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A multiplicity result for a nonlinear
degenerate problem arising in the theory
of electrorheological fluids
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We study the boundary value problem —div(a(z, Vu)) = A(u" —4f) in Q, u=0 on 0Q,
where Q is a smooth bounded domain in RY and div(a(z, Vu)) is a p(z)-Laplace type
operator, with 1< 8 <y <inf,cop(z). We prove that if A is large enough then there exist
at least two non-negative weak solutions. Our approach relies on the variable exponent
theory of generalized Lebesgue—Sobolev spaces, combined with adequate variational
methods and a variant of the Mountain Pass lemma.
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1. Introduction and preliminary results

Most materials can be modelled with sufficient accuracy using classical Lebesgue
and Sobolev spaces, L” and W'?, where p is a fixed constant. For some materials
with inhomogeneities, for instance electrorheological fluids (sometimes referred
to as ‘smart fluids’), this is not adequate, but rather the exponent p should be
able to vary. This leads us to the study of variable exponent Lebesgue and
Sobolev spaces, LP™ and W'®) where p is a real-valued function.

This paper is motivated by phenomena which are described by nonlinear
boundary value problems of the type

{—div(a(z,Vu)) = f(z,u), forzxe€Q, (1.1)

u =0, for z €0Q,

where Q CR"Y (N > 3) is a bounded domain with smooth boundary, 1< p(z) and
p(z) € C(Q). The interest in studying such problems consists of the presence of
the p(z)-Laplace type operator div(a(z,Vu)). We remember that the p(z)-
Laplace operator is defined by 4,,u= div(|]Vu|"@2Vy). The study of
differential equations and variational problems involving p(z)-growth conditions
is a consequence of their applications. Materials requiring such more advanced
theory have been studied experimentally since the middle of the last century.
The first major discovery in electrorheological fluids was due to Willis Winslow
in 1949. These fluids have the interesting property that their viscosity depends
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on the electric field in the fluid. Winslow noticed that in such fluids (for instance
lithium polymetachrylate) viscosity in an electrical field is inversely proportional
to the strength of the field. The field induces string-like formations in the fluid,
which are parallel to the field. They can raise the viscosity by as much as five
orders of magnitude. This phenomenon is known as the Winslow effect. For a
general account of the underlying physics consult Halsey (1992) and for some
technical applications Pfeiffer et al. (1999). Electrorheological fluids have been
used in robotics and space technology. The experimental research has been done
mainly in the USA, for instance in NASA laboratories. For more information on
properties, modelling and the application of variable exponent spaces to these
fluids we refer to Halsey (1992), Acerbi & Mingione (2001), Diening (2002),
Ruzicka (2002), Fan et al. (2005) and Chabrowski & Fu (2005).

We point out a recent mathematical model developed by Rajagopal & Ruzicka
(2001). The model takes into account the delicate interaction between the
electromagnetic fields and the moving fluids. Particularly, in the context of
continuum mechanics, these fluids are seen as non-Newtonian fluids. The system
modelling the phenomenon arising from this study is

divE=0 curl E=0,

%— div S(z, E,£(v)) + [Vo]v + V7 = g(z, E), (1.2)
div v = 0,

where E(z) is the electromagnetic field, v: Q(CR*) — R? is the velocity of the
field, £(v) is the symmetric part of the gradient, S is the extra stress tensor and 7
is the pressure (according to notations in Rajagopal & Ruzicka (2001)).

The constitutive relation for the extra stress tensor S is

S(z,E, z) = v(E)(1 + |2>)" 2722 4 terms of the same growth,

for all symmetric 3 X 3 matrices z and where p= p(|E|*). The structure of the
system allows the determination of E so that it depends on z and thus, p= p(z).

The extra stress tensor S is chosen such that it is a monotone vector field
satisfying the ellipticity condition

D,S(z, E,2)A®1> v(E)(1 + |2)*) 7272 |22,

where v(E)>v> 0, for any 3 X 3 symmetric matrices z, A with null trace.
For the system described above, Rajagopal & Ruzicka established an existence
theory which is particularly satisfying in the steady case

—div S(z,&(v)) + [Vv]v + Vo = g(z).

Our paper can be regarded as a starting point for investigations of models like
those described above, since we treat the existence and multiplicity of solutions
for problems with p(z) growth as in equation (1.1). We point out that even if our
results will be formulated in a variational context, our methods and techniques
can be applied to systems as well (see e.g. the work of El Hamidi (2004) for a nice
generalization of such results to the study of elliptic systems of gradient type
with p(z) growth).
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A complete description regarding the development of variable exponent
spaces, based on a rich bibliography, can be found in the paper of Diening et al.
(2004). We resume in what follows some basic facts from the above quoted study.
According to that paper, variable exponent Lebesgue spaces had already
appeared in the literature for the first time in a article by Orlicz (1931). In the
1950s, this study was carried on by Nakano who made the first systematic study
of spaces with variable exponent (called modular spaces). Nakano explicitly
mentioned variable exponent Lebesgue spaces as an example of more general
spaces he considered, see Nakano (1950; p. 284). Later, the Polish mathemati-
cians investigated the modular function spaces (e.g. Musielak 1983). Variable
exponent Lebesgue spaces on the real line have been independently developed by
Russian researchers. In that context, we refer to the work of Tsenov (1961),
Sharapudinov (1978) and Zhikov (1987).

We recall in what follows some definitions and basic properties of the
generalized Lebesgue-Sobolev spaces LF"(Q) and Wol’p (I)(.Q), where Q is a
bounded domain in RY. -

Throughout this paper, we assume that p(z)>1, p(z)€ C**(Q) with
ae(0,1).

Set _ _ _

Ci(Q) ={h;he C(Q),h(z)>1forall z € Q}.
For any h € C,(Q), we define

+ - .
h™ =suph(z) and h = ;ggfg h(z).

TEQ

For any p(z) € C,(Q), we define the variable exponent Lebesgue space
LP(Z)( Q)

= {u; u is a measurable real-valued function such thatJ lu(z)|PDdz < oo }
e

We define a norm, the so-called Luxemburg norm, on this space by the formula

p(z)
] () :inf{,u>0;J u() dr < 1}.
Q M

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many
respects: they are Banach spaces (Kovacik & Rékosnik 1991; theorem 2.5), the
Holder inequality holds (Kovacik & Rakosnik 1991; theorem 2.1), they are
reflexive if and only if 1 < p~ < p* < » (Kovacik & Rékosnik 1991; corollary 2.7)
and continuous functions are dense, if pt <o (Kovacik & Rékosnik 1991;
theorem 2.11). The inclusion between Lebesgue spaces also generalizes naturally
(Kovacik & Rékosnik 1991; theorem 2.8): if 0 < |Q| <o and p;, p, are variable
exponents so that p;(z) < py(z) almost everywhere in Q then there exists the
continuous embedding L”(*)(Q) & LP(*)(Q), whose norm does not exceed |Q|+ 1.
We denote by L/ (Q) the conjugate space of LP¥(Q), where 1/p(z)+
1/q(z)= 1. For any u € L’*)(Q) and v € L?(Q), the Hélder type inequality

1 1
wdz| < | — 4+ — ) |uly) | V] oz 1.3
[ 0] = (5= ) Hbeolol 13)

holds true.
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An important role in manipulating the generalized Lebesgue—Sobolev spaces is

played by the Modular of the LP® (Q) space, which is the mapping Pp(z)
L' (Q) — R defined by

Py (1) = JQIUI’)(””)dx-

If (u,), u € LF™(Q) and p" < o then the following relations hold true

[uly) > 1= [ul? ) < pyy () < Jul’,, (1.4)
[uly) < 1= [ul’,) < pyiy () < [uf?,, (1.5)
[t =l iy >0 =y (u, —u) — 0. (1.6)
Spaces with p = o have been studied by Edmunds et al. (1999).
Next, we define W P (I)( Q) as the closure of Cj (Q) under the norm
ull = [Vul ).
The space (W, ( ), |I-]]) is a separable and reflexive Banach space. We note

that if ¢ € 0+( )and g(z) < p*(z) for all z € Q, then the embedding W, """ (@)=
LD (Q) is compact and contlnuous where p ( )= Np(z)/(N —p(x)) 1f p(z) <N
or p*(z) =+ if p(z) > N. We refer to Kovacik & Rékosnik (1991), Edmunds &
Rékosnik (1992, 2000) and Fan & Zhao (2001) for further properties of variable
exponent Lebesgue—Sobolev spaces.

The paper contains two sections. In §2, we describe the problem and we state
the main result. Some remarks and connections regarding similar results are also
included at the end of this section. In §3, we prove the main result of the paper.
We also include some generalizations of standard results involving the
generalized Lebesgue—Sobolev spaces in order to offer clarity and strictness to
our paper. These auxiliary results aim to be a guide which facilitates the reading
of the paper.

2. The main result

Assume that a(z,&) : @ X RV — R" is the continuous derivative with respect to &
of the mapping A: QXRY >R, A= A(z,£), ie. a(z,§)= V:A(z,&). Suppose
that a and A satisfy the following hypotheses:

(A1) The following equality holds
A(z,0) =0,
for all z € Q.
(A2) There exists a positive constant ¢; such that

(@, )| < ey (1 + |E[P97),

for all z€ Q and £ €RV.
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(A3) The following inequality holds

0<(a(z,§) —a(z,¥))-E =),
for all z€Q and ¢,y €RY, with equality if and only if £=1.
(A4) There exists k>0 such that

A(255) <5 A4008) + 5 Ale) —HE—9)

for all z€Q and £,y € RY.
(A5) The following inequalities hold true

£ < a(x, )& < p(z)A(z, £),

for all z€Q and ¢ €RY.
Examples:

(i) Set A(x,£) = (1/p(«)) ||, a(z,) = [£["" 7, where p(z) > 2. Then we get
the p(z)-Laplace operator

div(|Vu/" "2 Vy).

(i) Set A(z,&) = (1/p(2)[(L+ |E)" 2 —1], a(,£) = (1+ [¢[*) /2%, where

p(z) > 2. Then we obtain the generalized mean curvature operator
div((1 + |[Vul*)P@2/2gy,),
In this paper, we study problem (1.1) in the particular case
flz, ) =27 =),

with 1 <<y <inf,csp(z) and t> 0. More precisely, we consider the degenerate
boundary value problem

—div(a(z, Vu)) = A(u"t =), forzeQ,
u =0, for x €0Q, (2.1)
u>0, for z € Q.

We say that u € Wol’p(z)(.Q) is a weak solution of problem (2.1), if u>0 a.e. in
Q and

Jga(x,Vu)-Vq) dx—AJ

W dz + AJ o dz =0,
Q Q

for all ¢ € Wol"p(x)(Q).
Our main result asserts that problem (2.1) has at least two non-trivial weak
solutions provided that A>0 is large enough and operators A and a satisfy

conditions (A1l)—(A5). More precisely, we prove the following.

Proc. R. Soc. A (2006)
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Theorem 2.1. Assume hypotheses (A1)-(A5) are fulfilled. Then there exists
A*> 0 such that for all A> X* problem (2.1) has at least two distinct non-negative,
non-trivial weak solutions, provided that p* <min{N, Np_ /(N —p")}.

Remark. By theorem 4.3 in Fan & Zhang (2003), problem (2.1) has at least a

weak solution in the particular case a(z,£)= |£|"™£. However, the proof in
Fan & Zhang (2003) does not state the fact that the solution is non-negative and
not even non-trivial in the case when f(z,0)=0.

We point out that our result is inspired by theorem 1.2 in Perera (2003), where
a related property is proved in the case of the p-Laplace operators. We point out
that the extension from p-Laplace operator to p(z)-Laplace operator is not
trivial, since the p(z)-Laplacian has a more complicated structure than the
p-Laplace operator, for example, it is inhomogeneous.

Finally, we mention that a similar study regarding the existence and
multiplicity of solutions for a system of equations involving the p(z)-Laplace
operator can be found in El Hamidi (2004). The arguments used by the author
rely on the Mountain Pass theorem and Bartsch’s Fountain theorem.

3. Proof of theorem 2.1

Let E denote the generalized Sobolev space WO1 ? (I)(Q).
Define the energy functional I : F— R by

I(u) :J A(I,Vu)dx—ij uidz—l—ij Wl dz,
0 vJeo B e

where v (z) = max{u(z),0}.
We first establish some basic properties of I

Proposition 3.1. The functional I is well-defined on E and I € C'(E,R) with
the derivative given by

(') = |

a(z,Vu)-Ve dx—AJ u o dz + /\J o dz,
Q e Q

for all u, p €EF.
To prove proposition 3.1, we define the functional 4 : £E— R by

A(u) =J A(z,Vu)dz, Vu€E.
Q

Lemma 3.2.

(i) The functional A is well-defined on E.
(ii) The functional A is of class C*(E,R) and
(A'(0).0) = | ala, V) Vo dz
Q
for all u, € F.
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Proof. (i) For any z € Q and £ €R", we have

1

1
Az, 8) = J iA(J:, t&)dt = J a(z, t6)-€ dt.
odt 0
Using hypothesis (A2), we get

1
Aln2) S e [ (104 PO e+l

<o ff| +Lig, veeQ, RV (3.1)
p
The above inequality and (A5) imply
OSJ A(z,Vu)dzr < CIJ |Vu|dz +C—iJ Vu|/"dz, VueE.
Q Q p Je
Using inequality (1.3) and relations (1.4) and (1.5), we deduce that A is well
defined on F.

(ii) Ewistence of the Gdteaux derivative. Let u, ¢ €E. Fix z€Q and
0<|r| < 1. Then, by the mean value theorem, there exists v € [0, 1] such that

| Az, Vu(z) + Vo (2)) — A(z, V)| /7] = |a(z, Vu(z) + vrVe(z))|| Ve ().
Using condition (A2), we obtain
|A(z,Vu(z) + V() — A(z, V)| /|r| < [e; + o1 (|Vu(w)| + Vo (z) )| Ve (z)]
<o+ a2” (Vu(@) P + [Vo(2) PO Ve(x)].

Next, by inequality (1.3), we have

JQ a1 |Voldz < e lp@)/ (pw)-1) VO @)
and
[, 7 9l < 190 Pl
The above inequalities imply
all +27 ([Vu(@) "7 + (Vo (2)" )] Vo(z)| € L'(Q).
It follows from the Lebesgue theorem that
(A'(u), ) = Jga(m,Vu) Vo dz.

Assume u,, — u in E. Let us define 6(z, u) = a(z, Vu). Using hypothesis (A2)
and proposition 2.2 in Fan & Zhang (2003), we deduce that 6(z, u,) — 6(x, u) in

(Lq(z)(g))N’ where ¢(z) = p(z)/ (p(z) —1). By inequality (1.3), we obtain
|<A/(un) _A,(u)a (P>| < |0($’ un) —0(1‘, u)|q(z)|v¢|p(x)a

Proc. R. Soc. A (2006)
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and so
14 (uy,) = A" (w) || < 10(z, w,) = 0(z, u)| ) = 0, asn—> oo
The proof of lemma 3.2 is complete. [ |

Lemma 3.3. Ifu€e FE then uy, u_ € FE and
0, if [u<0], 0, if [u>0],
Vu, = Vu_ =
Vu, if [u>0], Vu, if [u<0],

where u4(x) = max{tu(z),0} for all z € Q.

Proof. Let w€ E be fixed. Then there exists a sequence (¢,) € C;’(Q) such
that

Since 1 < p~ < p(z) for all z € Q, it follows that L’ is continuously embedded in
L? (Q) and thus,

V(0 —w)l, = 0.
Hence u € W,” (2). We obtain
uy,u_€ WP (Q) c W (Q). (3.2)
On the other hand, theorem 7.6 in Gilbarg & Trudinger (1998) implies
u, = {o, if [u< 0], — {0, if [u> 0],
Vu, if [u> 0], Vu, if [u<0].
By the above equalities, we deduce that
lu (2)" < u(z) P9, |Vuy(2)"D < |VulfD, ae zeQ, (3.3)
and
lu_(z)]P < u(z)]P,  |Vu_(2)]P@ < |VufD, ae zeQ. (3.4)
Since u € E, we have
u(@)"", - [Vu(2)"? € LY(Q). (3.5)

By equations (3.3)—(3.5) and Lebesgue theorem, we obtain that u, u_ € L@ (Q)
and ) (|Vuy|) <o, pyp(|[Vu_|) <oo. It follows that

up, u_ € WHO(Q), (3.6)

where W'P0)(Q) = {ue L’ (Q);|Vu| € L' (Q)} (see Fan & Zhao (2001) for
more details).
By equations (3.2) and (3.6), we conclude that

Uy, u_ € W) N W(Q).

Proc. R. Soc. A (2006)
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Since p € C**(Q), theorem 2.6 and remark 2.9 in Fan & Zhao (2001) show that
E= WY@ (Q)N W, (Q). Thus, uy, u_€E and the proof of lemma 3.3 is
complete. [

By lemmas 3.2 and 3.3, it is clear that proposition 3.1 holds true.

Remark. If u is a critical point of I then using lemma 3.3 and condition (A5),
we have

0= (I'(u),u_) = L)a(m,Vu)-Vu_dx—AJ (uy) u_dz + AJ (uy) u_dz

Q Q

_ La(x,Vu)-Vu_dx _ L

a(z,Vu_)-Vu_dz> J [Vu_|"Ddz.

Q
Thus, we deduce that u > 0. It follows that the non-trivial critical points of I are
non-negative solutions of (2.1).

The above remark shows that we can prove theorem 2.1 using the critical points
theory. More exactly, we first show that for A>0 large enough, the functional Ihasa
global minimizer u; > 0 such that (u;) < 0. Next, by means of the Mountain Pass
theorem, a second critical point u with I(u,) > 0 is obtained.

Lemma 3.4. The functional A is weakly lower semi-continuous.

Proof. By corollary I11.8 in Brezis (1992), it is enough to show that A is lower
semi-continuous. For this purpose, we fix v € E and ¢>0. Since 4 is convex (by
condition (A4)), we deduce that for any v € F, the following inequality holds

JQA(x,VU)deJ

A(z,Vu)dz + J a(z,Vu)-(Vo—Vu)dz.
Q

Q

Using condition (A2) and inequality (1.3), we have

J A(z,Vv)dz > A(l‘,VU)dZB—J |a(z,Vu)||[Vo—Vu|dz
Q Q

oJ

> A(x,Vu)dm—clj |V(U—U)|dI—61J IVu|P DV (v—u)|dz
Jeo Q Q

- CZ’)HV'LLV)(QC)i1 |q(z) |V(U_ 'LL) |p(1)

2 QA(ZC,VU)dLI?— 02|1‘q(1)|v(v_ u)‘p(z)

> | A(z,Vu)dz— cy||v—ull ZJ A(z,Vu)dz—e,
Q e

for all v &€ FE with |[v—u| <= €/c,, where ¢, c3, ¢, are positive constants and
q(z) = p(z)/(p(z) —1). We conclude that A is weakly lower semi-continuous. The
proof of lemma 3.4 is complete. [ |
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Lemma 3.5. There exists Ay > 0 such that

Jo 3 IVl ?d

= 11
uEE,||ul>1 jg ul? dz

Proof. We know that E is continuously embedded in L? (Q). It follows that
there exists C>0 such that

|ul| > Clul,~, VYu€EE.
On the other hand, by equation (1.4), we have
J Vo' Ddz> ul”,  VYue B with |[u] > 1.
Q
Combining the above inequalities, we obtain
1 @1 C" [ -
——|Vul"dz> — [ [u|’ dz, Vu € E with |ul > 1.
o p(z) p" Je
The proof of lemma 3.5 is complete. [ |
Proposition 3.6.

(i) The functional I is bounded from below and coercive.
(ii) The functional I is weakly lower semi-continuous.

Proof. (i) Since 1 <<~y <p , we have

Lyv 148
limX—Ff  —q.
t— tp

Then for any A>0, there exists C; > 0 such that

1 1 M-
A<—t7——tﬁ> < 4+, V>0,
Y g 2
where 4, is defined in lemma 3.5.

Condition (A5) and the above inequality show that for any w&€ FE with
||ul| > 1, we have

\Y%

A _
[ u]p(z)dx——lj lul” dz— Cyu()
(z) 2 Jo
1
2

|, 57 90— Cuut@)

1 _
2 2t Jul]” — Cau(Q).

This shows that [ is bounded from below and coercive.
(ii) Using lemma 3.4, we deduce that /A is weakly lower semi-continuous.
We show that [ is weakly lower semi-continuous. Let (u,) C FE be a sequence

Proc. R. Soc. A (2006)
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which converges weakly to u in FE. Since A is weakly lower semi-continuous,
we have

A(w) < lim inf A(u,). (3.7)

n—oo

On the other hand, since E is compactly embedded in LY(Q) and L#(Q), it follows
that (u,y) converges strongly to u, both in LY(Q) and in Lf(Q). This fact
together with relation (3.7) imply

I(uw) <lim inf I'(u,).

n— o0

Therefore, I is weakly lower semi-continuous. The proof of proposition 3.6 is
complete. ]

By proposition 2 and theorem 1.2 in Struwe (1996), we deduce that there
exists u; € F a global minimizer of I. The following result implies that u; #0,
provided that 2 is sufficiently large.

Proposition 3.7. There exists A* > 0 such that infgl <O0.

Proof. Let Q; C Q be a compact subset, large enough and u, € F be such that
uo(z) =1y in Q; and 0 < uy(z) <y in Q\Qy, where £ > 1 is chosen such that

1 1

— 1 —=1>0.
v 0 ﬁ 0
We have
1 1 1 1 1
— uydx——J uﬂdacZ—J A’dac——J uﬁdx——J udx
YJQO BJlo” 791% Bla ° Blae, °
1 1 1
> — uydx——J Wdz—=tPu(Q\Q,) > 0,
|, e [, e duere)
and thus I(uy) <0 for A>0 large enough. The proof of proposition 3.7 is
complete. [

Since proposition 3.7 holds true, it follows that u; € E is a non-trivial weak
solution of problem (2.1).
Fix 2> A*. Set

0, for t <0,
gz, t) = 71—, for 0 < t <y (),

up ()" =y ()7, for £> wy(w),

and
t

Gz, t) = Jo g(z, s)ds.

Define the functional J: EF— R by

J(u) = L}A(:L",Vu)dm—/lj Gz, w)dx.

Q

Proc. R. Soc. A (2006)
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The same arguments as those used for functional I imply that J € C*(E,R) and

(7 () ) = | als.90)Fg da=2] gl ) dz
Q Q
for all u, p € E.
On the other hand, we point out that if u € F is a critical point of J then u > 0.

The proof can be carried out as in the case of functional I.
Next, we prove the following.

Lemma 3.8. If u is a critical point of J then u< uy.
Proof. We have

0= <J/(U) _II(Ul)a(U_Ul)+>

= | (ate:90) = ata.9w))- V(u—) a1 [0 = (7 = ] wm)da

B J[u>u ](a(xvvu) —a(z,Vu)) V(u—u)dz.

By condition (A3), we deduce that the above equality holds if and only if
Vu=Vu,. It follows that Vu(z)= Vu,(z) for all z€w={y€Q;u(y) > u (y)}.
Hence

J 19 (u— )"z = 0,
and thus,
J IV(u—1u)4|"dz = 0.
Q

By relation (1.5), we obtain

[(u=wu)+]| = 0.
Since u—u; € E by lemma 3.3, we have that (v —1wu; )y € E. Thus, we obtain that
(u—u)y =01in Q, i.e. <y in Q. The proof of lemma 3.8 is complete. [

In the following, we determine a critical point vy € E of Jsuch that J(u,) > 0via
the Mountain Pass theorem. By the above lemma, we will deduce that 0 < u, < u
in Q. Therefore,

— — 1 1
g(x,’U/Q) :ug 1—U§ 1’ and G(f’u2) Z_U’QY_Eug,
Y

and thus,
J(ug) = I(uy), and J'(up) = I'(us).
More exactly we find

I(uy)>0=1(0)>1I(w), and I'(uy) =0.
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This shows that u, is a weak solution of problem (2.1) such that 0 < uy < uy, uy #0
and uy # uy.
In order to find uy described above, we prove the following.

Lemma 3.9. There exist p € (0, ||u,]|) and a>0 such that J(u) > a, for allu € E
with ||ul| = p.

Proof. Let u € E be fixed, such that ||u|| <1. It is clear that there exists 6>1
such that

1 1
—{r——¥<0, Vtelo,d].
LA [0, ]

For ¢ given above, we define
Q, ={z€Q;u(x)> 6}
If z€Q\Q, with u(z) < wu(z), we have

1
Gz, u) = —ul —=4 <0.
( ) v + 6 +
If z€Q\Q, with u(z)> u;(z), then u;(z) < and we have
1
G(r,u) =—ul —=
( ) v 1 ‘8
Thus, we deduce that

G(z,u) <0, on Q\Q,.
Provided that ||u|| <1 by condition (A5) and relation (1.5), we get

1 T
J(u)ZLm\VU\p(z)dm—ALuG(w, wde >l —AJQ”G(x, Wdz.  (3.8)

Since pt <min{N, Np /(N —p")}, it follows that p™ < p*(z) for all z € Q. Then
there exists g€ (p", Np /(N—p)) such that E is continuously embedded in
L%(Q). Thus, there exists a positive constant C>0 such that

lul, < Cllull, YueE.
Using the definition of G, Holder’s inequality and the above estimate, we obtain

1 1
Al Gz, u dm=AJ (—uY ——uﬂ)dx
JQ“ (@) <] \Y B

1 1 21
+ A —uy——u{g)de—J wl dz
JQ,uﬁ[u>u1] <'Y ! B ! Y Je, *
2A + 2A p+/q .
<2 wars? ([ uidx> (@7
Q, Y Q,
< O @) (3.9)
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By equations (3.8) and (3.9), we infer that it is enough to show that u(Q,) — 0 as
||u|| = 0 in order to prove lemma 3.9.

Let €>0. We choose Q. CQ a compact subset, such that u(Q\Q.) <e. We
denote by @, .=, N Q. Then it is clear that

. . p/q p'/q . N
otu(@] "> ([ jurae) "z ([ pupae) 0 i@ 0p

The above inequality implies that u(Q,.)— 0 as |Jul| — 0.
Since 2, CQ,, U (2\Q,), we have

w(Q,) S u(Q,e) t+e

and €>0 is arbitrary. We find that u(2,) — 0 as ||u||— 0. This concludes the
proof of lemma 3.9. [ |
Lemma 3.10. The functional J is coercive.

Proof. For each w€ F with ||u[|>1 by condition (A5), relation (1.4) and
inequality (1.3), we have

1 e
J(u)ZJ —]Vu\p(‘)dx—kj G(z, u)dx—)\J G(z, u)dz

2 p(z) = [u<u]
1 - A A A A

> —||ull? ——J wdz —I——[ uﬁdx——J uydx+—J W’ dz
g7 = woul o Bl Y w8 <y
1 - A A 1 - A -

>— up——J uvdx——J W dz>—|lul|” == (@) Cyl|ul|” — ¢
p+|| | ol I o p+|| | y[()] Ll 2
1 ~

Zp—+||u\|p — Gy3ul|” — Gy,

where Cj, Cy and Cj are positive constants. Since v < p the above inequality
implies that J(u)— o as ||u|]| = o, i.e. Jis coercive. The proof of lemma 3.10 is
complete. |

The following result yields a sufficient condition which ensures that a weakly
convergent sequence in F converges strongly, too.

Lemma 3.11. Assume that the sequence (u,) converges weakly to w in E and

lim supJ a(z,Vu,)-(Vu, —Vu)dz < 0.
Q

n— 00

Then (u,) converges strongly to u in E.

Proof. Using relation (3.1), we have that there exists a positive constant c;
such that

Az, &) < c5(|E] + |£]P), VzeQ, teRY.
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The above inequality implies
Az, Vu,) < o5 (|Vu,| + |Vu,|’?), Vze, n. (3.10)

The fact that u, converges weakly to v in F implies that there exists R>0 such
that ||u,|| < R for all n. By relation (3.10) and inequalities (1.3)—(1.5), we deduce
that {[pA(z, Vu,)dz} is bounded. Then, up to a subsequence, we deduce that
oA(z,Vu,)dz— c. By lemma 3.4, we obtain

J A(z,Vu)dz < lim ian A(z,Vu,)dz = c.
Q Q

n—o

On the other hand, since 4 is convex, we have

JQA(x,Vu)deJ

Next, by the hypothesis lim sup, . [pa(z, Vu,)-(Vu, —Vu)dz <0, we conclude
that [pA(z, Vu)dz= c.

Taking into account that (u,+ u)/2 converges weakly to u in F and using
lemma 3.4, we have

A(z,Vu,)dz + J a(z,Vu,) (Vu—Vu,)dz.

Q Q

c= [ A(z,Vu)dz < lim ian A<$,VU"T+U) dz. (3.11)
e e

n—oo

We assume by contradiction that u, does not converge to uin E. Then by (1.6),
it follows that there exist >0 and a subsequence (u, ) of (u,) such that

m

J V(u, —u)"“dz>e, Vm. (3.12)
Q
By condition (A4), we have

— )P, (3.13)

m

1 1 + u,
§A(x,Vu) +§A($,Vunm) —A(m,V%) > k|V(u,

Relations (3.12) and (3.13) yield

1

—JQA(.T, Vu)dz + %J

+ n,
A(z,Vu, )dz —J A (x, Vu)
2 Q m Q 2

> kj V(u, —u)[""dz> ke.
Q

Letting m — o in the above inequality, we obtain

_.l_
c—ke>lim supj A (x, \Y v 2unm>dz,
Q

m—>o0

and that is a contradiction with (3.11). It follows that u, converges strongly to u
in £ and lemma 3.11 is proved. [ |

Proof of theorem 2.1. Using lemma 3.9 and the Mountain Pass theorem (see
Ambrosetti & Rabinowitz (1973) with the variant given by theorem 1.15 in
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Willem (1996)) we deduce that there exists a sequence (u,) C E such that

J(u,)—¢>0, and J'(u,)—0, (3.14)
where
= inf t
¢ = inf max J(v(1)),
and

I'={ye (0,1, E);v(0) = 0,y(1) = w}.

By relation (3.14) and lemma 3.10, we obtain that (u,) is bounded and thus,
passing eventually to a subsequence, still denoted by (u,), we may assume that
there exists u, € F such that u, converges weakly to u,. Since E is compactly
embedded in L'(Q) for any i €[1, p ], it follows that u, converges strongly to u,
in L'(Q) for all i €[1,p ]. Hence,

<Al(un) _AI(UZ)v Uy, _u2> = <Jl(un) - Jl(u2)> Up — u2>

+2][oo 1) =gl )], = wz)do = of0),

as n— . By lemma 3.11, we deduce that u, converges strongly to u, in F and
using relation (3.14), we find

J(uy) =¢>0, and J'(uy) =0.

Therefore, J(uy) = c¢>0 and J'(uy) = 0. By lemma 3.8, we deduce that 0 < u, <
u; in Q. Therefore,

y 1

1
v—1 p—1 _ g8
w, , and G(z,us) =—u ——u,
2 ( 2) Y P) ; Uy

g(z, us) = 1y

and thus,
J(uz) = I(uy), and J'(uy) = I'(uy).

We conclude that wu, is a critical point of I and thus a solution of (2.1).
Furthermore, I(uy)=c¢>0 and I(us)> 0> I(uy). Thus, uy is not trivial and
Uy # up. The proof of theorem 2.1 is now complete. [ |
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