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Department of Mathematics, University of Craiova, 200585 Craiova, Romania

We study the boundary value problemKdivðaðx;VuÞÞZlðugK1KubK1Þ in U, uZ0 on vU,
where U is a smooth bounded domain in R

N and divðaðx;VuÞÞ is a pðxÞ-Laplace type
operator, with 1!b!g! infx2UpðxÞ. We prove that if l is large enough then there exist
at least two non-negative weak solutions. Our approach relies on the variable exponent
theory of generalized Lebesgue–Sobolev spaces, combined with adequate variational
methods and a variant of the Mountain Pass lemma.
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1. Introduction and preliminary results

Most materials can be modelled with sufficient accuracy using classical Lebesgue
and Sobolev spaces, Lp and W 1;p, where p is a fixed constant. For some materials
with inhomogeneities, for instance electrorheological fluids (sometimes referred
to as ‘smart fluids’), this is not adequate, but rather the exponent p should be
able to vary. This leads us to the study of variable exponent Lebesgue and
Sobolev spaces, LpðxÞ and W 1;pðxÞ, where p is a real-valued function.

This paper is motivated by phenomena which are described by nonlinear
boundary value problems of the type

Kdivðaðx;VuÞÞZ f ðx; uÞ; for x2U;

u Z 0; for x2vU;

(
ð1:1Þ

where U3R
N ðNR3Þ is a bounded domain with smooth boundary, 1!pðxÞ and

pðxÞ2Cð �UÞ. The interest in studying such problems consists of the presence of
the pðxÞ-Laplace type operator divðaðx;VuÞÞ. We remember that the pðxÞ-
Laplace operator is defined by DpðxÞuZdivðjVujpðxÞK2VuÞ. The study of
differential equations and variational problems involving pðxÞ-growth conditions
is a consequence of their applications. Materials requiring such more advanced
theory have been studied experimentally since the middle of the last century.
The first major discovery in electrorheological fluids was due to Willis Winslow
in 1949. These fluids have the interesting property that their viscosity depends
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M. Mihăilescu and V. Rădulescu2626
on the electric field in the fluid. Winslow noticed that in such fluids (for instance
lithium polymetachrylate) viscosity in an electrical field is inversely proportional
to the strength of the field. The field induces string-like formations in the fluid,
which are parallel to the field. They can raise the viscosity by as much as five
orders of magnitude. This phenomenon is known as the Winslow effect. For a
general account of the underlying physics consult Halsey (1992) and for some
technical applications Pfeiffer et al. (1999). Electrorheological fluids have been
used in robotics and space technology. The experimental research has been done
mainly in the USA, for instance in NASA laboratories. For more information on
properties, modelling and the application of variable exponent spaces to these
fluids we refer to Halsey (1992), Acerbi & Mingione (2001), Diening (2002),
Ruzicka (2002), Fan et al. (2005) and Chabrowski & Fu (2005).

We point out a recent mathematical model developed by Rajagopal & Ruzicka
(2001). The model takes into account the delicate interaction between the
electromagnetic fields and the moving fluids. Particularly, in the context of
continuum mechanics, these fluids are seen as non-Newtonian fluids. The system
modelling the phenomenon arising from this study is

div E Z 0 curl E Z 0;

vv

vt
K div Sðx;E; EðvÞÞC ½Vv�vCVpZ gðx;EÞ;

div v Z 0;

8>>>>><
>>>>>:

ð1:2Þ

where EðxÞ is the electromagnetic field, v : Uð3R
3Þ/R

3 is the velocity of the
field, EðvÞ is the symmetric part of the gradient, S is the extra stress tensor and p
is the pressure (according to notations in Rajagopal & Ruzicka (2001)).

The constitutive relation for the extra stress tensor S is

Sðx;E; zÞZ nðEÞð1C jzj2ÞðpK2Þ=2zCterms of the same growth;

for all symmetric 3!3 matrices z and where pZpðjEj2Þ. The structure of the
system allows the determination of E so that it depends on x and thus, pZpðxÞ.

The extra stress tensor S is chosen such that it is a monotone vector field
satisfying the ellipticity condition

DzSðx;E; zÞl5lRnðEÞð1C jzj2ÞðpK2Þ=2jlj2;

where nðEÞR�nO0, for any 3!3 symmetric matrices z, l with null trace.
For the system described above, Rajagopal & Ruzicka established an existence

theory which is particularly satisfying in the steady case

Kdiv Sðx; EðvÞÞC ½Vv�vCVpZ gðxÞ:

Our paper can be regarded as a starting point for investigations of models like
those described above, since we treat the existence and multiplicity of solutions
for problems with pðxÞ growth as in equation (1.1). We point out that even if our
results will be formulated in a variational context, our methods and techniques
can be applied to systems as well (see e.g. the work of El Hamidi (2004) for a nice
generalization of such results to the study of elliptic systems of gradient type
with pðxÞ growth).
Proc. R. Soc. A (2006)



2627Theory of electrorheological fluids
A complete description regarding the development of variable exponent
spaces, based on a rich bibliography, can be found in the paper of Diening et al.
(2004). We resume in what follows some basic facts from the above quoted study.
According to that paper, variable exponent Lebesgue spaces had already
appeared in the literature for the first time in a article by Orlicz (1931). In the
1950s, this study was carried on by Nakano who made the first systematic study
of spaces with variable exponent (called modular spaces). Nakano explicitly
mentioned variable exponent Lebesgue spaces as an example of more general
spaces he considered, see Nakano (1950; p. 284). Later, the Polish mathemati-
cians investigated the modular function spaces (e.g. Musielak 1983). Variable
exponent Lebesgue spaces on the real line have been independently developed by
Russian researchers. In that context, we refer to the work of Tsenov (1961),
Sharapudinov (1978) and Zhikov (1987).

We recall in what follows some definitions and basic properties of the
generalized Lebesgue–Sobolev spaces LpðxÞðUÞ and W

1;pðxÞ
0 ðUÞ, where U is a

bounded domain in R
N .

Throughout this paper, we assume that pðxÞO1, pðxÞ2C0;að �UÞ with
a2ð0; 1Þ.

Set
CCð �UÞZ fh; h2Cð �UÞ; hðxÞO1 for all x2 �Ug:

For any h2CCð �UÞ, we define

hCZ sup
x2U

hðxÞ and hKZ inf
x2U

hðxÞ:

For any pðxÞ2CCð �UÞ, we define the variable exponent Lebesgue space

LpðxÞðUÞ

Z u; u is a measurable real-valued function such that

ð
U

juðxÞjpðxÞdx!N

� �
:

We define a norm, the so-called Luxemburg norm, on this space by the formula

jujpðxÞ Z inf mO0;

ð
U

uðxÞ
m

����
����pðxÞdx%1

( )
:

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many
respects: they are Banach spaces (Kováčik & Rákosnı́k 1991; theorem 2.5), the
Hölder inequality holds (Kováčik & Rákosnı́k 1991; theorem 2.1), they are
reflexive if and only if 1!pK%pC!N (Kováčik & Rákosnı́k 1991; corollary 2.7)
and continuous functions are dense, if pC!N (Kováčik & Rákosnı́k 1991;
theorem 2.11). The inclusion between Lebesgue spaces also generalizes naturally
(Kováčik & Rákosnı́k 1991; theorem 2.8): if 0! jUj!N and p1, p2 are variable
exponents so that p1ðxÞ%p2ðxÞ almost everywhere in U then there exists the

continuous embedding Lp2ðxÞðUÞ-Lp1ðxÞðUÞ, whose norm does not exceed jUjC1.
We denote by LqðxÞðUÞ the conjugate space of LpðxÞðUÞ, where 1=pðxÞC

1=qðxÞZ1. For any u2LpðxÞðUÞ and v2LqðxÞðUÞ, the Hölder type inequalityð
U

uv dx

����
����% 1

pK
C

1

qK

� �
jujpðxÞjvjqðxÞ; ð1:3Þ

holds true.
Proc. R. Soc. A (2006)
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An important role in manipulating the generalized Lebesgue–Sobolev spaces is

played by the Modular of the LpðxÞðUÞ space, which is the mapping rpðxÞ :
LpðxÞðUÞ/R defined by

rpðxÞðuÞZ
ð
U

jujpðxÞdx:

If ðunÞ, u2LpðxÞðUÞ and pC!N then the following relations hold true

jujpðxÞO10 jujp
K

pðxÞ%rpðxÞðuÞ% jujp
C

pðxÞ; ð1:4Þ

jujpðxÞ!10 jujp
C

pðxÞ%rpðxÞðuÞ% jujp
K

pðxÞ; ð1:5Þ

junKujpðxÞ/0 5 rpðxÞðunKuÞ/0: ð1:6Þ

Spaces with pCZN have been studied by Edmunds et al. (1999).
Next, we define W

1;pðxÞ
0 ðUÞ as the closure of CN

0 ðUÞ under the norm

kukZ jVujpðxÞ:

The space ðW 1;pðxÞ
0 ðUÞ; k$kÞ is a separable and reflexive Banach space. We note

that if q2CCð �UÞ and qðxÞ!p�ðxÞ for all x2 �U, then the embedding W
1;pðxÞ
0 ðUÞ-

LqðxÞðUÞ is compact and continuous, where p�ðxÞZNpðxÞ=ðNKpðxÞÞ if pðxÞ!N
or p�ðxÞZCN if pðxÞRN . We refer to Kováčik & Rákosnı́k (1991), Edmunds &
Rákosnı́k (1992, 2000) and Fan & Zhao (2001) for further properties of variable
exponent Lebesgue–Sobolev spaces.

The paper contains two sections. In §2, we describe the problem and we state
the main result. Some remarks and connections regarding similar results are also
included at the end of this section. In §3, we prove the main result of the paper.
We also include some generalizations of standard results involving the
generalized Lebesgue–Sobolev spaces in order to offer clarity and strictness to
our paper. These auxiliary results aim to be a guide which facilitates the reading
of the paper.
2. The main result

Assume that aðx; xÞ : �U!R
N/R

N is the continuous derivative with respect to x
of the mapping A : �U!R

N/R, AZAðx; xÞ, i.e. aðx; xÞZVxAðx; xÞ. Suppose
that a and A satisfy the following hypotheses:

(A1) The following equality holds

Aðx; 0ÞZ 0;

for all x2 �U.
(A2) There exists a positive constant c1 such that

jaðx; xÞj%c1ð1C jxjpðxÞK1Þ;
for all x2 �U and x2R

N .
Proc. R. Soc. A (2006)



2629Theory of electrorheological fluids
(A3) The following inequality holds

0%ðaðx; xÞKaðx;jÞÞ$ðxKjÞ;

for all x2 �U and x;j2R
N , with equality if and only if xZj.

(A4) There exists kO0 such that

A x;
xCj

2

� �
%

1

2
Aðx; xÞC 1

2
Aðx;jÞKkjxKjjpðxÞ;

for all x2 �U and x;j2R
N .

(A5) The following inequalities hold true

jxjpðxÞ%aðx; xÞ$x%pðxÞAðx; xÞ;

for all x2 �U and x2R
N .

Examples:

(i) Set Aðx; xÞZð1=pðxÞÞjxjpðxÞ, aðx; xÞZ jxjpðxÞK2x, where pðxÞR2. Then we get
the pðxÞ-Laplace operator

divðjVujpðxÞK2VuÞ:

(ii) Set Aðx; xÞZð1=pðxÞÞ½ð1C jxj2ÞpðxÞ=2K1�, aðx; xÞZð1C jxj2ÞðpðxÞK2Þ=2x, where
pðxÞR2. Then we obtain the generalized mean curvature operator

divðð1C jVuj2ÞðpðxÞK2Þ=2VuÞ:

In this paper, we study problem (1.1) in the particular case

f ðx; tÞZ lðtgK1KtbK1Þ;

with 1!b!g! infx2�UpðxÞ and tR0. More precisely, we consider the degenerate
boundary value problem

Kdivðaðx;VuÞÞZ lðugK1KubK1Þ; for x2U;

u Z 0; for x2vU;

uR0; for x2U:

8><
>: ð2:1Þ

We say that u2W
1;pðxÞ
0 ðUÞ is a weak solution of problem (2.1), if uR0 a.e. in

U and ð
U

aðx;VuÞ$V4 dxKl

ð
U

ugK14 dxCl

ð
U

ubK14 dx Z 0;

for all 42W
1;pðxÞ
0 ðUÞ.

Our main result asserts that problem (2.1) has at least two non-trivial weak
solutions provided that lO0 is large enough and operators A and a satisfy
conditions (A1)–(A5). More precisely, we prove the following.
Proc. R. Soc. A (2006)
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Theorem 2.1. Assume hypotheses (A1)–(A5) are fulfilled. Then there exists
l�O0 such that for all lOl� problem (2.1) has at least two distinct non-negative,
non-trivial weak solutions, provided that pC!minfN ;NpK=ðNKpKÞg.

Remark. By theorem 4.3 in Fan & Zhang (2003), problem (2.1) has at least a

weak solution in the particular case aðx; xÞZ jxjpðxÞK1x. However, the proof in
Fan & Zhang (2003) does not state the fact that the solution is non-negative and
not even non-trivial in the case when f ðx; 0ÞZ0.

We point out that our result is inspired by theorem 1.2 in Perera (2003), where
a related property is proved in the case of the p-Laplace operators. We point out
that the extension from p-Laplace operator to pðxÞ-Laplace operator is not
trivial, since the pðxÞ-Laplacian has a more complicated structure than the
p-Laplace operator, for example, it is inhomogeneous.

Finally, we mention that a similar study regarding the existence and
multiplicity of solutions for a system of equations involving the pðxÞ-Laplace
operator can be found in El Hamidi (2004). The arguments used by the author
rely on the Mountain Pass theorem and Bartsch’s Fountain theorem.
3. Proof of theorem 2.1

Let E denote the generalized Sobolev space W
1;pðxÞ
0 ðUÞ.

Define the energy functional I : E/R by

I ðuÞZ
ð
U
Aðx;VuÞdxKl

g

ð
U
ugCdxC

l

b

ð
U
ubCdx;

where uCðxÞZmaxfuðxÞ; 0g.
We first establish some basic properties of I.

Proposition 3.1. The functional I is well-defined on E and I2C1ðE;RÞ with
the derivative given by

hI 0ðuÞ;4iZ
ð
U
aðx;VuÞ$V4 dxKl

ð
U
ugK1
C 4 dxCl

ð
U
ubK1
C 4 dx;

for all u, 42E.

To prove proposition 3.1, we define the functional L : E/R by

LðuÞZ
ð
U

Aðx;VuÞdx; cu2E:

Lemma 3.2.

(i) The functional L is well-defined on E.
(ii) The functional L is of class C1ðE;RÞ and

hL0ðuÞ;4iZ
ð
U

aðx;VuÞ$V4 dx;

for all u;42E.
Proc. R. Soc. A (2006)



2631Theory of electrorheological fluids
Proof. (i) For any x2U and x2R
N , we have

Aðx; xÞZ
ð1
0

d

dt
Aðx; txÞdt Z

ð1
0
aðx; txÞ$x dt:

Using hypothesis (A2), we get

Aðx; xÞ%c1

ð1
0
ð1C jxjpðxÞK1tpðxÞK1Þjxjdt%c1jxjC

c1
pðxÞ jxj

pðxÞ

%c1jxjC
c1
pK

jxjpðxÞ; cx2 �U; x2R
N : ð3:1Þ

The above inequality and (A5) imply

0%

ð
U

Aðx;VuÞdx%c1

ð
U

jVujdxC c1
pK

ð
U

jVujpðxÞdx; cu2E:

Using inequality (1.3) and relations (1.4) and (1.5), we deduce that L is well
defined on E.

(ii) Existence of the Gâteaux derivative. Let u, 42E. Fix x2U and
0! jrj!1. Then, by the mean value theorem, there exists n2½0; 1� such that

jAðx;VuðxÞCrV4ðxÞÞKAðx;VuÞj=jr jZ jaðx;VuðxÞCnrV4ðxÞÞjjV4ðxÞj:
Using condition (A2), we obtain

jAðx;VuðxÞCrV4ðxÞÞKAðx;VuÞj=jr j%½c1Cc1ðjVuðuÞjCjV4ðxÞjÞpðxÞK1�jV4ðxÞj

%½c1Cc12
pCðjVuðxÞjpðxÞK1CjV4ðxÞjpðxÞK1Þ�jV4ðxÞj:

Next, by inequality (1.3), we haveð
U
c1jV4jdx% jc1jpðxÞ=ðpðxÞK1Þ$jV4jpðxÞ

and ð
U
jVujpðxÞK1jV4jdx% jjVujpðxÞK1jpðxÞ=ðpðxÞK1Þ$jV4jpðxÞ:

The above inequalities imply

c1½1C2p
C

ðjVuðxÞjpðxÞK1 C jV4ðxÞjpðxÞK1Þ�jV4ðxÞj2L1ðUÞ:
It follows from the Lebesgue theorem that

hL0ðuÞ;4iZ
ð
U
aðx;VuÞ$V4 dx:

Assume un/u in E. Let us define qðx; uÞZaðx;VuÞ. Using hypothesis (A2)
and proposition 2.2 in Fan & Zhang (2003), we deduce that qðx; unÞ/qðx; uÞ in
ðLqðxÞðUÞÞN , where qðxÞZpðxÞ= ðpðxÞK1Þ. By inequality (1.3), we obtain

jhL0ðunÞKL0ðuÞ;4ij% jqðx; unÞKqðx; uÞjqðxÞjV4jpðxÞ;
Proc. R. Soc. A (2006)
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and so

kL0ðunÞKL0ðuÞk% jqðx; unÞKqðx; uÞjqðxÞ/0; as n/N:

The proof of lemma 3.2 is complete. &

Lemma 3.3. If u2E then uC, uK2E and

VuCZ
0; if ½u%0�;
Vu; if ½uO0�;

VuKZ
0; if ½uR0�;
Vu; if ½u!0�;

((

where uGðxÞZmaxfGuðxÞ; 0g for all x2U.

Proof. Let u2E be fixed. Then there exists a sequence ð4nÞ2CN
0 ðUÞ such

that

jVð4nKuÞjpðxÞ/0:

Since 1!pK%pðxÞ for all x2U, it follows that LpðxÞ is continuously embedded in
LpKðUÞ and thus,

jVð4nKuÞjpK/0:

Hence u2W 1;pK

0 ðUÞ. We obtain

uC; uK2W 1;pK

0 ðUÞ3W 1;1
0 ðUÞ: ð3:2Þ

On the other hand, theorem 7.6 in Gilbarg & Trudinger (1998) implies

VuCZ
0; if ½u%0�;
Vu; if ½uO0�;

VuKZ
0; if ½uR0�;
Vu; if ½u!0�:

((

By the above equalities, we deduce that

juCðxÞjpðxÞ% juðxÞjpðxÞ; jVuCðxÞjpðxÞ% jVujpðxÞ; a:e: x2U; ð3:3Þ
and

juKðxÞjpðxÞ% juðxÞjpðxÞ; jVuKðxÞjpðxÞ% jVujpðxÞ; a:e: x2U: ð3:4Þ
Since u2E, we have

juðxÞjpðxÞ; jVuðxÞjpðxÞ2L1ðUÞ: ð3:5Þ
By equations (3.3)–(3.5) and Lebesgue theorem, we obtain that uC, uK2LpðxÞðUÞ
and rpðxÞðjVuCjÞ!N, rpðxÞðjVuKjÞ!N. It follows that

uC; uK2W 1;pðxÞðUÞ; ð3:6Þ
where W 1;pðxÞðUÞZfu2LpðxÞðUÞ; jVuj2LpðxÞðUÞg (see Fan & Zhao (2001) for
more details).

By equations (3.2) and (3.6), we conclude that

uC; uK2W 1;pðxÞðUÞhW 1;1
0 ðUÞ:
Proc. R. Soc. A (2006)
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Since p2C0;að �UÞ, theorem 2.6 and remark 2.9 in Fan & Zhao (2001) show that
EZW 1;pðxÞðUÞhW 1;1

0 ðUÞ. Thus, uC, uK2E and the proof of lemma 3.3 is
complete. &

By lemmas 3.2 and 3.3, it is clear that proposition 3.1 holds true.

Remark. If u is a critical point of I then using lemma 3.3 and condition (A5),
we have

0Z hI 0ðuÞ; uKiZ
ð
U
aðx;VuÞ$VuKdxKl

ð
U
ðuCÞgK1uKdxCl

ð
U
ðuCÞbK1uKdx

Z

ð
U

aðx;VuÞ$VuKdx Z

ð
U

aðx;VuKÞ$VuKdxR

ð
U

jVuKjpðxÞdx:

Thus, we deduce that uR0. It follows that the non-trivial critical points of I are
non-negative solutions of (2.1).

The above remark shows that we can prove theorem 2.1 using the critical points
theory.More exactly, we first show that for lO0 large enough, the functional I has a
global minimizer u1R0 such that I ðu1Þ!0. Next, by means of the Mountain Pass
theorem, a second critical point u 2 with I ðu 2ÞO0 is obtained.

Lemma 3.4. The functional L is weakly lower semi-continuous.

Proof. By corollary III.8 in Brezis (1992), it is enough to show that L is lower
semi-continuous. For this purpose, we fix u2E and eO0. Since L is convex (by
condition (A4)), we deduce that for any v2E, the following inequality holds

ð
U

Aðx;VvÞdxR
ð
U

Aðx;VuÞdxC
ð
U

aðx;VuÞ$ðVvKVuÞdx:

Using condition (A2) and inequality (1.3), we have

ð
U
Aðx;VvÞdxR

ð
U
Aðx;VuÞdxK

ð
U
jaðx;VuÞjjVvKVujdx

R

ð
U

Aðx;VuÞdxKc1

ð
U

jVðvKuÞjdxKc1

ð
U

jVujpðxÞK1jVðvKuÞjdx

R

ð
U
Aðx;VuÞdxKc2j1jqðxÞjVðvKuÞjpðxÞKc3jjVujpðxÞK1jqðxÞjVðvKuÞjpðxÞ

R

ð
U

Aðx;VuÞdxKc4kvKukR
ð
U

Aðx;VuÞdxKe;

for all v2E with kvKuk!dZe=c4, where c2, c3, c4 are positive constants and
qðxÞZpðxÞ=ðpðxÞK1Þ. We conclude that L is weakly lower semi-continuous. The
proof of lemma 3.4 is complete. &
Proc. R. Soc. A (2006)
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Lemma 3.5. There exists l1O0 such that

l1 Z inf
u2E;kukO1

Ð
U

1
pðxÞ jVuj

pðxÞdxÐ
Ujujp

K

dx
:

Proof. We know that E is continuously embedded in LpKðUÞ. It follows that
there exists CO0 such that

kukRC jujpK; cu2E:

On the other hand, by equation (1.4), we haveð
U

jVujpðxÞdxRkukp
K

; cu2E with kukO1:

Combining the above inequalities, we obtainð
U

1

pðxÞ jVuj
pðxÞdxR

CpK

pC

ð
U
jujp

K

dx; cu2E with kukO1:

The proof of lemma 3.5 is complete. &

Proposition 3.6.

(i) The functional I is bounded from below and coercive.
(ii) The functional I is weakly lower semi-continuous.

Proof. (i) Since 1!b!g!pK, we have

lim
t/N

1
g
tgK1

b
tb

tp
K Z 0:

Then for any lO0, there exists ClO0 such that

l
1

g
tgK

1

b
tb

� �
%

l1

2
tp

K

CCl; ctR0;

where l1 is defined in lemma 3.5.
Condition (A5) and the above inequality show that for any u2E with

kukO1, we have

I ðuÞR
ð
U

1

pðxÞ jVuj
pðxÞdxK

l1

2

ð
U

jujp
K

dxKClmðUÞ

R
1

2

ð
U

1

pðxÞ jVuj
pðxÞdxKClmðUÞ

R
1

2pC
kukp

K

KClmðUÞ:

This shows that I is bounded from below and coercive.
(ii) Using lemma 3.4, we deduce that L is weakly lower semi-continuous.

We show that I is weakly lower semi-continuous. Let ðunÞ3E be a sequence
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which converges weakly to u in E. Since L is weakly lower semi-continuous,
we have

LðuÞ% lim inf
n/N

LðunÞ: ð3:7Þ

On the other hand, since E is compactly embedded in LgðUÞ and LbðUÞ, it follows
that ðunCÞ converges strongly to uC both in LgðUÞ and in LbðUÞ. This fact
together with relation (3.7) imply

I ðuÞ% lim inf
n/N

I ðunÞ:

Therefore, I is weakly lower semi-continuous. The proof of proposition 3.6 is
complete. &

By proposition 2 and theorem 1.2 in Struwe (1996), we deduce that there
exists u12E a global minimizer of I. The following result implies that u1s0,
provided that l is sufficiently large.

Proposition 3.7. There exists l�O0 such that infEI!0.

Proof. Let U13U be a compact subset, large enough and u 02E be such that
u 0ðxÞZ t0 in U1 and 0%u 0ðxÞ% t0 in UnU1, where t0O1 is chosen such that

1

g
tg0K

1

b
tb0O0:

We have

1

g

ð
U
ug
0 dxK

1

b

ð
U
ub
0dxR

1

g

ð
U1

ug0 dxK
1

b

ð
U1

ub0dxK
1

b

ð
UnU1

ub
0dx

R
1

g

ð
U1

ug0 dxK
1

b

ð
U1

ub0dxK
1

b
tb0mðUnU1ÞO0;

and thus I ðu 0Þ!0 for lO0 large enough. The proof of proposition 3.7 is
complete. &

Since proposition 3.7 holds true, it follows that u12E is a non-trivial weak
solution of problem (2.1).

Fix lRl�. Set

gðx; tÞZ

0; for t!0;

tgK1KtbK1; for 0% t%u1ðxÞ;

u1ðxÞgK1Ku1ðxÞbK1; for tOu1ðxÞ;

8>><
>>:

and

Gðx; tÞZ
ðt
0
gðx; sÞds:

Define the functional J : E/R by

JðuÞZ
ð
U

Aðx;VuÞdxKl

ð
U

Gðx; uÞdx:
Proc. R. Soc. A (2006)



M. Mihăilescu and V. Rădulescu2636
The same arguments as those used for functional I imply that J2C1ðE;RÞ and

hJ 0ðuÞ;4iZ
ð
U

aðx;VuÞ$V4 dxKl

ð
U

gðx; uÞ4 dx;

for all u, 42E.
On the other hand, we point out that if u2E is a critical point of J then uR0.

The proof can be carried out as in the case of functional I.
Next, we prove the following.

Lemma 3.8. If u is a critical point of J then u%u1.

Proof. We have

0ZhJ 0ðuÞKI 0ðu1Þ;ðuKu1ÞCi

Z

ð
U
ðaðx;VuÞKaðx;Vu1ÞÞ$VðuKu1ÞCdxKl

ð
U
½gðx;uÞKðugK1

1 KubK1
1 Þ�ðuKu1ÞCdx

Z

ð
½uOu1�

ðaðx;VuÞKaðx;Vu1ÞÞ$VðuKu1Þdx:

By condition (A3), we deduce that the above equality holds if and only if
VuZVu1. It follows that VuðxÞZVu1ðxÞ for all x2udfy2U; uðyÞOu1ðyÞg.
Hence ð

u
jVðuKu1ÞjpðxÞdx Z 0;

and thus, ð
U
jVðuKu1ÞCjpðxÞdx Z 0:

By relation (1.5), we obtain

kðuKu1ÞCkZ 0:

Since uKu12E by lemma 3.3, we have that ðuKu1ÞC2E. Thus, we obtain that
ðuKu1ÞCZ0 in U, i.e. u%u1 in U. The proof of lemma 3.8 is complete. &

In the following, we determine a critical point u 22E of J such that Jðu 2ÞO0 via
the Mountain Pass theorem. By the above lemma, we will deduce that 0%u 2%u1
in U. Therefore,

gðx; u 2ÞZ ugK1
2 KubK1

2 ; and Gðx; u 2ÞZ
1

g
ug
2K

1

b
ub2 ;

and thus,

Jðu 2ÞZ I ðu 2Þ; and J 0ðu 2ÞZ I 0ðu 2Þ:
More exactly we find

I ðu 2ÞO0Z I ð0ÞOI ðu1Þ; and I 0ðu 2ÞZ 0:
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This shows that u 2 is a weak solution of problem (2.1) such that 0%u 2%u1, u 2s0
and u 2su1.

In order to find u 2 described above, we prove the following.

Lemma 3.9. There exist r2ð0; ku1kÞ and aO0 such that JðuÞRa, for all u2E
with kukZr.

Proof. Let u2E be fixed, such that kuk!1. It is clear that there exists dO1
such that

1

g
tgK

1

b
tb%0; ct2½0; d�:

For d given above, we define

Uu Z fx2U; uðxÞOdg:
If x2UnUu with uðxÞ!u1ðxÞ, we have

Gðx; uÞZ 1

g
ug
CK

1

b
ub
C%0:

If x2UnUu with uðxÞOu1ðxÞ, then u1ðxÞ%d and we have

Gðx; uÞZ 1

g
ug1K

1

b
ub
1%0:

Thus, we deduce that

Gðx; uÞ%0; on UnUu:

Provided that kuk!1 by condition (A5) and relation (1.5), we get

JðuÞR
ð
U

1

pðxÞ jVuj
pðxÞdxKl

ð
Uu

Gðx; uÞdxR 1

pC
kukp

C

Kl

ð
Uu

Gðx; uÞdx: ð3:8Þ

Since pC!minfN ;NpK=ðNKpKÞg, it follows that pC!p�ðxÞ for all x2 �U. Then
there exists q2ðpC;NpK=ðNKpKÞÞ such that E is continuously embedded in
LqðUÞ. Thus, there exists a positive constant CO0 such that

jujq%Ckuk; cu2E:

Using the definition of G, Hölder’s inequality and the above estimate, we obtain

l

ð
Uu

Gðx; uÞdx Z l

ð
Uuh½u!u1�

1

g
ugCK

1

b
ubC

� �
dx

Cl

ð
Uuh½uOu1�

1

g
ug1K

1

b
ub
1

� �
dx%

2l

g

ð
Uu

ugCdx

%
2l

g

ð
Uu

upC

C dx%
2l

g

ð
Uu

uqCdx

� �pC=q

½mðUuÞ�1KpC=q

%C
2l

g
½mðUuÞ�1KpC=qkukp

C

: ð3:9Þ
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By equations (3.8) and (3.9), we infer that it is enough to show that mðUuÞ/0 as
kuk/0 in order to prove lemma 3.9.

Let eO0. We choose Ue3U a compact subset, such that mðUnUeÞ!e. We
denote by Uu;edUuhUe. Then it is clear that

C ½mðUÞ�1KpC=qkukp
C

R

ð
U

jujqdx
� �pC=q

R

ð
Uu;e

jujqdx
� �pC=q

Rdp
C

½mðUu;eÞ�p
C=q:

The above inequality implies that mðUu;eÞ/0 as kuk/0.
Since Uu3Uu;egðUnUeÞ, we have

mðUuÞ%mðUu;eÞCe;

and eO0 is arbitrary. We find that mðUuÞ/0 as kuk/0. This concludes the
proof of lemma 3.9. &

Lemma 3.10. The functional J is coercive.

Proof. For each u2E with kukO1 by condition (A5), relation (1.4) and
inequality (1.3), we have

JðuÞR
ð
U

1

pðxÞ jVuj
pðxÞdxKl

ð
½uOu1�

Gðx; uÞdxKl

ð
½u!u1�

Gðx; uÞdx

R
1

pC
kukp

K

K
l

g

ð
½uOu1�

ug
1 dxC

l

b

ð
½uOu1�

ub
1dxK

l

g

ð
½u!u1�

ug
CdxC

l

b

ð
½u!u1�

ub
Cdx

R
1

pC
kukp

K

K
l

g

ð
U

ug
1 dxK

l

g

ð
U

ug
CdxR

1

pC
kukp

K

K
l

g
½mðUÞ�1Kg=pKC1kukgKC2

R
1

pC
kukp

K

KC23kukgKC2;

where C1, C2 and C3 are positive constants. Since g!pK the above inequality
implies that JðuÞ/N as kuk/N, i.e. J is coercive. The proof of lemma 3.10 is
complete. &

The following result yields a sufficient condition which ensures that a weakly
convergent sequence in E converges strongly, too.

Lemma 3.11. Assume that the sequence ðunÞ converges weakly to u in E and

lim sup
n/N

ð
U
aðx;VunÞ$ðVunKVuÞdx%0:

Then ðunÞ converges strongly to u in E.

Proof. Using relation (3.1), we have that there exists a positive constant c5
such that

Aðx; xÞ%c5ðjxjC jxjpðxÞÞ; cx2 �U; x2R
N :
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The above inequality implies

Aðx;VunÞ%c5ðjVunjC jVunjpðxÞÞ; cx2 �U; n: ð3:10Þ
The fact that un converges weakly to u in E implies that there exists RO0 such
that kunk%R for all n. By relation (3.10) and inequalities (1.3)–(1.5), we deduce
that f

Ð
UAðx;VunÞdxg is bounded. Then, up to a subsequence, we deduce thatÐ

UAðx;VunÞdx/c. By lemma 3.4, we obtainð
U
Aðx;VuÞdx% lim inf

n/N

ð
U
Aðx;VunÞdx Z c:

On the other hand, since L is convex, we haveð
U

Aðx;VuÞdxR
ð
U

Aðx;VunÞdxC
ð
U

aðx;VunÞ$ðVuKVunÞdx:

Next, by the hypothesis lim supn/N

Ð
Uaðx;VunÞ$ðVunKVuÞdx%0, we conclude

that
Ð
UAðx;VuÞdxZc.

Taking into account that ðunCuÞ=2 converges weakly to u in E and using
lemma 3.4, we have

cZ

ð
U

Aðx;VuÞdx% lim inf
n/N

ð
U

A x;V
un Cu

2

� �
dx: ð3:11Þ

We assume by contradiction that un does not converge to u in E. Then by (1.6),
it follows that there exist eO0 and a subsequence ðunmÞ of ðunÞ such thatð

U
jVðunmKuÞjpðxÞdxRe; cm: ð3:12Þ

By condition (A4), we have

1

2
Aðx;VuÞC 1

2
Aðx;VunmÞKA x;V

uCunm
2

� �
RkjVðunmKuÞjpðxÞ: ð3:13Þ

Relations (3.12) and (3.13) yield

1

2

ð
U

Aðx;VuÞdxC 1

2

ð
U

Aðx;VunmÞdxK
ð
U

A x;V
uCunm

2

� �

Rk

ð
U
jVðunmKuÞjpðxÞdxRke:

Letting m/N in the above inequality, we obtain

cKkeR lim sup
m/N

ð
U

A x;V
uCunm

2

� �
dx;

and that is a contradiction with (3.11). It follows that un converges strongly to u
in E and lemma 3.11 is proved. &

Proof of theorem 2.1. Using lemma 3.9 and the Mountain Pass theorem (see
Ambrosetti & Rabinowitz (1973) with the variant given by theorem 1.15 in
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Willem (1996)) we deduce that there exists a sequence ðunÞ3E such that

JðunÞ/cO0; and J 0ðunÞ/0; ð3:14Þ
where

cZ inf
g2G

max
t2½0;1�

JðgðtÞÞ;

and

GZ fg2Cð½0; 1�;EÞ;gð0ÞZ 0;gð1ÞZ u1g:
By relation (3.14) and lemma 3.10, we obtain that ðunÞ is bounded and thus,
passing eventually to a subsequence, still denoted by ðunÞ, we may assume that
there exists u 22E such that un converges weakly to u 2. Since E is compactly
embedded in LiðUÞ for any i2½1; pK�, it follows that un converges strongly to u 2

in LiðUÞ for all i2½1; pK�. Hence,

hL0ðunÞKL0ðu 2Þ; unKu 2iZ hJ 0ðunÞKJ 0ðu 2Þ; unKu 2i

Cl

ð
U

½gðx; unÞKgðx; u 2Þ�ðunKu 2Þdx Z oð1Þ;

as n/N. By lemma 3.11, we deduce that un converges strongly to u 2 in E and
using relation (3.14), we find

Jðu 2ÞZ cO0; and J 0ðu 2ÞZ 0:

Therefore, Jðu 2ÞZcO0 and J 0ðu 2ÞZ0. By lemma 3.8, we deduce that 0%u 2%
u1 in U. Therefore,

gðx; u 2ÞZ ugK1
2 KubK1

2 ; and Gðx; u 2ÞZ
1

g
ug
2K

1

b
ub2 ;

and thus,

Jðu 2ÞZ I ðu 2Þ; and J 0ðu 2ÞZ I 0ðu 2Þ:
We conclude that u 2 is a critical point of I and thus a solution of (2.1).
Furthermore, I ðu 2ÞZcO0 and I ðu 2ÞO0OI ðu1Þ. Thus, u 2 is not trivial and
u 2su1. The proof of theorem 2.1 is now complete. &
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Fan, X. L. & Zhang, Q. H. 2003 Existence of solutions for p(x)-Laplacian Dirichlet problem.
Nonlin. Anal. 52, 1843–1852. (doi:10.1016/S0362-546X(02)00150-5)

Fan, X. L. & Zhao, D. 2001 On the spaces Lp(x)(U) and Wm,p(x)(U). J. Math. Anal. Appl. 263,
424–446. (doi:10.1006/jmaa.2000.7617)

Fan, X. L., Zhang, Q. H. & Zhao, D. 2005 Eigenvalues of p(x)-Laplacian Dirichlet problem.
J. Math. Anal. Appl. 302, 306–317. (doi:10.1016/j.jmaa.2003.11.020)

Gilbarg, D. & Trudinger, N. S. 1998 Elliptic partial differential equations of second order. Berlin:
Springer.

Halsey, T. C. 1992 Electrorheological fluids. Science 258, 761–766.
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