00,1003 e

i=1 j=I1

N

i=1 j=1 Jitia=s, 0</1=12<5

+D" U(O)Dlz h;”)(Djih(ll))e“”(x”dx|

Z Z Z / |/ ()@, D) U + 0, D) U D3P)2e v
Q

11]1]1—1

*3 ZZ _ 1/lw @I (10,0) U@, D1y

=1 j=1j,+j=s, 0</2

+ |ava].1 U(O)l(axiDizhl(-l))z)e_W(Xl)dx

+ = Zl Z /Q |ll//(xl)|<|axi l]](O)|(axj_thl§1>)2 + |axj_ U50)|(axinhl§1>)2)e—w(xl)dx’
i=1 j=1

(2.46)

and

y /Dsl U@, DD e

51+5,=5, 0<s,<s— 1]—1 i=1

= Y / D} U, D H DR Ve v dx (2.47)

s1+5,=5, 0<s5,<s— 2]-1 i= 1

+ Z Z /Q DU (D™ dx.

j=1 i=1

Thus, with similar arguments as for getting (2.41), we can obtain
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1 . -
5> / (v= 3w/ @I, U1 +10, U1 )@, Dyt

j=1 i=1

n n
+ l’lHN] Z Z /Q (:j(x)(Dghﬁl))Ze—w(xl)dx

j=1 i=1

<t X3 [ 10 10 e
Q

j=1 i=1

+0, ) / (D9, U YD Yev ) dx

$1+5,=5, 0<s5,<s—1 i=1

Llyy [ weoi(10, 07010, 054

i=1 j=1 j+j,=s, OSJZ<€ 1

+ |aij§1 USO)I(()X{D?h;“) )e“"("l)dx,
where

€1 = 2 (W) = ' @)R) + U ) +0, U0 + ZD v

2

-5 Z [v'@)@, DU + 0, DU = S 1wl Z 07U

Jl_]

- —ZZIO U - Iw”(xl)l ZZW@ U,

j=1 i#f i=1 j=1

1 n
o0 1= 3 (v00) = /)2 + U ) + 0,09 + 3 DU
i=1

1 n
- —ZZm U - |w"(x1>|—5|w’<x1>|Z|D?U§‘”| ZZ 0, U7,
i=1 i=1 j=1

J=1 i
1 n
Cy(x) 1= %(w”(xl) - (y/'(xl))z) + 300 () +0,U + Y, DU
i=1
1 % 1 1 c
=3 2 210U = Sl Gl = Slv' Gl 3 IDFUY | - Z Z 0, U7,
j=1 i i=1 i=1 j=1
€, = 2 (W) = ' @)R) + UPW () +0, UV + 201U

-5 2 210,071 - Iw”(xl)l - —|w @)l 2 DU - 2 2 LRI

j:1 i#j i=1 j=1

By assumptions of (2.4)—(2.5), one can see that the coefficients C;(x) (i = 1,2,3,...,

have the same main terms with Zi(x). It follows that

€0 2 5 (v ) = @ 0)2) = 2w )l - el @)l e

(2.48)

n)
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By this estimate and (2.14), one can deduce that there exists a positive constant C,, ,
depending on v, €, n such that

€102 5 () = W/ )P = /el ) —en 2 Cppy > 0,
where k € (0, i). Similarly, it follows that
G, G), ....C,x) 2 C,,.

Thus, we can reduce (2.48) into

n n
)Y / @y DAYV dx+ C, Ty, Y / (D}RD e ™dx
~ Ja J J ’ lj=1 Q J

n

S I, /Q (02 15‘;0))26—11/(xl)dx+HN1 Z 2 /Q (D', U;O))(D;'z hg”)2 o~V OD gy

51+5,=5, 0<s5,<s—1 i=1
1 n n
/ j1 7 7(0) jo 7 (1)\2
D DINEDY /Iu/ (x1)|<I0X,D§ UL, D)
i=1 j=1 ji+j,=s, 0<j,<s—17 &

+ 10, D1 U 10, DER)? e .
X0 T XL

(2.49)

Hence, with similar arguments as for getting (2.43), we use (2.44) to derive

Z 2 /(ax/thJg1>)ze—w(x1>dx+HNl 2 Z /(thjm)ze—w(xl)dx

j=1 i=1 7/ i=1 j=1 /€

n n s
/ —w(x
. E53 [orarea
j=1 i=11,=07L

Combining this estimate with the fact that e™¥®V) is bounded, we obtain (2.29). O

2.3 The existence of first approximation step

Based on the previous a priori estimates, we are ready to prove the existence of the first
approximation step, by using the classical theory of elliptic equations; see[16, 30].

Proposition 2.1 Assume the initial approximation function UV satisfying (2.4)—(2.6).
Then the linearized elliptic system

LIU°Th® =TI, E©),

V-h® =0,
hV ()] o0 = 0.

admits a Sobolev regular solution hV(x) € H*(Q).
Moreover, it follows that
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W1, S Iy, EQNl7., Vo> 0. (2.50)

Proof Let P be the Leray projector onto the space of divergence free functions. We apply
the Leray projector to equations (2.9), it follows that

—vARY 4 PIT, [(U(O) - V)h<1> + (h(” : V)U(")] = I, E©. @2.51)

By (2.13) in Lemma 2.2 and (2.29) in Lemma 2.3, we can get the uniform bound estimate
W7, < Iy, EQ7,.

From the standard theory of elliptic equations of the general order[16, 30], the linear ellip-
tic equations (2.51) admit a unique weak solution h¥ € H' if E® € H'. Since the error
term E® € H*(Q) for s > 1, we conclude that h(V € H*(Q). O

3 The mth approximation step

We define
B, i= (uV0) 1 JUP )y S e <1) (3.1

with the integer 2 < k < m — 1 and the constant s > 1.
Assume that the m-th approximation solutions of (2.3) is denoted by h®(x) with
m=2,3,....Let

h™(x) 1= U™ (x) — U D (x),
then we have
U™(x) = U@ +hP) + ) hO).
i=2

We linearize nonlinear equations (2.3) around U D(x) to get the following boundary
value problem

m—17h(m)y — m—1
{ é[.l{l(nn ]ih((),)) = M B0 (3.2)
with the boundary conditions
h(m)(x)|x60(2 =0, (3.3)
where the error term is given by
EY = JIUm (9] = RO (@), (34)

and
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R(M™) 1= JUD +h™) = JUD) = LIV D0

=TI, <h<m> - VR 4 VP<'">). (3-5)

where

" on™ oh™
P(m) — —A_l Z a:l a] )
X; X

ij=1 i

This is also the nonlinear term in approximation problem (2.3) at U™~V (x).
The following result establishes how to construct the m-th approximation solution.

Proposition 3.1 Let v > 1. Assume the initial approximation function UQ satisfying
(2.4)~(2.6), U D(x) € B, and 27:11 ||h(")||§1d < €% Then the linearized problem (3.2) with
the boundary condition (3.3) admits a Sobolev regular solution h"(x) € H*(Q), which
satisfies

W13, S Iy EVN7,  Ve>0, (3.6)
where the error term satisfies
IE™ e = IRl S Ny ™17, 3.7

Proof Direct computation gives that

m—1
0, U" V() =0, UP @) + 9, bV () + Y 9, h ). (3.8)
i=2

By the assumption Z:":_ll Ih?|2, < €2, we observe that

9, U" V() ~ 9, UL () + Oe?).

Thus, noticing that U@ (x) satisfies (2.4)—(2.6), by small modification of o, U;O) (), it fol-
lows that

s
—1 ..
Dy U™ @l Seg, Vij=1,2,...n. (3.9)
k=0 !
Moreover, we notice that the (m — 1)-th approximation solution is

m—1

U D) = U@ +hO) + Y hO(w),
i=2

and
V-hb =,

Thus, it follows that
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V- U™ D) =0,
N0 Dy S e,
U D) 4e00 = 0.

Then we will find the m-th (m > 2) approximation solution U (x), which is equivalent to
find h(x) such that
U™(x) = U™ D (x) + h™ (). (3.10)
Substituting (3.10) into (2.3), it follows that
JU™) = JU™ D) + LIU™DTh™ + RM™).
Setting
LIU™ D™ = — ZU™V) = —Eo=D,

we supplement it with the boundary conditions (3.3).

Since we assume U™~D(x) € B,, there is the same structure between the linear system
(2.9) and the linear system of mth approximation solutions. Thus, by means of the same
proof process in Proposition 2.1, we can show that the above problem admits a solution
h™(x) € H*(). For this purpose, we should use (2.2). Furthermore, similar to (2.50), we
can use (3.8)—(3.9) to derive

W2, S NE™ 5., Ve 0,
where one can see the (m — 1)-th error term E?~D such that
ECD 1= Uy = R(A™).
Moreover, by (3.5) and the standard Calderon-Zygmund theory, it follows that

||E(m)“1.1.v = ”HNm (h(m) . Vh®™ 4+ VP(m)>||HV < err:”h(m)”IZ-I»"

The proof is now complete. O

4 Convergence of the approximation scheme

Our target is to prove that U™ (x) ,11'15 a global solution of nonlinear equations (1.1). This is

equivalent to show that the series Y h(x) is convergent.

i=1 _
For a fixed constant s > 1,let]l <s =k < k; < k and

k—k
2m
o _k-k

m+l = m+1 ’

k, :=k+

s ki =K
Xt = km

which gives that
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ko >k >...>k, >k, >.... 4.1

Proposition 4.1 Let v > 1. Assume the initial approximation function UV, satisfying
(2.4)—~(2.6). Then the steady incompressible Navier—Stokes equations (1.1) with the Dir-
ichlet boundary condition (1.2) admit a global Sobolev solution

U = U + ) h™(x) € H'(Q),
m=1
Moreover, the following estimate holds
U S .

Proof The proof is based on the induction. Note that N, = N’ with N > 1. For all
m = 1,2, ..., we claim that there exists a sufficient small positive constant € such that

W], S €2
NE™|| s S €2 4.2)
U™ e B,.

For the case of m = 1, we recall the assumptions (2.4)—(2.6) on the initial approximation
function U (x). By (2.50), taking 0 < & < N; ®*Me2 < 1, it follows that

I N0 S NEl 0 < €9 < £
Moreover, by (3.7) and the above estimate, we have

1 1 2 D2 2
NED N0 S IR0 S NFIRDJZ, S €2,

1{k0 ~
and

”U(l)“H“o S

~

NNt + 10PN S e,

which means that UV € B..
Assume that the case of (m — 1) holds, that is,
I, < €27,
IE™ Dy, < € (4.3)
umb e B,.

We now prove that the case of m holds. Using (2.2), (3.6) and the second inequality of
(4.3), we obtain

I gter S 1Ty, E™ g
S NENE™ D g, (4.4)
2m—2

<eg

Combining this estimate with (2.2), (3.7) and (4.1), we obtain
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2 2
IE™ |, S No IR,

2
5 Ni+tlm+1 <”E(m_l)”1-[’<m+l )

2

2.
< (NO)(2+(1m+1)m+2(2+am+z)(m*1) ( ”E(m*2) ||H]‘m+2 ) 4.5)
<.,

S (NEFNE ), )
We choose a sufficiently small positive constant £, such that
0 < NS FIEO|| 0 < Nie, S €2
Thus, by (4.5) we have
IE™ N S €

and

+00

0< tim IE™ s S (N FIEO N ) — 0.
m—+o0

So, the error term goes to 0 as m — oo, that is,

lim ||E™ ||, = 0.
m—oo

On the other hand, note that N,, = N(T,

by (4.3)—(4.4). It follows that
TU N g S NU D N+ 10 [,
< 6+N;£2m <e.
This means that U € B,. Hence we conclude that (4.2) holds.
Therefore, the steady incompressible Navier—Stokes equations (1.1) with the Dirichlet
boundary condition admit global solutions

U = U0 + Y h™(x) = UO@) + O,

m=1

from which, one can see the solution depends on the initial approximation function U@ (x)
strongly.

Finally, by (1.3) and the standard Calderon-Zygmund theory (that is, for the Riesz oper-
ator R), we have ||RU||; s < ||U||;5 with1 < sy, < co0. We conclude that

1Pl S €
and this completes the proof. a
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