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Ground state solutions for quasilinear
Schrödinger equations with variable potential

and superlinear reaction

Sitong Chen, Vicenţiu D. Rădulescu, Xianhua Tang and Binlin Zhang

Abstract. This paper is concerned with the following quasilinear Schrö-
dinger equation:

−Δu+ V (x)u− 1

2
Δ(u2)u = g(u), x ∈ R

N ,

where N ≥ 3, V ∈ C(RN , [0,∞)) and g ∈ C(R,R) is superlinear at infinity.
By using variational and some new analytic techniques, we prove the above
problem admits ground state solutions under mild assumptions on V and g.
Moreover, we establish a minimax characterization of the ground state
energy. Especially, we impose some new conditions on V and more general
assumptions on g. For this, some new tricks are introduced to overcome
the competing effect between the quasilinear term and the superlinear
reaction. Hence our results improve and extend recent theorems in several
directions.

1. Introduction and main results

In this paper, we consider the following quasilinear Schrödinger equation:

(1.1) −Δu+ V (x)u− 1

2
Δ(u2)u = g(u), x ∈ R

N ,

where N ≥ 3, V : RN → R and g : R → R satisfy the following assumptions:

(V1) V ∈ C(RN , [0,∞)) and V∞ := lim|y|→∞ V (y) ≥ V (x) for all x ∈ R
N ;

(G1) lim|t|→0 g(t)/t = 0 and lim|t|→∞ |g(t)|/|t|2·2∗−1 = 0;

(G2) lim|t|→∞ G(t)/|t|2 = +∞, where G(t) =
∫ t

0
g(s)ds ;
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(G3) there exists a constant p > 2 such that g(t)t+NG(t)
|t|p−1t is nondecreasing on both

(−∞, 0) and (0,∞).

This quasilinear version of the nonlinear Schrödinger equation arises in several
models of different physical phenomena, such as in the study of superfluid films in
plasma physics, in condensed matter theory, and a model of self-trapped electrons
in quadratic or hexagonal lattices, see e.g. [9], [10], [11], [14], [15]. After the work of
Poppenberg [16], equations like (1.1) have received much attention in mathematical
analysis and applications in recent years, we refer to [1], [2], [5], [7], [12], [17], [18],
[22], [25], [28] and so on.

In general, problem (1.1) has an energy functional of the form

Φ(u) =
1

2

∫
RN

(1 + u2) |∇u|2 dx+

∫
RN

V (x)u2 dx−
∫
RN

G(u) dx.

Since Φ is not well defined in general inH1(RN ), we employ an argument developed
by Colin and Jeanjean [5], and make the change of variables by v = f−1(u), where f
is defined by

f ′(t) =
1√

1 + |f(t)|2 on [0,+∞), f(−t) = −f(t) on (−∞, 0].

After the change of variables from Φ, we obtain the following functional:

(1.2) I(v) = Φ(u) = Φ(f(v)) =
1

2

∫
RN

[|∇v|2 + V (x)f2(v)
]
dx−

∫
RN

G(f(v)) dx.

Note that

(1.3) 0 < f ′(t) ≤ 1, |f(t)| ≤ |t|, ∀t ∈ R

and

(1.4) |f(t)| ≤ 21/4 |t|1/2, f(t)/2 ≤ f ′(t)t ≤ f(t), ∀t ∈ R.

Under (V1) and (G1), we have I ∈ C1(H1(RN ),R), and critical points of I are
solutions of the semi-linear equation

(1.5) −Δv + V (x)f(v)f ′(v) = g(f(v))f ′(v), x ∈ R
N .

Moreover, v is a solution of (1.5) if and only if u = f(v) solves (1.1), see [5]
and [12]. A solution is called a ground state solution if its energy is minimal
among all nontrivial solutions.

A typical tool to deal with (1.5) is to use the mountain pass theorem. To
this end, one usually requires that g is superlinear near zero and super-cubic near
infinity, and satisfies the Ambrosetti–Rabinowitz type condition

(AR) there exists μ > 4 such that g(t)t ≥ μG(t) ≥ 0 for all t ∈ R.

In fact, under these conditions, it is easy to obtain a bounded (PS) sequence
for the functional I. If g further satisfies the following monotonicity condition:

(MN) g(t)/|t|3 is nondecreasing for t ∈ R \ {0},
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the authors in [26], [27], through a convenient change of variables, proved the
existence for ground state solutions of (1.1) by the Nehari manifold technique.
In [13], Liu, Wang and Wang used a minimization on a Nehari-type constraint for I
to get ground state solutions of (1.1) with g(u) = |u|q−2u for 4 ≤ q < 2 · 2∗, their
argument does not depend on any change of variables. However, these methods
mentioned above do not work for (1.1) in the case when g(u) = |u|q−2u with
2 < q < 4 due to the competing effect between Δ(u2)u and g(u), because it is
more difficult to get a bounded (PS) sequence (or a bounded minimizing sequence
on a Nehari-type constraint) for I. Based on a constrained minimization procedure,
Ruiz and Siciliano [18] proved that (1.1) with g(u) = |u|q−2u for 2 < q < 4 has a
ground state solution, if V satisfies (V1) and

(V2′) V ∈ C1(RN ,R), infRN V > 0 and t 	→ t(N+2)/(N+q)V (t1/(N+q)x) is concave
on (0,∞) for any x ∈ R

N .

In their arguments, the constraint is a new manifold that is defined by a con-
dition which is a combination of the Nehari equation and the Pohoz̆aev equality
rather than Nehari manifold. Later, Wu and Wu [24] obtained a similar result by
using the change of variables, Jeanjean’s monotonicity trick [8] and the Pohoz̆aev
identity, where V satisfies (V1) and

(V2′′) V ∈ C1(RN ,R), infRN V > 0, V (x) = V (|x|) and t3−q∇V (tx) · x is nonin-
creasing on t ∈ (0,∞) for any x ∈ R

N .

We would like to point out that the strategies used in [18], [24] rely heavily
on the condition infRN V > 0 and the algebraic form g(u) = |u|q−2u, see Proposi-
tion 3.3 and Proof of Theorem 2.1 in [18], and Lemma 2.6 in [24], it is difficult to
generalize the above two results to (1.1) with a general interaction function g(u)
even for the case that g(u) = |u|q1−2u+ |u|q2−2u, with 2 < q1 < q2 ≤ 4.

In the present paper, we shall establish the existence of ground state solutions
for (1.1) under (G1)–(G3). To state our results, we need the following new decay
condition on V :

(V2) V ∈ C1(RN ,R), the set {x ∈ R
3 : |∇V (x) · x| ≥ ε} has finite Lebesgue

measure for every ε > 0, and one of the following cases holds:

(I) ∇V (x) · x ≤ (p− 2)V (x) + (N−2)2

2|x|2 for all x ∈ R
N \ {0};

(II) ‖max{∇V (x) · x− (p− 2)V (x), 0}‖N/2 ≤ 2S, where

S = infu∈H1(RN )\{0} ‖∇u‖22/‖u‖22∗ .
We would like to mention that (V2) is much weaker than (V2′) and (V2′′). In

fact, when g(u) = |u|p−2u with 2 < p < 4, it is easy to check that for any x ∈ R
N ,

t(N+2)/(N+p) V (t1/(N+p)x) is concave on t ∈ (0,∞)

is equivalent to

(1.6) [(N + 2)V (tx) +∇V (tx) · (tx)]/tp−2 is nonincreasing on t ∈ (0,∞).

Moreover,
t3−p ∇V (tx) · x is nonincreasing on t ∈ (0,∞)
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implies that

(1.7) t2−p V (tx) is nonincreasing on t ∈ (0,∞).

Hence we can deduce from (1.6) or (1.7) that ∇V (x) · x ≤ (p− 2)V (x), see (2.14)
and Remark 1.6 for more details.

Now, we are in a position to state the first result of the present paper.

Theorem 1.1. Assume that (V1), (V2) and (G1)–(G3) hold. Then problem (1.1)
has a ground state solution with positive energy.

Next, we further provide a minimax characterization of the ground state en-
ergy. For this purpose, inspired by [18], we introduce the following monotonicity
condition on V :

(V3) V ∈ C1(RN ,R), the set {x ∈ R
3 : |∇V (x) · x| ≥ ε} has finite Lebesgue

measure for every ε > 0, and t 	→ [(N + 2)V (tx) + ∇V (tx) · (tx)]/tp−2 is
nonincreasing on [0,∞) for any x ∈ R

N , where p > 2 is given by (G3).

Similar to [24], Lemma 2.1, we define the Pohoz̆aev type functional of (1.5):

P(v) :=
N − 2

2
‖∇v‖22 +

1

2

∫
RN

[NV (x) +∇V (x) · x]f2(v) dx−N

∫
RN

G(f(v)) dx

for all v ∈ H1(RN ). It is well known that any solution v of (1.5) satisfies P(v) = 0
and 〈I ′(v), f(v)/f ′(v)〉 = 0, where

〈I ′(v), f(v)/f ′(v)〉 =
∫
RN

(
1 +

f2(v)

1 + f2(v)

)
|∇v|2 dx+

∫
RN

V (x)f2(v) dx

−
∫
RN

g(f(v))f(v) dx.

(1.8)

Motivated by this fact, we define a new functional on H1(RN ):

J(v) := 〈I ′(v), f(v)/f ′(v)〉+ P(v)

=
N

2
‖∇v‖22 +

∫
RN

f2(v)

1 + f2(v)
|∇v|2 dx

+
1

2

∫
RN

[(N + 2)V (x) +∇V (x) · x]f2(v) dx

−
∫
RN

[g(f(v))f(v) +NG(f(v))] dx

(1.9)

and define the Nehari–Pohoz̆aev manifold of I by

M :=
{
v ∈ H1(RN ) \ {0} : J(v) = 0

}
.

Then every non-trivial solution of (1.5) is contained in M. Our second main result
is as follows.
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Theorem 1.2. Assume that (V1), (V3) and (G1)–(G3) hold. Then problem (1.1)
has a ground state solution ū = f(v̄) ∈ H1(RN ) such that

I(v̄) = inf
M

I = inf
v∈H1(RN )\{0}

max
t>0

I(vt) > 0,

where vt(x) = f−1(tf(v(t−1x)).

Applying Theorem 1.2 to the “limit equation” of (1.1),

(1.10) −Δu+ V∞u− 1

2
Δ(u2)u = g(u), x ∈ R

N ,

we have the following corollary.

Corollary 1.3. Assume that (G1)–(G3) hold. Then problem (1.10) has a ground
state solution ū∞ = f(v̄∞) ∈ H1(RN ) such that

I∞(v̄∞) = inf
M∞

I∞ = inf
v∈H1(RN )\{0}

max
t>0

I∞(vt) > 0,

where

I∞(v) =
1

2

∫
RN

[|∇v|2 + V∞f2(v)
]
dx−

∫
RN

G(f(v)) dx, ∀v ∈ H1(RN ),(1.11)

J∞(v) :=
N

2
‖∇v‖22 +

∫
RN

f2(v)

1 + f2(v)
|∇v|2 dx+

N + 2

2
V∞ ‖f(v)‖22(1.12)

−
∫
RN

[g(f(v))f(v) +NG(f(v))] dx, ∀v ∈ H1(RN )

and

(1.13) M∞ :=
{
v ∈ H1(RN ) \ {0} : J∞(v) = 0

}
.

Remark 1.4. The results in [18], [24] are special cases of Theorems 1.1 and 1.2
as the function g(u) = |u|q−2u with 2 < q < 4 satisfies (G1)–(G3) with p = q, and
(V2′) or (V2′′) implies (V2) and (V3). Therefore, our results extend and improve
the previous results for (1.1) and other related results in the literature.

Remark 1.5. There are many functions satisfying (G1)–(G3); for example,

(i) g(t) = a |t|q1−2 t + b |t|q2−2 t satisfies (G1)–(G3) with p = q1, where a ∈ R,
b > 0 and 2 < q1 < q2 ≤ 4;

(ii) g(t) = |t|t
ln(e+|t|) satisfies (G1)–(G3) with p = 5/2.

There are also many functions which satisfy (V1)–(V3). For example,

V (x) = a− b

|x|β + 1
with a > b > 0 and β > 0

satisfies (V1)–(V3) for any p > 2. In particular, (V1) and (V2) are satisfied by
many non-monotonic functions, for example,

V (x) = a− b sin2 |x|2
|x|2 + 1
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with (p− 2)a > 2b > 0 and (p− 2)a− (p+ 4)b+ (N − 2)2/2 ≥ 0; or

V (x) = a− b sin2 |x|β
|x|β + 1

with β > 0, (p− 2)a > bβ > 0, and (p− 2)(a− b)− 3bβ ≥ 0.

Remark 1.6. For readers’ convenience, we give the proof of (1.7). If t3−p∇V (tx)·x
is nonincreasing on t ∈ (0,∞), then

d

dt

[
t2−p V (tx)

]
= (2− p) t1−p V (tx) + t2−p ∇V (tx) · x

= (2− p) t1−p

∫ t

0

sp−3 s3−p ∇V (sx) · x ds+ t2−p ∇V (tx) · x

≤ (2− p) t1−p t3−p ∇V (tx) · x
∫ t

0

sp−3 ds+ t2−p ∇V (tx) · x = 0.

This shows that (1.7) holds.

To prove Theorem 1.1, we will use Jeanjean’s monotonicity trick [8], that is
an approximation procedure to obtain a bounded (PS)-sequence for I, instead of
starting directly from an arbitrary (PS)-sequence. Below we give a sketch of the
proof of this result.

Firstly, for λ ∈ [1/2, 1] we consider a family of functionals Iλ : H
1(RN ) → R

defined by Iλ(v) = A(v)− λB(v) with

A(v) =
1

2

∫
RN

[|∇v|2 + (V (x)+2a)f2(v)
]
dx, B(v) =

∫
RN

[
G(f(v))+af2(v)

]
dx,

where a > 0 is a constant satisfying G(t) + at2 ≥ 0 for all t ∈ R (the constant a
can be found easily under (G1) and (G2)). For simplicity and without loss of
generality, we assume that a = 0 here. Then

(1.14) Iλ(v) =
1

2

∫
RN

(|∇v|2 + V (x)f2(v)
)
dx− λ

∫
RN

G(f(v))dx, ∀v∈H1(RN ).

These functionals have a mountain pass geometry, and denoting the corresponding
mountain pass levels by cλ. Moreover, in view of Jeanjean’s monotonicity theorem,
Iλ has a bounded (PS)-sequence {vn(λ)} ⊂ H1(RN ) at level cλ for almost every
λ ∈ [1/2, 1].

Secondly, we use the global compactness lemma to show that the bounded
sequence {vn(λ)} converges weakly to a nontrivial critical point of Iλ. To do that,
we have to establish the following strict inequality:

(1.15) cλ < inf
K∞

λ

I∞λ ,

where I∞λ is the associated limited functional defined by

(1.16) I∞λ (v) =
1

2

∫
RN

(|∇v|2 + V∞f2(v)
)
dx− λ

∫
RN

G(f(v))dx, ∀v∈H1(RN )

and K∞
λ := {w ∈ H1(RN ) \ {0} : (I∞λ )′(w) = 0}.
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A classical way to show (1.15) is to find a positive function w∞
λ ∈ K∞

λ such
that I∞λ (w∞

λ ) = infK∞
λ
I∞λ when nonconstant potential V (x) ≤ V∞. However, it

seems to be impossible to obtain this w∞
λ mentioned above only under (G1)–(G3).

So the usual arguments cannot be applied here to obtain (1.15). To overcome
this difficulty, we follow a strategy introduced in [20] where semilinear Schrödinger
equations were studied. However, we have to face some new difficulties caused
by the change of variables by v = f−1(u). These difficulties enforce the imple-
mentation of new ideas and techniques. More precisely, we first make the scaling
vt(x) = f−1(tf(v(t−1x))) and show that there exists v̄∞ such that

(1.17) v̄∞ ∈ M∞, I∞(v̄∞) = inf
M∞

I∞,

then by using the translation invariance for v̄∞ and the crucial inequality

(1.18) I∞λ (v) ≥ I∞λ (vt) +
1− tN+p

N + p
J∞
λ (v) +

1

2
H(t, v)

(see Lemma 3.2) and some new analytic techniques (see Lemma 3.4), we can find
λ̄ ∈ [1/2, 1) such that

(1.19) cλ < m∞
λ := inf

M∞
λ

I∞λ , ∀λ ∈ (λ̄, 1],

where H(t, v) > H(1, v) = 0 for t �= 0 and v �= 0 (see (2.4)),

M∞
λ =

{
v ∈ H1(RN ) \ {0} : J∞

λ (v) = 〈(I∞λ )′(v), f(v)/f ′(v)〉+ P∞
λ (v) = 0

}
,

and P∞
λ (v) = 0 is the corresponding Pohoz̆ave type identity. In particular, any

information on sign of v̄∞ is not required in our arguments.
Finally, we choose two sequences {λn} ⊂ (λ̄, 1] and {vλn

} ⊂ H1(RN )\{0} such
that λn → 1 and I ′λn

(vλn
) = 0, by using (1.19) and the global compactness lemma,

we get a nontrivial critical point v̄ of the functional I.
We would like to mention that a crucial step in the proof of Theorem 1.1 is

to prove (1.17), which is a corollary of Theorem 1.2. Inspired of [4], [19], [21], we
shall prove Theorem 1.2 following this scheme:

Step i). We verify M �= ∅ and establish the minimax characterization of m :=
infM I > 0.

Step ii). We prove that m is achieved.

Step iii). We show that the minimizer of I on M is a critical point.

More precisely, in step i), we first establish the key inequality

(1.20) I(v) ≥ I(vt) +
1− tN+p

N + p
J(v) +

1

2
H(t, v), ∀v ∈ H1(RN ) \ {0}, t > 0

in Lemma 2.2; then we construct a saddle point structure with respect to the fibre
{vt : t > 0} ⊂ H1(RN ) for v ∈ H1(RN ) \ {0}, see Lemma 2.4, finally based on
these constructions we obtain the minimax characterization of m, see Lemma 2.5.
In step ii), we first choose a minimizing sequence {vn} of I on M, and show that
{vn} is bounded in H1(RN ), then with the help of the key inequality (1.20) and a
concentration-compactness argument, we prove that there exist v̂ ∈ H1(RN ) \ {0}
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and t̂ > 0 such that vn ⇀ v̂ in H1(RN ) up to translations and extraction of a
subsequence, and v̂t̂ ∈ M is a minimizer of infM I, see Lemmas 2.9 and 2.10. This
step is most difficult since there are no global compactness and any information
on I ′(vn). To finish step iii), inspired by Lemma 2.13 in [20], we use the key
inequality (1.20), the deformation lemma and intermediary theorem for continu-
ous functions, which overcome the difficulty that M may not be a C1-manifold
of H1(RN ) due to the lack of the smoothness of g, see Lemma 2.11.

Throughout the paper we make use of the following notations:

• H1(RN ) denotes the usual Sobolev space equipped with the inner product
and norm

(u, v) =

∫
RN

(∇u · ∇v + uv) dx, ‖u‖ = (u, u)1/2, ∀u, v ∈ H1(RN ).

• Ls(RN )(1 ≤ s < ∞) denotes the Lebesgue space with the norm ‖u‖s =(∫
RN |u|s dx)1/s.

• For any v ∈ H1(RN ) \ {0}, vt(x) = f−1(tf(v(t−1x))) for t > 0.

• For any x ∈ R
N and r > 0, Br(x) := {y ∈ R

N : |y − x| < r}.
• C1, C2, . . . denote positive constants possibly different in different places.

Under (V1), there exists γ0 > 0 such that

(1.21) γ0 ‖u‖2 ≤
∫
RN

[|∇u|2 + V (x)u2
]
dx.

Under (G1), (1.3) and (1.4), for any ε > 0 and some q ∈ (2, 2∗), there exists Cε > 0
such that

(1.22)

∫
RN

[|g(f(v))f(v)|+ |G(f(v))|] dx

≤ ε
[‖f(v)‖22 + ‖v‖2∗2∗

]
+ Cε‖v‖qq, ∀v ∈ H1(RN ).

The rest of the paper is organized as follows. In Section 2, we study the exis-
tence of ground state solutions for (1.1) by using the Nehari–Pohoz̆aev manifoldM,
and give the proof of Theorem 1.2. In Section 3, based on Jeanjean’s monotonicity
trick, we consider the existence of ground state solutions for (1.1), and complete
the proof of Theorem 1.1.

2. Proof of Theorem 1.2

Lemma 2.1. Assume that (V1), (V3), (G1) and (G3) hold. Then, for all t ≥ 0,
x ∈ R

N ,

(2.1) h1(t, x) := V (x)− tN+2 V (tx)− 1− tN+p

N + p
[(N + 2)V (x) +∇V (x) · x] ≥ 0,
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and for all t ≥ 0, τ ∈ R,

(2.2) h2(t, τ ) := tNG(tτ )−G(τ ) +
1− tN+p

N + p
[g(τ )τ +NG(τ )] ≥ 0.

Proof. For any x ∈ R
N , by (V3), we have

d

dt
h1(t, x) = tN+p−1

[
(N + 2)V (x) +∇V (x) · x− (N + 2)V (tx) +∇V (tx) · (tx)

tp−2

]
{ ≥ 0, t ≥ 1,

≤ 0, 0 < t < 1,

which, together with the continuity of h1(t, x) on t, implies that h1(t, x) ≥ h1(1, x)
= 0 for all t ≥ 0 and x ∈ R

N , i.e., (2.1) holds. It is easy to see that h2(t, 0) ≥ 0
for all t ≥ 0. For τ �= 0, by (G3), we have

d

dt
h2(t, τ ) = tN+p−1|τ |p

[g(tτ )tτ+NG(tτ )

|tτ |p − g(τ )τ+NG(τ )

|τ |p
]{≥ 0, t ≥ 1,

≤ 0, 0 < t < 1,

which, together with the continuity of h2(t, τ ) on t, implies that h2(t, τ )≥h2(1, τ )
= 0 for all t ≥ 0 and τ ∈ R \ {0}. This shows that (2.2) holds. �

For t > 0 and v ∈ H1(RN ), we let

(2.3) H(t, v) :=

∫
RN

{[
1− tN (1+t2f2(v))

1 + f2(v)

]
−1−tN+p

N + p

[
N+

2f2(v)

1 + f2(v)

]}
|∇v|2 dx.

It is easy to check that

(2.4) H(t, v) > H(1, v) = 0, ∀t ∈ [0, 1) ∪ (1,∞), v ∈ H1(RN ) \ {0}.
Indeed, by a simple calculation, one has

d

dt
H(t, v) = tN−1

{
t2(tp−2 − 1)

[
N ‖∇v‖22 + 2(‖∇v‖22 − ‖∇f(v)‖22)

]
+N (t2 − 1) ‖∇f(v)‖22

}
,

which, together with

(2.5) ‖∇v‖2 ≥ ‖∇f(v)‖2, ∀v ∈ H1(RN ),

implies that (2.4) holds.

Inspired by [3], [4], we establish the following inequality.

Lemma 2.2. Assume that (V1), (V3), (G1) and (G3) hold. Then

I(v) ≥ I(vt) +
1−tN+p

N + p
J(v) +

1

2
H(t, v), ∀v ∈ H1(RN ) \ {0}, t > 0.(2.6)

Proof. Since vt(x) = f−1(tf(v(t−1x))), then f(vt(x)) = tf(v(t−1x)). Note that
(2.7)

I(vt)=
tN

2

∫
RN

1+t2f2(v)

1 + f2(v)
|∇v|2 dx+ tN+2

2

∫
RN

V (tx)f2(v) dx− tN
∫
RN

G(tf(v))dx.
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Thus, it follows from (1.2), (1.9), (2.7) and the definitions of h1 and h2 that

I(v)− I(vt)

=
1

2
‖∇v‖22 −

tN

2

∫
RN

1 + t2f2(v)

1 + f2(v)
|∇v|2 dx+

∫
RN

[
V (x)− tN+2V (tx)

]
f2(v) dx

+

∫
RN

[
tNG(tf(v))−G(f(v))

]
dx

=
1− tN+p

N + p

{
N

2
‖∇v‖22 +

∫
RN

f2(v)

1 + f2(v)
|∇v|2 dx

+
1

2

∫
RN

[(N + 2)V (x) +∇V (x) · x]f2(v) dx

− N

∫
RN

[g(f(v))f(v) +NG(f(v))] dx

}

+
1

2

∫
RN

{[
1− tN (1 + t2f2(v))

1 + f2(v)

]
− 1− tN+p

N + p

[
N +

2f2(v)

1 + f2(v)

]}
|∇v|2 dx

+
1

2

∫
RN

{
V (x)− tN+2V (tx)− 1− tN+p

N + p
[(N + 2)V (x) +∇V (x) · x]

}
f2(v) dx

+

∫
RN

{
tNG(tf(v))−G(f(v)) +

1− tN+p

N + p
[g(f(v))f(v) +NG(f(v))]

}
dx

=
1− tN+p

N + p
J(v) +

1

2
H(t, v) +

1

2

∫
RN

h1(t, x)f
2(v) dx+

∫
RN

h2(t, f(v)) dx

≥ 1− tN+p

N + p
J(v) +

1

2
H(t, v), ∀v ∈ H1(RN ), t > 0.

As desired. �

From Lemma 2.2, we have the following corollary.

Corollary 2.3. Assume that (V1), (V3), (G1) and (G3) hold. Then, for v ∈ M,

(2.8) I(v) = max
t>0

I(vt).

Lemma 2.4. Assume that (V1), (V3) and (G1)–(G3) hold. Then for any v ∈
H1(RN ) \ {0}, there exists a unique tv > 0 such that vtv ∈ M.

Proof. Let v ∈ H1(RN )\{0} be fixed and define a function ζ(t) := I(vt) on (0,∞).
Clearly, by (1.9) and (2.7), we have

ζ ′(t) = 0 ⇔ NtN−1

2

∫
RN

1 + t2f2(v)

1 + f2(v)
|∇v|2 dx+ tN+1

∫
RN

f2(v)

1 + f2(v)
|∇v|2 dx

+
tN+1

2

∫
RN

[(N + 2)V (tx) +∇V (tx) · (tx)] f2(v) dx

− tN−1

∫
RN

[g(tf(v))tf(v) +NG(tf(v))] dx = 0

⇔ J(vt) = 0 ⇔ vt ∈ M.(2.9)
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It is easy to verify, using (V1), (V3), (1.22) and (2.7), that limt→0 ζ(t) = 0, ζ(t) > 0
for t > 0 small and ζ(t) < 0 for t large. Therefore maxt∈(0,∞) ζ(t) is achieved at
some tv > 0 so that ζ ′(tv) = 0 and vtv ∈ M.

Next we claim that tv is unique for any v ∈ H1(RN ) \ {0}. In fact, for some
v ∈ H1(RN ) \ {0}, if there exist two positive constants t1 �= t2 such that vt1 , vt2 ∈
M, i.e., J(vt1) = J(vt2) = 0, then (2.4) and (2.6) imply

I(vt1) > I(vt2) +
tN+p
1 − tN+p

2

(N + p)tN+p
1

J(vt1) = I(vt2)

> I(vt1) +
tN+p
2 − tN+p

1

(N + p)tN+p
2

J(vt2) = I(vt1).

This contradiction shows that tv > 0 is unique for any v ∈ H1(RN ) \ {0}. �

From Corollary 2.3 and Lemma 2.4, we have M �= ∅ and the following lemma.

Lemma 2.5. Assume that (V1), (V3) and (G1)–(G3) hold. Then

inf
v∈M

I(v) = m = inf
v∈H1(RN )\{0}

max
t>0

I(vt).

Lemma 2.6. Assume that V satisfies (V1) and (V3). Then there exists γ1 > 0
such that

(2.10)
N

2
‖∇u‖22 +

∫
RN

[
(N+2)V (x)+∇V (x) · x]u2 dx ≥ γ1‖u‖2, ∀u ∈ H1(RN ).

Proof. Arguing as in the proof of Lemma 3.8 in [21], we can obtain the above
conclusion. �

Lemma 2.7. Assume that (V1), (V3) and (G1)–(G3) hold. Then

(i) there exists ρ0 > 0 such that ‖∇v‖2 ≥ ρ0 for all v ∈ M;

(ii) m = infM I > 0.

Proof. (i). Since J(v) = 0 for v ∈ M, by (G1), (1.3), (1.4), (1.9), (2.5), (2.10) and
the Sobolev embedding inequality, one has

N

4
‖∇v‖22 +

γ1
2
‖f(v)‖2

≤ N

4
‖∇v‖22 +

N

4
‖∇f(v)‖22 +

1

2

∫
RN

[(N + 2)V (x) +∇V (x) · x]f2(v) dx

≤ N

2
‖∇v‖22 +

∫
RN

f2(v)

1 + f2(v)
|∇v|2 dx

+
1

2

∫
RN

[(N + 2)V (x) +∇V (x) · x]f2(v) dx

=

∫
RN

[g(f(v))f(v) +NG(f(v))] dx ≤ γ1
4
‖f(v)‖22 + C1‖v‖2∗2∗

≤ γ1
4

‖f(v)‖22 + C1S
−2∗/2 ‖∇v‖2∗2 , ∀v ∈ M,(2.11)
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which implies

(2.12) ‖∇v‖2 ≥
( N

4C1

)(N−2)/4

SN/4 := ρ0, ∀v ∈ M.

(ii). Note that

I(v)− 1

N + p
J(v) =

p− 2

2(N + p)
‖∇v‖22 +

1

N + p
‖∇f(v)‖22

+
1

2(N + p)

∫
RN

[(p− 2)V (x)−∇V (x) · x] f2(v) dx

+
1

N + p

∫
RN

[g(f(v))f(v)− pG(f(v))] dx, ∀v ∈ H1(RN ).(2.13)

By (2.1) and (2.2), one has

(2.14) (p− 2)V (x)−∇V (x) · x ≥ 0, ∀x ∈ R
N

and

(2.15) g(t)t− pG(t) ≥ 0, ∀t ∈ R.

Since J(v) = 0 for v ∈ M, then it follows from (2.12), (2.13), (2.14) and (2.15)
that

I(v) = I(v)− 1

N + p
J(v) ≥ p− 2

2(N + p)
‖∇v‖22 ≥ p− 2

2(N + p)
ρ20, ∀v ∈ M.

This shows that m = infM I > 0. �

The following lemma is a known result which can be proved by a standard
argument.

Lemma 2.8. Assume that (V1), (V3), (G1) and (G2) hold. If vn ⇀ v̄ in H1(RN ),
then

I(vn) = I(v̄) + I(vn − v̄) + o(1) and J(vn) = J(v̄) + J(vn − v̄) + o(1).

Lemma 2.9. Assume that (V1), (V3) and (G1)–(G3) hold. Then m∞ ≥ m.

Proof. Since V (x) ≡ V∞ satisfies (V1) and (V3), the conclusions for I in this
section are true for I∞. By Lemma 2.4, we have M∞ �= ∅. Arguing indirectly, we
assume that m > m∞. Let ε := m−m∞. Then there exists v∞ε such that

(2.16) v∞ε ∈ M∞ and m∞ +
ε

2
> I∞(v∞ε ).

In view of Lemma 2.4, there exists tε > 0 such that (v∞ε )tε ∈ M. Since V∞ ≥ V (x)
for all x ∈ R

N , it follows from (1.2), (1.11), (2.16) and Corollary 2.3 that

m∞ +
ε

2
> I∞(v∞ε ) ≥ I∞((v∞ε )tε) ≥ I((v∞ε )tε) ≥ m = m∞ + ε.

This contradiction shows that m∞ ≥ m. �

Lemma 2.10. Assume that (V1), (V3) and (G1)–(G3) hold. Then m is achieved.
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Proof. In view of Lemmas 2.4 and 2.7, we have M �= ∅ and m > 0. Let {vn} ⊂ M
be such that I(vn) → m. Since J(vn) = 0, then it follows from (2.13), (2.14)
and (2.15) that

m+ o(1) = I(vn) = I(vn)− 1

N + p
J(vn) ≥ p− 2

2(N + p)
‖∇vn‖22.

This shows that {‖∇vn‖2} is bounded. In view of (2.11), we have

γ1
4

‖f(vn)‖2 ≤ C1S
−2∗/2 ‖∇vn‖2∗2 ,

which implies {‖f(vn)‖} is bounded. Then it follows from (1.3), (1.4) and the
Sobolev embedding inequality that

∫
RN

v2n dx =

∫
|vn|≤1

v2n dx+

∫
|vn|>1

v2n dx

≤ C2

∫
|vn|≤1

|f(vn)|2dx+

∫
RN

|vn|2∗dx ≤ C2‖f(vn)‖22+S−2∗/2‖∇vn‖2∗2 .(2.17)

Hence, {vn} is bounded in H1(RN ). Passing to a subsequence, we have vn ⇀ v̄ in
H1(RN ), vn → v̄ in Ls

loc(R
N ) for 2 ≤ s < 2∗ and vn → v̄ a.e. in R

N . There are
two possible cases: i) v̄ = 0, and ii) v̄ �= 0.

Case i). v̄ = 0, i.e., vn ⇀ 0 inH1(RN ). Then vn → 0 in Ls
loc(R

N ) for 2 ≤ s < 2∗

and vn → 0 a.e. in R
N . By (V1) and (V3), it is easy to show that

(2.18) lim
n→∞

∫
RN

[V∞ − V (x)]f2(vn) dx = lim
n→∞

∫
RN

∇V (x) · xf2(vn) dx = 0.

By (1.2), (1.9), (1.11), (1.12) and (2.18), one can get

(2.19) I∞(vn) → m, J∞(vn) → 0.

From (1.4), (1.22), (2.5), (2.10) and (2.12), one has

N

4
ρ20 +

γ1
2

‖f(vn)‖2

≤ N

4
‖∇vn‖22 +

N

4
‖∇f(vn)‖22 +

1

2

∫
RN

[(N+2)V (x)+∇V (x) · x]f2(vn) dx

≤ N

2
‖∇vn‖22 +

∫
RN

f2(vn)

1 + f2(vn)
|∇vn|2 dx

+
1

2

∫
RN

[(N + 2)V (x) +∇V (x) · x]f2(vn) dx

=

∫
RN

[g(f(vn))f(vn) +NG(f(vn))] dx

≤ (1 +N) ε
(‖f(vn)‖22 + ‖vn‖2∗2∗

)
+ (1 +N)Cε ‖vn‖qq.(2.20)
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Using (2.20) and Lions’ concentration compactness principle Lemma 1.21 in [23],
we can prove that there exist δ > 0 and {yn} ⊂ R

N such that
∫
B1(yn)

|vn|2 dx > δ.

Let v̂n(x) = vn(x+ yn). Then ‖v̂n‖ = ‖vn‖, and by (2.19), one has

(2.21) J∞(v̂n) = o(1), I∞(v̂n) → m,

∫
B1(0)

|v̂n|2 dx > δ.

Therefore, there exists v̂ ∈ H1(RN ) \ {0} such that, passing to a subsequence,

(2.22)

⎧⎨
⎩

v̂n ⇀ v̂, in H1(RN ),
v̂n → v̂, in Ls

loc(R
N ), ∀s ∈ [1, 2∗),

v̂n → v̂, a.e. on R
N .

Let wn = v̂n − v̂. Then (2.22) and Lemma 2.8 yield

(2.23) I∞(v̂n) = I∞(v̂) + I∞(wn) + o(1), J∞(v̂n) = J∞(v̂) + J∞(wn) + o(1).

Let

(2.24) Ψ∞(v) := I∞(v)− 1

N + p
J∞(v), ∀v ∈ H1(RN ).

From (1.2), (1.9), (2.21), (2.23) and (2.24), one has

(2.25) Ψ∞(wn) = m−Ψ∞(v̂) + o(1), J∞(wn) = −J∞(v̂) + o(1).

If there exists a subsequence {wni
} of {wn} such that wni

= 0, then we have

(2.26) I∞(v̂) = m, J∞(v̂) = 0.

Next, we assume that wn �= 0. We claim that J∞(v̂) ≤ 0. Otherwise, if J∞(v̂) > 0,
then (2.25) implies J∞(wn) < 0 for large n. Applying Lemma 2.4 to I∞, there
exists tn > 0 such that (wn)tn ∈ M∞ for large n. Applying Lemma 2.2 to I∞,
from (1.11), (1.12), (2.4), (2.24), (2.25) and Lemma 2.9, we derive

m−Ψ∞(v̂) + o(1) = Ψ∞(wn) = I∞(wn)− 1

N + p
J∞(wn)

≥ I∞ ((wn)tn)−
tN+p
n

N + p
J∞(wn) ≥ m∞ ≥ m,

which is a contradiction due to Ψ∞(v̂) > 0. This shows that J∞(v̂) ≤ 0. Applying
Lemmas 2.2 and 2.4 to I∞, there exists t∞ > 0 such that v̂t∞ ∈ M∞, more-
over, it follows from (1.11), (1.12), (2.4), (2.15), (2.21), (2.24), Fatou’s lemma and
Lemma 2.9 that

m = lim
n→∞

[
I∞(v̂n)− 1

N + p
J∞(v̂n)

]
≥ I∞(v̂)− 1

N + p
J∞(v̂)

≥ I∞ (v̂t∞)− tN+p
∞

N + p
J∞(v̂) ≥ m∞ ≥ m,

which implies (2.26) holds also.
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In view of Lemma 2.4, there exists t̂ > 0 such that v̂t̂ ∈ M. Applying Corol-
lary 2.3 to I∞, we deduce from (V1), (1.2), (1.11) and (2.26) that

m ≤ I(v̂t̂) ≤ I∞(v̂t̂) ≤ I∞(v̂) = m.

This shows that m is achieved at v̂t̂ ∈ M.

Case ii). v̄ �= 0. In this case, analogous to the proof of (2.26), by using I and J
instead of I∞ and J∞, we can deduce that I(v̄) = m and J(v̄) = 0. �

Lemma 2.11. Assume that (V1), (V3) and (G1)–(G3) hold. If v̄ ∈ M and
I(v̄) = m, then v̄ is a critical point of I.

Proof. From (G1), (G2), (1.9) and (2.9), we can deduce that there exist T1 ∈ (0, 1)
and T2 ∈ (1,∞) such that J(v̄T1

) > 0 and J(v̄T2
) < 0. Similar to the proof of

Lemma 2.15 in [20], we can prove this lemma by using

I(v̄t) ≤ I(v̄)− 1

2
H(t, v̄) = m− 1

2
H(t, v̄), ∀t > 0,

and ε := min
{1

4
H(T1, v̄),

1

4
H(T2, v̄), 1,

�δ

8

}
. �

Proof of Theorem 1.2. In view of Lemmas 2.5, 2.10 and 2.11, there exists v̄ ∈ M
such that

I(v̄) = m = inf
v∈H1(RN )\{0}

max
t>0

I(vt), I ′(v̄) = 0.

This shows that v̄ is a ground state solution of (1.1) such that I(v̄)=infM I >0. �

3. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1.

Proposition 3.1 ([8]). Let X be a Banach space and let K ⊂ R
+ be an interval.

We consider a family {Iλ}λ∈K of C1-functional on X of the form

Iλ(u) = A(u)− λB(u), ∀λ ∈ K,

where B(u) ≥ 0, ∀u ∈ X, and such that either A(u) → +∞ or B(u) → +∞, as
‖u‖ → ∞. We assume that there are two points v1, v2 in X such that

(3.1) cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(v1), Iλ(v2)},

where
Γ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2} .

Then, for almost every λ ∈ K, there is a bounded (PS)cλ sequence for Iλ, that is,
there exists a sequence such that

i) {un(λ)} is bounded in X ;

ii) Iλ(un(λ)) → cλ ;

iii) I ′
λ(un(λ)) → 0 in X∗, where X∗ is the dual of X.

Moreover, cλ is nonincreasing and left continuous on λ ∈ [1/2, 1].
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If I ′λ(v) = 0, then v satisfies the Pohoz̆aev identity

Pλ(v) :=
N−2

2
‖∇v‖22+

1

2

∫
RN

[NV (x)+∇V (x) ·x] f2(v) dx−Nλ

∫
RN

G(f(v))dx=0,

where Iλ(v) is defined by (1.14). For λ ∈ [1/2, 1] and v ∈ H1(RN ), we set Jλ(v) =
〈I ′λ(v), f(v)/f ′(v)〉+ Pλ(v), then

Jλ(v)=
N

2
‖∇v‖22 +

∫
RN

f2(v)

1+f2(v)
|∇v|2 dx+ 1

2

∫
RN

[(N+2)V (x)+∇V (x) ·x]f2(v)dx

(3.2) − λ

∫
RN

[g(f(v))f(v) +NG(f(v))] dx.

Correspondingly, for λ ∈ [1/2, 1] and v ∈ H1(RN ) we define

J∞
λ (v) =

N

2
‖∇v‖22 +

∫
RN

f2(v)

1 + f2(v)
|∇v|2 dx+

N + 2

2
V∞ ‖f(v)‖22

− λ

∫
RN

[g(f(v))f(v) +NG(f(v))] dx.

Set

(3.3) M∞
λ := {v ∈ H1(RN ) \ {0} : J∞

λ (v) = 0}, m∞
λ := inf

v∈M∞
λ

I∞λ (v).

By (2.3) and Lemma 2.2, we have the following lemma.

Lemma 3.2. Assume that (G1) and (G3) hold. Then

(3.4) I∞λ (v) ≥ I∞λ (vt) +
1− tN+p

N + p
J∞
λ (v) +

1

2
H(t, v), ∀v ∈ H1(RN ), t > 0.

In view of Theorem 1.1, I∞1 = I∞ has a minimizer v∞ �= 0 on M∞
1 = M∞, i.e.,

(3.5) v∞ ∈ M∞
1 , (I∞1 )′(v∞) = 0 and m∞

1 = I∞1 (v∞),

where m∞
λ is defined by (3.3). Since (1.10) is autonomous, V ∈ C(RN ,R) and

V (x) ≤ V∞ but V (x) �≡ V∞, then there exist x̄ ∈ R
N and r̄ > 0 such that

(3.6) V∞ − V (x) > 0, |v∞(x)| > 0 a.e. |x− x̄| ≤ r̄.

Lemma 3.3. Assume that (V1), (V2) and (G1)–(G3) hold. Then

(i) there exists T > 0, independent of λ, such that Iλ ((v
∞)T ) < 0 for all λ ∈

[1/2, 1] ;

(ii) there exists a positive constant κ0, independent of λ, such that for all λ ∈
[1/2, 1],

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) ≥ κ0 > max {Iλ(0), Iλ ((v∞)T )} ,

where
Γ =

{
γ ∈ C([0, 1], H1(RN )) : γ(0) = 0, γ(1) = (v∞)T

}
;

(iii) cλ and m∞
λ is non-increasing on λ ∈ [1/2, 1] ;

(iv) lim supλ→λ0
cλ = cλ0

for λ0 ∈ (1/2, 1].
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The proof of Lemma 3.3 is standard, so we omit it.

Lemma 3.4. Assume that (V1), (V2) and (G1)–(G3) hold. Then there exists
λ̄ ∈ [1/2, 1) such that cλ < m∞

λ for λ ∈ (λ̄, 1].

Proof. It is easy to check that Iλ ((v
∞)t) is continuous on t ∈ (0,∞). Hence for any

λ ∈ [1/2, 1], we can choose tλ∈(0, T ) such that Iλ ((v
∞)tλ)=maxt∈(0,T ] Iλ ((v

∞)t).
Set

γ0(t) =

{
(v∞)(tT ), for t > 0,
0, for t = 0.

Then γ0 ∈ Γ, where Γ is defined by Lemma 3.3 (ii). Moreover,

(3.7) Iλ ((v
∞)tλ) = max

t∈[0,1]
Iλ (γ0(t)) ≥ cλ.

Using (2.15), it is easy to check that the function G(t)/t|t|p−1 is nondecreasing on
both t ∈ (−∞, 0) and (0,+∞). Since tλ ∈ (0, T ), then we have

(3.8)
G(tλf(v

∞))

tpλ
≤ G(Tf(v∞))

T p
.

Let

(3.9) ζ0 := min{3 r̄/8(1 + |x̄|), 1/4}.
Then it follows from (3.6) and (3.9) that

(3.10) |x− x̄| ≤ r̄

2
and s ∈ [1− ζ0, 1 + ζ0] ⇒ |sx− x̄| ≤ r̄.

Let

λ̄ := max
{1

2
, 1− (1− ζ0)

N+2 mins∈[1−ζ0,1+ζ0]

∫
RN [V∞ − V (sx)] f2(v∞) dx

2TN
∫
RN G(Tf(v∞)) dx

,

1− min {H(1− ζ0, v
∞), H(1 + ζ0, v

∞)}
2TN

∫
RN G(Tf(v∞)) dx

}
.(3.11)

Then it follows from (2.4), (3.6) and (3.10) that 1/2 ≤ λ̄ < 1. We have two cases
to distinguish:

Case i). tλ ∈ [1− ζ0, 1+ ζ0]. From (1.14), (1.16), (3.4)–(3.8), (3.10), (3.11) and
Lemma 3.3 (iv), we have

m∞
λ ≥ m∞

1 = I∞1 (v∞) ≥ I∞1 ((v∞)tλ)

= Iλ ((v
∞)tλ) −(1−λ)tNλ

∫
RN

G(tλf(v
∞)) dx+

tN+2
λ

2

∫
RN

[V∞−V (tλx)]f
2(v∞)dx

≥ cλ − (1− λ)TN

∫
RN

G(Tf(v∞)) dx

+
(1− ζ0)

N+2

2
min

s∈[1−ζ0,1+ζ0]

∫
RN

[V∞ − V (sx)] f2(v∞) dx

> cλ, ∀λ ∈ (λ̄, 1].



1566 S. T. Chen, V.D. Rădulescu, X.H. Tang and B. L. Zhang

Case ii). tλ ∈ (0, 1 − ζ0) ∪ (1 + ζ0, T ). From (V1), (1.3), (1.14), (1.16), (3.4),
(3.5), (3.7), (3.11) and Lemma 3.3 (iii), we have

m∞
λ ≥ m∞

1 = I∞1 (v∞) ≥ I∞1 ((v∞)tλ) +
1

2
H(tλ, v

∞)

= Iλ ((v
∞)tλ)− (1− λ)tNλ

∫
RN

G(tλf(v
∞)) dx

+
tN+2
λ

2

∫
RN

[V∞ − V (tλx)]f
2(v∞) dx+

1

2
H(tλ, v

∞)

≥ cλ − (1−λ)TN

∫
RN

G(Tf(v∞)) dx+
1

2
min {H(1−ζ0, v

∞), H(1 + ζ0, v
∞)}

> cλ, ∀λ ∈ (λ̄, 1].

In both cases, we obtain that cλ < m∞
λ for λ ∈ (λ̄, 1]. �

Lemma 3.5 (Lemma 3.3 in [6]). Assume that (V1), (V2) and (G1)–(G3) hold.
Let {vn} be a bounded (PS) sequence for Iλ, for λ ∈ [1/2, 1]. Then there exist a
subsequence of {vn}, still denoted by {vn}, an integer l ∈ N∪{0}, a sequence {ykn}
and wk ∈ H1(RN ) for 1 ≤ k ≤ l, such that

(i) vn ⇀ v0 with I ′λ(v0) = 0;

(ii) wk �= 0 and (I∞λ )′(wk) = 0 for 1 ≤ k ≤ l ;

(iii)
∥∥vn − v0 −

∑l
k=1 w

k(·+ ykn)
∥∥ → 0;

(iv) Iλ(vn) → Iλ(v0) +
∑l

i=1 I
∞
λ (wi) ;

where we agree that in the case l = 0 the above holds without wk.

Lemma 3.6. Assume that (V1), (V2) and (G1)–(G3) hold. Then for almost every
λ ∈ (λ̄, 1], there exists vλ ∈ H1(RN ) \ {0} such that

I ′λ(vλ) = 0, Iλ(vλ) = cλ.

Proof. Under (V1), (V2) and (G1)–(G3), Lemma 3.3 implies that Iλ(v) satisfies
the assumptions of Proposition 3.1 with X = H1(RN ), K = [λ̄, 1] and Iλ = Iλ. So
for almost every λ ∈ (λ̄, 1], there exists a bounded sequence {vn(λ)} ⊂ H1(RN )
(for simplicity, we denote the sequence by {vn} instead of {vn(λ)}) such that

Iλ(vn) → cλ > 0, I ′λ(vn) → 0.

By Lemma 3.5, there exist a subsequence of {vn}, still denoted by {vn}, and
vλ ∈ H1(RN ), an integer l ∈ N ∪ {0}, and w1, . . . , wl ∈ H1(RN ) \ {0} such that

vn ⇀ vλ in H1(RN ), I ′λ(vλ) = 0,(3.12)

(I∞λ )′(wk) = 0, I∞λ (wk) ≥ m∞
λ , 1 ≤ k ≤ l,(3.13)

and cλ = Iλ(vλ) +

l∑
k=1

I∞λ (wk).(3.14)
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Since ‖vn‖ � 0, we deduce from (3.13) and (3.14) that if vλ = 0 then l ≥ 1 and

cλ = Iλ(vλ) +

l∑
k=1

I∞λ (wk) ≥ m∞
λ ,

which contradicts with Lemma 3.4. Thus vλ �= 0. Since I ′λ(vλ) = 0, then we
have Jλ(vλ) = 〈I ′λ(vλ), f(vλ)/f ′(vλ)〉 + Pλ(vλ) = 0. It follows from (1.14), (2.15)
and (3.2) that

Iλ(vλ) = Iλ(vλ)− 1

N + p
Jλ(vλ)

≥ p− 2

2(N + p)
‖∇vλ‖22 +

1

N + p
‖∇f(vλ)‖22

− 1

2(N + p)

∫
RN

[∇V (x) · x− (p− 2)V (x)] f2(vλ) dx.(3.15)

If Case (I) of (V2) holds, then it follows from Hardy’s inequality that
(3.16)∫

RN

[∇V (x) · x− (p− 2)V (x)]f2(vλ) dx ≤ (N − 2)2

2

∫
RN

f2(vλ)

|x|2 dx ≤ 2‖∇f(vλ)‖22.

If Case (II) of (V2) holds, then it follows from Sobolev’s embedding inequality that∫
RN

[∇V (x) · x− (p− 2)V (x)]f2(vλ) dx

≤
(∫

RN

|max{[∇V (x) · x− (p− 2)V (x)], 0}|N/2 dx
)2/N

·
(∫

RN

|f(vλ)|2N/(N−2) dx
)(N−2)/N

≤ ‖max{[∇V (x) · x− (p− 2)V (x)], 0}‖N/2

S
‖∇f(vλ)‖22 ≤ 2‖∇f(vλ)‖22.(3.17)

Thus, from (3.15) and (3.16) or (3.17), we deduce

(3.18) Iλ(vλ) ≥ p− 2

2(N + p)
‖∇vλ‖22 > 0.

By (3.13), (3.14) and (3.18), we have

cλ = Iλ(vλ) +

l∑
k=1

I∞λ (wk) > lm∞
λ ,

which, together with Lemma 3.4, implies that l = 0 and Iλ(vλ) = cλ. �

Lemma 3.7. Assume that (V1), (V2) and (G1)–(G3) hold. Then there exists
v̄ ∈ H1(RN ) \ {0} such that

(3.19) I ′(v̄) = 0, 0 < I(v̄) = c1.
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Proof. In view of Lemma 3.3 (iv) and Lemma 3.6, there exist two sequences {λn} ⊂
[λ̄, 1] and {vλn

} ⊂ H1(RN ) \ {0}, denoted by {vn}, such that

λn → 1, cλn
→ c1, I ′λn

(vn) = 0, 0 < Iλn
(vn) = cλn

.

Then we have Jλn
(vn) = 0. Similar to the proof of (3.18), one can get

c1 + o(1) = cλn
= Iλn

(vn)− 1

N + p
Jλn

(vn) ≥ p− 2

2(N + p)
‖∇vn‖22.

This shows that {‖∇vn‖2} is bounded. Since 〈I ′λn
(vn), f(vn)/f

′(vn)〉 = 0, it follows
from (G1), (1.3), (1.4), (1.8), (1.21) and the Sobolev embedding inequality that

γ0‖f(vn)‖2 ≤
∫
RN

(
1 +

f2(vn)

1 + f2(vn)

)
|∇vn|2 dx+

∫
RN

V (x)f2(vn) dx

= λn

∫
RN

g(f(vn))f(vn) dx ≤ γ0
2
‖f(vn)‖22 + C3S

2∗/2 ‖∇vn‖22,

which, together with (2.17), implies that {vn} is bounded in H1(RN ). The rest of
the proof is similar to that of Lemma 3.6, so we omit it. �

Proof of Theorem 1.1. Let

K :=
{
v ∈ H1(RN ) \ {0} : I ′(v) = 0

}
, m̂ := inf

v∈K
I(v).

Then Lemma 3.7 shows that K �= ∅ and m̂ ≤ c1. Similar to the proof of (3.18),
we have I(v) = I1(v) ≥ 0 for all v ∈ K, and so m̂ ≥ 0. Let {vn} ⊂ K be such that
I ′(vn) = 0 and I(vn) → m̂. Similar to the proof of Lemma 3.7, we can deduce that
there exists v̂ ∈ H1(RN ) \ {0} such that I ′(v̂) = 0 and I(v̂) = m̂. �
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