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We are concerned with the mathematical analysis of a class of nonlinear eigen-
value problems driven by a nonhomogeneous differential operator. The features
of this paper are the presence of an absorption term and the lack of compactness
due to the study in the whole Euclidean space. The main result establishes the
following properties: (i) the problem does not have solutions in the case of low
perturbations of the reaction; (ii) the problem admits at least two nontrivial en-
tire solutions in the case of high perturbations of the reaction. In both cases, the
perturbations is considered in terms of the values of a suitable positive parame-
ter. The proofs rely on simple variational methods and the arguments developed
in this paper can be extended to other classes of nonlinear eigenvalue problems
with nonstandard growth.
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1. INTRODUCTION AND THE MAIN RESULT

The present paper is motivated by our previous work [13], where we
have studied existence and multiplicity properties of solutions to the following
quasilinear problem

(1.1)

{
−div(|∇u|m−2∇u)+|u|m−2u = λ|u|q−2u−h(x)|u|p−2u, if x ∈ RN
u ≥ 0, if x ∈ RN ,

where h(x) is a positive continuous function on RN (N ≥ 3) satisfying the
condition

(1.2)

∫
RN

1

h(x)q/(p−q)
dx <∞,

λ > 0 is a positive parameter and 2 ≤ m < q < p < m? = Nm/(N − m),
m < N .
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Problem (1.1) is the generalized Lane-Emden-Fowler equation and it
arises in the description of several patterns in mathematical physics, for in-
stance in boundary-layer models of viscous fluids (see Wong [16]). This equa-
tion goes back to the pioneering paper by Lane [7] in 1869 and is originally
motivated by Lane’s interest in computing both the temperature and the den-
sity of mass on the surface of the sun. Problem (1.1) describes the behavior of
the density of a gas sphere in hydrostatic equilibrium and the index p, which
is called the polytropic index in astrophysics and is related to the ratio of the
specific heats of the gas. The study developed in [13] is in connection with re-
lated contributions of Alama and Tarantello [1] (case of bounded domain) and
Chabrowski [4] (case of unbounded domains). Related contributions have been
established by Papageorgiou, Rădulescu and Repovš [9, 10], and Ramos Quoirin
and Umezu [12]. We also refer to the recent monograph [11], which includes
several relevant contributions to the study of Lane-Emden-Fowler equations.

The aim of the present paper is to extend the analysis developed in [13]
to the case of nonhomogeneous differential operators. We study the following
problem:

(1.3)

{
−div(a(|∇u|2)∇u) + a(u2)u+ h(x)|u|p−2u = λ|u|q−2u, in RN
u ≥ 0, in RN ,

where h(x) : RN → (0,∞) (N ≥ 3) is a continuous function satisfying the
condition

(1.4)

∫
RN

1

h(x)q/(p−q)
dx <∞,

λ is a positive parameter and

(1.5) 2 < q < p < 2? =
2N

N − 2
.

Throughout this paper we assume that a : R+ → R∗ is a function of class
C1 that satisfies the following ellipticity and growth conditions of Leray-Lions
type: there exist positive numbers γ and Γ such that

(1.6) γ ≤ a(t2) ≤ Γ for all t ≥ 0

and

(1.7)

(
γ − 1

2

)
a(t) ≤ ta′(t) ≤ Γa(t) for all t ≥ 0.

To the best of our knowledge, differential operators of the type
div(a(|∇u|2)∇u) with potentials a satisfying hypotheses (1.6) and (1.7), have
been introduced by Omari and Zanolin [8].

Basic examples of operators generated by the potential a with the above
properties include the Laplace operator (for a(t) ≡ 1) but also combinations
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between the Laplace operator and the mean curvature operator, which is gen-
erated by

a(t) =



1√
1 + t

if t ∈ [0, 1]

1

8
√

2
(t− 2)2 +

7

8
√

2
if t ∈ (1, 2)

7

8
√

2
if t ∈ [2,∞).

Under hypotheses (1.6) and (1.7), we can deduce by straightforward com-
putation the following properties:

(i) The mapping t 7→ ta(t2) is increasing.

(ii) The nonlinear operator RN 3 x 7→ a(|x|2)x is strictly monotone, that
is, there exists α > 0 such that

〈a(|x|2)x− a(|y|2)y, x− y〉 ≥ α |x− y|2 for all x, y ∈ RN .

We refer to [8] for more details.

In this paper we use standard notations and terminology. We denote by
H1(RN ) the Sobolev space equipped with the norm

‖u‖H1(RN ) =

(∫
RN

(|∇u|2 + |u|2) dx

)1/2

.

For simplicity we will often denote the above norm by ‖u‖.
We denote by Lhp(RN ) (where 1 ≤ p <∞) the weighted Lebesgue space

Lhp(RN ) =

{
u : RN → R;

∫
RN

h(x)|u|p dx <∞
}
,

where h(x) is a positive continuous function on RN , equipped with the norm

‖u‖ph,p =

(∫
RN

h(x)|u|p dx
)1/p

.

If h(x) ≡ 1 on RN , the norm is denoted by ‖ · ‖p.
In this paper we seek weak solutions for problem (1.3) in a subspace of

H1(RN ). Let E be the weighted Sobolev space defined by

E =

{
u ∈ H1(RN );

∫
RN

h(x)|u|p dx <∞
}
,

equipped with the norm

‖u‖2E =

∫
RN

(|∇u|2 + |u|2) dx+

(∫
RN

h(x)|u|p dx
)2/p

.
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We define a weak solution for problem (1.3) as a function u ∈ E \ {0}
with u(x) ≥ 0 a.e. x ∈ RN satisfying∫

RN

a(|∇u|2)∇u∇vdx+

∫
RN

a(u2)uvdx+

∫
RN

h(x)|u|p−2uvdx

= λ

∫
RN

|u|q−2uvdx

for all u, v ∈ E.

In this case, we say that λ is an eigenvalue of problem (1.3) and the corre-
sponding solution u ∈ E is an eigenfunction corresponding to this eigenvalue.
This definition is in accordance with the definition introduced by Fučik, Nečas,
Souček, and Souček [5, p. 117] in the case of nonlinear eigenvalue problems.

The main result of the present paper establishes the following nonexis-
tence and multiplicity property.

Theorem 1. Assume that hypotheses (1.4), (1.5), (1.6) and (1.7) are
fulfilled. Then there exist positive numbers λ∗ and λ∗ such that the following
properties hold:

(i) problem (1.3) does not have any solution if λ ∈ (0, λ∗);

(ii) problem (1.3) has at least two solutions for all λ ∈ (λ∗,∞).

In particular, this result establishes the existence of a continuous spec-
trum in a neighbourhood of infinity.

We point out that similar results can be obtained if the C1-potential
a : R+ → R∗ satisfies the more general hypotheses: there exist positive numbers
γ, Γ > 0, κ ∈ [0, 1] and p ∈ (1,∞) such that

(1.8) γ (κ+ t)m−2 ≤ a(t2) ≤ Γ (κ+ t)m−2 for all t ≥ 0

and

(1.9)

(
γ − 1

2

)
a(t) ≤ ta′(t) ≤ Γa(t) for all t ≥ 0.

2. NONEXISTENCE FOR LOW PERTURBATIONS

This section is devoted to the proof of the first part of Theorem 1.

Let J : E → R be the variational functional defined by

J (u) =
1

2

∫
RN

(A(|∇u|2) +A(|u|2)) dx+
1

p

∫
RN

h(x)|u|p dx− λ

q

∫
RN

|u|q dx,

where A(t) :=
∫ t

0 a(s)ds.
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Then J ∈ C1(E,R) and its Gâteux derivative is given by

〈J ′(u), v〉 =

∫
RN

(a(|∇u|2)∇u∇v + a(|u|2)uv) dx+

∫
RN

h(x)|u|p−2uv dx

−λ
∫
RN

|u|q−2uv dx

for any u, v ∈ E.

Since the problem has a variational structure, then solutions of problem
(1.3) are critical points of the energy functional J .

We first prove that if u ∈ E is a solution of problem (1.3), then λ should
be large enough. Indeed, if u is a solution then

(2.1)

∫
RN

a(|∇u|2)|∇u|2dx+

∫
RN

a(u2)u2dx+

∫
RN

h(x)|u|pdx = λ

∫
RN

|u|qdx.

Next, we apply the Young inequality

st ≤ sα

α
+
tβ

β
, for all s, t > 0

where α, β > 1 satisfy 1/α+ 1/β = 1.

Taking a = h(x)q/p|u|q, b = λ/[h(x)]q/p, α = p/q and β = p/(p − q) we
obtain that

h(x)q/p|u|q λ

h(x)q/p
≤ q

p
(h(x)q/p|u|q)p/q +

p− q
p

(
λ

h(x)q/p

)p/(p−q)
.

Integrating over RN we have

λ

∫
RN

|u|q dx ≤ q

p

∫
RN

h(x)|u|p dx+
p− q
p

λp/(p−q)
∫
RN

1

h(x)q/(p−q)
dx.

Combining this inequality with (2.1) we deduce that∫
RN

(a(|∇u|2)|∇u|2 + a(u2)u2) dx ≤ p− q
p

λp/(p−q)
∫
RN

1

h(x)q/(p−q)
dx

+
q − p
p

∫
RN

h(x)|u|p dx.

Since q < p it follows that

q − p
p

∫
RN

h(x)|u|p dx < 0,

hence

(2.2)

∫
RN

(a(|∇u|2)|∇u|2 + a(u2)u2) dx ≤ p− q
p

λp/(p−q)
∫
RN

1

h(x)q/(p−q)
dx.
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By the Sobolev embedding theorem, there exists Cq > 0 such that for all
u ∈ H1(RN ) that

Cq

(∫
RN

|u|q dx
)2/q

≤
∫
RN

(|∇u|2 + |u|2) dx.

So, by (1.6),

(2.3) Cq

(∫
RN

|u|q dx
)2/q

≤ 1

γ

∫
RN

(a(|∇u|2)|∇u|2 + a(u2)u2) dx.

By relation (2.1),

(2.4)

∫
RN

(a(|∇u|2)|∇u|2 + a(u2)u2) dx ≤ λ
∫
RN

|u|q dx.

Combining (2.3) and (2.4) we obtain

(2.5) Cq

(∫
RN

|u|q dx
)2/q

≤ λ

γ

∫
RN

|u|q dx.

Therefore

(Cqγλ
−1)q/(q−2) ≤

∫
RN

|u|q dx.

We deduce that

Cq(Cqγλ
−1)2/(q−2) ≤ 1

γ

∫
RN

(a(|∇u|2)|∇u|2 + a(u2)u2) dx.

Combining this inequality with (2.2) we obtain

Cq(Cqγλ
−1)2/(q−2) ≤ 1

γ

∫
RN

(a(|∇u|2)|∇u|2 + a(u2)u2) dx

≤ p− q
pγ

λp/(p−q)
∫
RN

dx

h(x)q/(p−q)
dx.

We conclude that if u is an eigenfunction of problem (1.3), then the
corresponding eigenvalue satisfies λ > λ∗, where

λ∗ :=

[
Cq/(q−2)
q

pγ

p− q

(∫
RN

dx

h(x)q/(p−q)
dx

)−1
](p−q)(q−2)/(q(p−2))

.

This concludes the proof of part (i) in Theorem 1.

3. CASE OF HIGH PERTURBATIONS

This section is devoted to the proof of (ii) in Theorem 1.
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3.1. Auxiliary results

We establish some properties in order to use the direct method of the
calculus of variations.

Lemma 1. The functional J is coercive.

Proof. We recall the following elementary inequality, whose proof relies
on elementary arguments: for every k1 > 0, k2 > 0 and 0 < s < r we have

(3.1) k1|t|s − k2|t|r ≤ Crsk1

(
k1

k2

)s/(r−s)
, for all t ∈ R,

where Crs > 0 is a constant depending on r and s.

In (3.1) we take: k1 = λ
q , k2 = h(x)

2p , s = q and r = p. It follows that for

all x ∈ RN

λ

q
|u(x)|q − h(x)

2p
|u(x)|p ≤ Cpq

λ

q

(
λ/q

h(x)/2p

)(q/(p−q))

= Cpqλ
(p/(p−q)) 1

qh(x)q/(p−q)

(
2p

q

)q/(p−q)
= C(p, q)

1

h(x)q/(p−q)
.

By integration we deduce that over RN it follows that∫
RN

(
λ

q
|u|q − h(x)

2p
|u|p
)
dx ≤ C(p, q)λ(p/(p−q))

∫
RN

dx

h(x)q/(p−q)
dx.

Next, by the integrability hypothesis (1.2), we find C1 > 0 such that∫
RN

(
λ

q
|u|q − h(x)

2p
|u|p
)
dx ≤ C1.

It follows that

(3.2)

J (u) =
1

2

∫
RN

(A(|∇u|2) +A(|u|2)) dx+
1

p

∫
RN

h(x)|u|p dx

− λ

q

∫
RN

|u|q dx

=
1

2

∫
RN

(A(|∇u|2)+A(|u|2)) dx−
[∫

RN

(
λ

q
|u|q−h(x)

2p
|u|p
)]

dx

−
∫
RN

h(x)

2p
|u|p +

1

p

∫
RN

h(x)|u|p dx

≥ γ

2

∫
RN

(|∇u|2 + |u|2) dx− C1 +
1

p

∫
RN

h(x)|u|p dx,

hence J is coercive. �
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Lemma 2. Let {un} be a sequence in E such that J (un) is bounded.
Then, going eventually to a subsequence, which converges weakly in E to u0,
we have

J (u0) ≤ lim inf
n→∞

J (un).

Proof. We first use (3.2) in order to show that the sequence {un} is
bounded in E. From now on, we use similar ideas as those developed in
Rădulescu [13] (proof of Lemma 2). �

3.2. Proof of Theorem 1 completed

We prove that problem (1.3) has at least two nonnegative solutions, pro-
vided that λ is sufficiently large. One of the solutions is obtained via the direct
method of the calculus of variations, while the second solution is deduced by
applying a mountain pass argument. Finally, these solutions are different be-
cause they have different energy levels.

Using Lemma 1, Lemma 2 and the direct method of the calculus of vari-
ations we obtain u ∈ E such that

J (u) = inf
v∈E
J (v),

hence u is a solution of problem (1.3).
We prove that u is a nontrivial solution. For this purpose it is enough to

show that infv∈E J (v) < 0 if λ is large enough.
Consider the constrained minimization problem

λ∗ = inf

{
q

2

∫
RN

(A(|∇u|2) +A(|u|2)) dx+
q

p

∫
RN

h(x)|u|p dx; u ∈ E,∫
RN

|u|q dx = 1

}
.

We observe that λ∗ > 0. Indeed, if u ∈ E and
∫
RN |u|q dx = 1, then by

Hölder’s inequality we obtain

1 =

∫
RN

|u|q dx ≤
(∫

RN

dx

h(x)q/(p−q)

)(p−q)/p
·
(∫

RN

h(x)|u|p dx
)q/p

.

It follows that

λ∗ ≥ q

p

(∫
RN

dx

h(x)q/(p−q)

)(q−p)/p
> 0.

Fix λ > λ∗. Then there is u1 ∈ E with
∫
RN |u1|q dx = 1 such that

λ

∫
RN

|u1|q dx = λ >
q

2

∫
RN

(A(|∇u1|2) +A(|u1|2)) dx+
q

p

∫
RN

h(x)|u1|p dx,
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hence

J (u1) =
1

2

∫
RN

(A(|∇u1|2) +A(|u1|2)) dx+
1

p

∫
RN

h(x)|u1|p dx

−λ
q

∫
RN

|u1|q dx < 0

and consequently infu∈E J (u) < 0.

We conclude that for all λ > λ∗, problem (1.3) has a nontrivial weak
solution u1 ∈ E. Moreover, the associated energy is negative, namely J (u1) <
0. Since J (u1) = J (|u1|) we may assume that u1 ≥ 0 in RN .

Next, we are concerned with the existence of a second solution for problem
(1.3). For this purpose we combine the mountain pass theorem of Ambrosetti
and Rabinowitz [2] with a truncation argument.

Fix λ ≥ λ∗ and consider the truncation function

g(x, t) =


0, for t < 0
λtq−1 − h(x)tp−1, for 0 ≤ t ≤ u1(x)
λu1(x)q−1 − h(x)u1(x)p−1, for t > u1(x)

and

G(x, t) =

∫ t

0
g(x, s) ds.

Consider the energy functional F : E → R defined by

F(u) =
1

2

∫
RN

(A(|∇u|2) +A(|u|2)) dx−
∫
RN

G(x, u) dx.

Using similar arguments as for J we obtain that F ∈ C1(E,R) and

〈F ′(u), v〉 =

∫
RN

(a(|∇u|2)∇u∇v + a(|u|2)uv) dx−
∫
RN

g(x, u)v dx,

for all u, v ∈ E.

Moreover, if u is a critical point of F , then u ≥ 0 in RN .

We now prove that every critical point of F is dominated by u1.

Lemma 3. Let u be a critical point of F . Then u ≤ u1.

Proof. For every v ∈ E we define the positive part v+(x) = max{v(x), 0}.
By Gilbarg and Trudinger [6, Theorem 7.6] we deduce that if v ∈ E then
v+ ∈ E. We have

0 = 〈F ′(u)− J ′(u1), (u− u1)+〉

=

∫
RN

(a(|∇u|2)∇u− a(|∇u1|2)∇u1)∇(u− u1)+ dx+



232 V. D. Rădulescu 10∫
RN

(a(u2)u− a(u2
1)u1)(u− u1)+ dx−∫

RN

[g(x, u)− λuq−1
1 + h(x)up−1

1 ](u− u1)+ dx

=

∫
[u>u1]

(a(|∇u|2)∇u− a(|∇u1|2)∇u1)(∇u−∇u1) dx+∫
[u>u1]

(a(u2)u− a(u2
1)u1)(u− u1) dx.

Since the mapping RN 3 x 7→ a(|x|2)x is strictly monotone, there exists α > 0
such that

0 = 〈F ′(u)− J ′(u1), (u− u1)+〉

≥ α

∫
[u>u1]

|∇(u− u1)|2 dx+ α

∫
[u>u1]

(u− u1)2 dx ≥ 0.

We conclude that u ≤ u1.

Next, we prove the existence of a nonnegative critical point u2 ∈ E of F
such that F(u2) > 0. By Lemma 3 we have 0 ≤ u2 ≤ u1 in Ω. Therefore

g(x, u2) = λuq−1
2 − h(x)up−1

2 and G(x, u2) =
λ

q
uq2 −

h(x)

p
up2,

hence

F(u2) = J (u2) and F ′(u2) = J ′(u2).

More precisely, we prove in what follows that

J (u2) > 0 = J (0) > J (u1) and J ′(u2) = 0 .

This will conclude the proof of the main result.

We first establish that F satisfies one of the geometric assumptions of the
mountain pass theorem.

Lemma 4. There exists ρ ∈ (0, ‖u1‖) and a > 0 such that F(u) ≥ a, for
all u ∈ E with ‖u‖ = ρ.

Proof. By hypothesis (1.6) we obtain for all u ∈ E

F(u) =
1

2

∫
RN

(A(|∇u|2) +A(|u|2)) dx−
∫
RN

G(x, u) dx

≥ γ

2
‖u‖2 −

∫
[u>u1]

G(x, u) dx−
∫

[u<u1]
G(x, u) dx

=
γ

2
‖u‖2 − λ

q

∫
[u>u1]

uq1 dx+
1

p

∫
[u>u1]

h(x)up1 dx−
λ

q

∫
[u>u1]

uq dx+
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+
1

p

∫
[u>u1]

h(x)up dx

≥ γ

2
‖u‖2 − λ

q

∫
RN

|u|q dx.

By hypothesis (1.5), E is continuously embedded into Lq(RN ). Thus,
there exists L > 0 such that for all u ∈ E

|u|q ≤ L ‖u‖ .

Therefore

F(u) ≥ γ

2
‖u‖2 − L1‖u‖q = ‖u‖2

[γ
2
− L1‖u‖q−2

]
,

where L1 is a positive constant.

Since q > m, our conclusion follows. �

Lemma 5. The functional F is coercive.

Proof. Fix u ∈ E. Using (1.6) we obtain

F(u) ≥ γ

2
‖u‖2 − λ

q

∫
[u>u1]

uq1 dx+
1

p

∫
[u>u1]

h(x)up1 dx−
λ

q

∫
[u>u1]

uq dx+

+
1

p

∫
[u>u1]

h(x)up dx

≥ γ

2
‖u‖2 − λ

q

∫
RN

uq1 dx

=
γ

2
‖u‖2 − L2 ,

where L2 is a positive constant.

We conclude that F(u)→ +∞ as ‖u‖ → ∞, hence F is coercive. �

We use Lemma 4 in combination with the mountain pass theorem in the
version established in Willem [15, Theorem 1.15]. Thus, there exists a sequence
(un) ⊂ E such that

(3.3) F(un)→ c > 0 and F ′(un)→ 0 as n→∞,

where

c = inf
γ∈Γ

max
t∈[0,1]

F(γ(t))

and

Γ = {γ ∈ C([0, 1], E); γ(0) = 0, γ(1) = u1}.
By relation (3.3) and Lemma 5 we deduce that the sequence (un) ⊂ E is

bounded. It follows that, up to a subsequence, we can assume that there exists



234 V. D. Rădulescu 12

u2 ∈ E such that un converges weakly to u2. Standard arguments based on
Sobolev embeddings show that

lim
n→∞

〈F ′(un), v〉 = 〈F ′(u2), v〉 ,

for any v ∈ C∞0 (RN ). Taking into account that E ⊂ H1(RN ) and C∞0 (RN ) is
dense in H1(RN ) the above information implies that u2 is a weak solution of
problem (1.3).

We conclude that problem (1.3) has two nontrivial weak solutions. The
proof of Theorem 1 is now complete. �
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