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Abstract. We consider a perturbed version of the Robin eigenvalue problem for the p-Laplacian. The perturbation is (p−1)-

superlinear. Using the Nehari manifold method, we show that for all parameters λ < λ̂1 (= the principal eigenvalue of the
differential operator), there exists a ground-state nodal solution of the problem.
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1. Introduction

Suppose that Ω ⊆ R
N is a bounded domain with a C2-boundary ∂Ω. In this paper, we study the following

nonlinear parametric Robin problem:
{−Δpu + ξ(z)|u|p−2u = λ|u|p−2u + f(z, u) in Ω,

∂u
∂np

+ β(z)|u|p−2u = 0 on ∂Ω, λ ∈ R.

}
(Pλ)

In this problem, Δp denotes the p-Laplace differential operator defined by

Δpu = div (|Du|p−2Du) = |Du|p−4[|Du|2Δu + (p − 2)
N∑

i,j=1

uxi
uxj

uxixj
] for all u ∈ W 1,p(Ω).

On the set [Du = 0] of critical points, this operator is degenerate for p > 2 and is singular if
1 < p < 2. The analysis developed in this paper includes the borderline case p = N . In this situation,
the Dirichlet energy

∫
Ω

|Du|Ndx is conformally invariant. The borderline case is important in the theory

of quasi-conformal mappings.
Problem (Pλ) contains the perturbation u �→ ξ(z)|u|p−2u with the potential function ξ ∈ L∞(Ω),

ξ(z) � 0 for a.a. z ∈ Ω. In the reaction (right-hand side of problem (Pλ)), we have the combined effects
of a parametric term u �→ λ|u|p−2u and of a Carathéodory perturbation f(z, x). (That is, for all x ∈ R

the mapping z �→ f(z, x) is measurable and for a.a. z ∈ Ω the function x �→ f(z, x) is continuous.) We
assume that f(z, x) exhibits (p − 1)-superlinear growth as x → ±∞.

We can view problem (Pλ) as a superlinear perturbation of the Robin eigenvalue problem for the
operator u �→ −Δpu + ξ(z)|u|p−2u. In the boundary condition, ∂u

∂np
denotes the conormal derivative of u

corresponding to the p-Laplace differential operator. This directional derivative is interpreted using the
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nonlinear Green’s identity (see Papageorgiou et al. [13, p. 35]), and if u ∈ C1(Ω), then

∂u

∂np
= |Du|p−2 ∂u

∂n
,

with n(·) being the outward unit normal on ∂Ω. The boundary coefficient β ∈ C0,α(∂Ω) with 0 < α < 1
satisfies β(z) � 0 for all z ∈ ∂Ω.

The nonlinear Robin boundary condition in problem (Pλ) is motivated by certain nonlinear patterns
in which the flux across the boundary is not linearly proportional to the density function. A typical
example is Boltzmann’s fourth power law in heat transfer problems, where

∂u

∂n
+ σ(u4 − h4

0) = 0 (σ > 0),

where h0 is the surrounding temperature; see Özisik [10]. Another example is based on the Michaelis–
Menten hypothesis in some biochemical reaction problems where the substrate concentration satisfies the
boundary condition

∂u

∂n
+

u

1 + au
= 0 (a > 0),

see Ross [15].
We are looking for ground-state (that is, least energy) nodal (sign-changing) solutions of problem (Pλ).

Using the Nehari manifold method, we show that if λ < λ̂1 (here λ̂1 is the principal eigenvalue of the
differential operator u �→ −Δpu + ξ(z)|u|p−2u with Robin boundary condition), then problem (Pλ) has a
ground-state nodal solution. We prove this result by relaxing the usual Nehari monotonicity hypothesis
which is the following:

(N) “For a.e. z ∈ Ω, the quotient function x �→ f(z,x)
|x|p−1 is strictly increasing on R̊−∪R̊+ with R̊− = (−∞, 0)

and R̊+ = (0,+∞).”
This condition was used by Szulkin and Weth [16] to have uniqueness of the projection on the Nehari

manifold. Instead, in the present paper, we assume that the quotient is simply increasing.
In the past, the problem of the existence of ground-state solutions for such parametric problems

was investigated only in the context of semilinear Dirichlet problems driven by the Laplace differential
operator. We mention the work of Szulkin and Weth [16], who produce a ground-state solution using
the stronger monotonicity condition (N), but they do not show that their ground-state solution is nodal.
Later, Tang [17] obtained a ground-state solution using the relaxed monotonicity condition, but the
ground-state solution need not be nodal. Ground-state nodal solutions under the relaxed monotonicity
hypothesis were obtained recently by Lin and Tang [7]. All the aforementioned works deal with semilinear
equations (that is, p = 2), and the boundary condition is Dirichlet. Ground-state nodal solutions under
the strong Nehari monotonicity condition (see hypothesis (N) above) were obtained by Liu and Dai [8]
(Dirichlet problems) and Gasiński and Papageorgiou [4] (problems with a nonlinear boundary condition).
In both these works, the reaction is nonparametric and has a different structure. We also mention the
work of Papageorgiou, Rădulescu and Repovš [12], who studied problem (Pλ) when p = 2 (semilinear
equation) looking for positive solutions and proved a bifurcation-type result with critical parameter being
λ̂1. Finally, we point out that eigenvalue problems with nonlinear Robin boundary condition naturally
arise in the study of reaction–diffusion equation where a distributed absorption competes with a boundary
source; see Lacey et al. [5] for details.

Our main result in this paper is the following theorem. Hypotheses H0 and H1 on the data of the
problem can be found in Sect. 2.

Theorem 1. If hypotheses H0, H1 are fulfilled and λ < λ̂1, then the following properties hold true.
(a) Problem (Pλ) has a ground-state nodal solution u∗ ∈ C1(Ω);
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(b) If, in addition, e(z, x) > 0 for a.a. z ∈ Ω, all x �= 0, then u∗ has two nodal domains; here, e(z, x) =
f(z, x)x − pF (Z, x)

2. Mathematical preliminaries and hypotheses

The main space in the analysis of problem (Pλ) is the Sobolev space W 1,p(Ω). By ‖ · ‖, we denote the
norm of W 1,p(Ω) defined by

‖u‖ =
(‖u‖p

p + ‖Du‖p
p

)1/p for all u ∈ W 1,p(Ω).

Also, we will use the boundary Lebesgue spaces Lp(∂Ω). On ∂Ω, we consider the (N − 1)-dimensional
Hausdorff (surface) measure σ(·). Using this measure, we can define in the usual way the “boundary”
Lebesgue spaces Lq(∂Ω), 1 � q � +∞. From the theory of Sobolev spaces, we know that there exists a
unique continuous linear operator γ̂0 : W 1,p(Ω) �→ Lp(∂Ω), known as the “trace operator,” such that

γ̂0(u) = u|∂Ω for all u ∈ W 1,p(Ω) ∩ C(Ω).

So, the trace operator extends the notion of boundary values to all Sobolev functions. We know that
this operator is compact into Lr(∂Ω) for r < (N−1)p

N−p if p < N and into Lr(∂Ω) for 1 � r < +∞ if N � p.
The trace operator is not surjective, and we have

im γ̂0 = W
1
p′ ,p(∂Ω)

(
1
p

+
1
p′ = 1

)
, ker γ̂0 = W 1,p

0 (Ω).

We introduce our hypotheses on the potential function ξ(·) and on the boundary coefficient β(·).
H0: ξ ∈ L∞(Ω), ξ(z) � 0 for a.a. z ∈ Ω, β ∈ C0,α(∂Ω) with 0 < α < 1, β(z) � 0 for all z ∈ ∂Ω and

ξ �≡ 0 or β �≡ 0.

Remark 1. We see that these hypotheses incorporate also the Neumann problem (β ≡ 0).

In what follows, by γp : W 1,p(Ω) �→ R we denote the C1-functional defined by

γp(u) = ‖Du‖p
p +

∫
Ω

ξ(z)|u|pdz +
∫

∂Ω

β(z)|u|pdσ

for all u ∈ W 1,p(Ω).
Using Lemma 4.11 of Mugnai and Papageorgiou [9] and Proposition 2.4 of Gasiński and Papageorgiou

[3], we have

c0‖u‖p � γp(u) for some c0 > 0, all u ∈ W 1,p(Ω). (1)

Another way to see this is via a simple contradiction argument. So, suppose that we could find
{un}n∈N ⊆ W 1,p(Ω) such that for all n ∈ N

‖Dun‖p
p +

∫
Ω

ξ(z)|un|pdz +
∫

∂Ω

β(z)|un|pdσ <
1
n

‖un‖p.

By homogeneity, we may assume that ‖un‖ = 1 for all n ∈ N. So, we may assume that

un
w−→ u in W 1,p(Ω) and un → u in Lp(Ω) and in Lp(∂Ω).

Then, in the limit as n → ∞ and since the norm in a Banach space is weakly lowers semicontinuous, we
obtain

‖Du‖p
p +

∫
Ω

ξ(z)|u|pdz +
∫

∂Ω

β(z)|u|pdσ � 0,

⇒ Du(z) = 0 a.e. in Ω, hence u ≡ c ∈ R.
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We have

c

⎛
⎝∫

Ω

ξ(z)dz +
∫

∂Ω

β(z)dσ

⎞
⎠ � 0,

⇒ c = 0 (see hypothesis H0).

But then we have

un → 0 in W 1,p(Ω),

a contradiction to the fact that ‖un‖ = 1 for all n ∈ N.
We consider the nonlinear eigenvalue problem{

−Δpu + ξ(z)|u|p−2u = λ̂|u|p−2u in Ω,
∂u
∂np

+ β(z)|u|p−2u = 0 on ∂Ω.

}
(2)

We say that λ̂ ∈ R is an eigenvalue of the operator u �→ −Δpu+ξ(z)|u|p−2u with Robin boundary con-
dition, if problem (2) admits a nontrivial solution û ∈ W 1,p(Ω), known as an eigenfunction corresponding
to the eigenvalue λ̂.

By using the Lagrange multiplier rule, we see that problem (2) has a smallest eigenvalue λ̂1, which is
characterized variationally by

λ̂1 = inf
{

γp(u)
‖u‖p

p
: u ∈ W 1,p(Ω), u �= 0

}
. (3)

On account of (1), we see that λ̂1 > 0. Also, this eigenvalue is isolated in the spectrum and simple.
The infimum in (3) is realized on the corresponding one dimensional eigenspace and so the eigenfunctions
corresponding to λ̂1 > 0 have fixed sign. By û1, we denote the positive, Lp-normalized (that is, ‖û1‖p = 1)
eigenfunction corresponding to λ̂1. The nonlinear regularity theory (see Lieberman [6]) and the nonlinear
maximum principle (see Pucci and Serrin [14]) imply that û1 ∈ int C+ =

{
u ∈ C1(Ω) : u(z)>0 for all z∈Ω

}
(the interior of positive (order) cone C+ =

{
u ∈ C1(Ω) : u(z) � 0 for all z ∈ Ω

}
of C1(Ω)). The Ljusternik–

Schnirelmann minimax scheme implies the existence of a whole strictly increasing sequence
{

λ̂k

}
k∈N

of

eigenvalues of problem (2) such that λ̂k → +∞, known as “variational eigenvalues.” We do not know if
they exhaust the spectrum of the operator. We know that if λ̂ �= λ̂1 is a nonprincipal eigenvalue, then the
corresponding eigenfunctions û ∈ C1(Ω) (regularity theory) are nodal functions. Details can be found in
Fragnelli et al. [2].

Let Ap : W 1,p(Ω) �→ W 1,p(Ω)∗ be the nonlinear map defined by

〈Ap(u), h〉 =
∫
Ω

|Du|p−2(Du,Dh)RN dz for all u, h ∈ W 1,p(Ω).

It is well known that this map is bounded (maps bounded sets to bounded sets), continuous, monotone
(thus maximal monotone too) and of type (S)+, that is

“if un
w−→ u in W 1,p(Ω) and lim sup

n→∞
〈Ap(un), un − u〉 � 0,

then un → u in W 1,p(Ω).′′

We have

〈γ′
p(u), h〉 = 〈Ap(u), h〉 +

∫
Ω

ξ(z)|u|p−2uhdz +
∫

∂Ω

β(z)|u|p−2uhdσ

for all u, h ∈ W 1,p(Ω).
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Now, we introduce our hypotheses on the perturbation f(z, x). Recall that

p∗ =

{
Np

N−p if p < N

+∞ if N � p
(the critical Sobolev exponent for p).

H1: f : Ω × R �→ R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω and
(i) |f(z, x)| � a(z)

(
1 + |x|r−1

)
for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω) and p < r < p∗;

(ii) if F (z, x) =
x∫
0

f(z, s)ds, then limx→±∞
F (z,x)

|x|p = +∞ uniformly for a.a. z ∈ Ω;

(iii) limx→0
f(z,x)

|x|p−2x = 0 uniformly for a.a. z ∈ Ω;

(v) for a.a. z ∈ Ω, the quotient function x �→ f(z,x)
|x|p−1 is increasing on R̊− ∪ R̊+.

Remark 2. If f(z, ·) is (p − 1)-superlinear as x → ±∞, then hypothesis H1(ii) is satisfied. Note that we
use the relaxed Nehari monotonicity condition (see hypothesis H1(iv)).

We will prove our existence theorem first using the strong Nehari monotonicity condition (see (N)),
and then via approximations of the perturbation, we will establish the result for the general case. For
this reason, we introduce the following set of hypotheses:

H ′
1: f : Ω ×R �→ R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω, hypotheses H ′

1(i),
(ii), (iii) are the same as the corresponding hypotheses in H1 and
(iv) hypothesis (N) holds.

If u ∈ W 1,p(Ω), then we define u± = max {±u, 0} and we have

u± ∈ W 1,p(Ω), u = u+ − u−, |u| = u+ + u−.

We denote by | · |N the Lebesgue measure on R
N .

Let ϕλ : W 1,p(Ω) �→ R be the energy (Euler) functional defined by

ϕλ(u) =
1
p
γp(u) − λ

p
‖u‖p

p −
∫
Ω

F (z, u)dz for all u ∈ W 1,p(Ω).

Evidently, ϕλ ∈ C1(W 1,p(Ω)). We introduce the following two sets:

N =
{
u ∈ W 1,p(Ω) : 〈ϕ′

λ(u), u〉 = 0, u �= 0
}

,

N0 =
{
u ∈ W 1,p(Ω) : 〈ϕ′

λ(u), u+〉 = 〈ϕ′
λ(u), u−〉 = 0, u± �= 0

}
.

We see that N0 ⊆ N . The set N is known as the “Nehari manifold” for the functional ϕλ(·). Note
that every nontrivial solution of problem (Pλ) belongs to the Nehari manifold. Since we look for nodal
solutions, we introduce the Nehari submanifold N0. Hypotheses H0, H ′

1 imply that ∅ �= N0 ⊆ N (see also
Proposition 5 and Papageorgiou et al. [11]).

3. Ground-state nodal solutions

We define

m̂0
λ = inf

N0
ϕλ.

We look for an element of N0 which realizes the infimum m̂0
λ and which is a critical point of ϕλ. Such

a function will be a ground-state nodal solution of problem (Pλ).

Proposition 2. If hypotheses H0, H1 hold, then for all τ, t � 0 and all u ∈ W 1,p(Ω) we have

ϕλ(u) � ϕλ(τu+ − tu−) +
1 − τp

p
〈ϕ′

λ(u), u+〉 − 1 − tp

p
〈ϕ′

λ(u), u−〉.
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Proof. We have

ϕλ(u) − ϕλ(τu+ − tu−)

=
1
p
γp(u) − λ

p
‖u‖p

p −
∫
Ω

F (z, u)dz

− 1
p
γp(τu+ − tu−) +

λ

p
‖τu+ − tu−‖p

p +
∫
Ω

F (z, τu+ − tu−)dz

=
1
p

(
γp(u) − γp(τu+ − tu−)

) − λ

p

(‖u‖p
p − ‖τu+ − tu−‖p

p

)

−
∫
Ω

(
F (z, u) − F (z, τu+ − tu−)

)
dz. (4)

Using the fact that {u+ > 0} ∩ {u− > 0} = ∅, we have

1
p

(
γp(u) − γp(τu+ − tu−)

)

=
1
p

(
γp(u+) − τpγp(u+) + γp(u−) − tpγp(u−)

)

=
1 − τp

p
γp(u+) +

1 − tp

p
γp(u−). (5)

Similarly, we have

λ

p

(‖u‖p
p − ‖τu+ − tu−‖p

p

)

=
λ

p

(‖u+‖p
p − τp‖u+‖p

p + ‖u−‖p
p − tp‖u−‖p

p

)

=
λ(1 − τp)

p
‖u+‖p

p +
λ(1 − tp)

p
‖u−‖p

p. (6)

Finally, we have ∫
Ω

(
F (z, u) − F (z, τu+ − tu−)

)
dz

=
∫
Ω

(
F (z, u+) + F (z,−u−) − F (z, τu+) − F (z,−tu−)

)
dz. (7)

Let x �= 0 and μ � 0. Then,

1 − μp

p
f(z, x)x + F (z, μx) − F (z, x)

=

1∫
μ

f(z, x)xsp−1ds −
1∫

μ

d
ds

F (z, sx)ds

=

1∫
μ

f(z, x)xsp−1ds −
1∫

μ

f(z, sx)xds (using the chain rule)
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=

1∫
μ

(
f(z, x)
|x|p−1

− f(z, sx)
(s|x|)p−1

)
sp−1x|x|p−1ds

� 0 (see hypothesis H1(iv)). (8)

Returning to (7) and using (8), we obtain∫
Ω

(
F (z, u) − F (z, τu+ − tu−)

)
dz

� −1 − τp

p

∫
Ω

f(z, u+)u+dz +
1 − tp

p

∫
Ω

f(z,−u−)(−u−)dz. (9)

Finally, we use (5), (6) and (9) in (4) and obtain

ϕλ(u) − ϕλ(τu+ − tu−) � 1 − τp

p
〈ϕ′

λ(u), u+〉 − 1 − tp

p
〈ϕ′

λ(u), u−〉.
This proof is now complete. �

From this proposition, we infer at once the following two useful corollaries.

Corollary 3. If hypotheses H0, H1 hold and u ∈ N0, then ϕλ(u) = maxτ,t�0 ϕλ(τu+ − tu−).

Corollary 4. If hypotheses H0, H1 hold and u ∈ N, then ϕλ(u) = maxτ�0 ϕλ(τu).

Evidently, Corollary 3 implies ∅ �= N0 ⊆ N .
Next, we relate nodal elements of W 1,p(Ω) with the Nehari submanifold N0. In particular, we infer

that N0 �= ∅.

Proposition 5. If hypotheses H0, H ′
1 hold, λ < λ̂1 and u ∈ W 1,p(Ω) with u± �= 0, then we can find a

unique pair (τu, tu) ∈ R̊+ × R̊+ such that τuu+ − tuu− ∈ N0.

Proof. Let u ∈ W 1,p(Ω) with u± �= 0 (nodal function) and consider the corresponding fibering function

θλ(t) = ϕλ(tu+) for all t > 0.

Using the chain rule, we see that for all t > 0 the following equivalence holds:

θ′
λ(t) = 0 ⇐⇒ γp(u+) − λ‖u+‖p

p =
∫
Ω

f(z, tu+)u+

tp−1
dz. (10)

On account of hypothesis H ′
1(iv) = (N), the integral in the right-hand side of (10) is strictly increasing

in t > 0.
Hypotheses H ′

1(iv), (iii) imply that given ε > 0, we can find c1 = c1(ε) > 0 such that

F (z, x) � ε

p
|x|p + c1|x|r for a.a. z ∈ Ω, all x ∈ R. (11)

Then, we have

θλ(t) = ϕλ(tu+) � tp

p
γp(u+) − λ + ε

p
tp‖u+‖p

p − c1t
r‖u+‖r

r (see (11))

� tp

p

(
λ̂1 − (λ + ε)

)
‖u+‖p

p − c1t
r‖u+‖r

r (see (3)).

Choosing ε ∈ (0, λ̂1 − λ) (recall that λ < λ̂1), we obtain

θλ(t) � c2t
p − c3t

r for some c2, c3 > 0,

⇒ θλ(t) > 0 for all t > 0 small (since p < r).
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On the other hypotheses H ′
1(i), (ii) imply that given η > 0, we can find c4 = c4(η) > 0 such that

F (z, x) � η|x|p − c4 for a.a. z ∈ Ω, all x ∈ R. (12)

Then, we have

θλ(t) = ϕλ(tu+) � tp

p
γp(u+) − λtp

p
‖u+‖p

p − ηtp

p
‖u+‖p

p + c5

for some c5 > 0 (see (12)).
Recall that η > 0 is arbitrary. So, choosing η > 0 large we have

θλ(t) � c5 − c6t
p for some c6 > 0, all t > 0,

⇒ θλ(t) < 0 for all t > 0 big.

We conclude that there exists unique τu > 0 (see (10)) such that

max
t>0

θλ(t) = θλ(τu) = ϕλ(τuu+).

In a similar fashion, working this time with the fibering function

κλ(t) = ϕλ(t(−u−)),

we produce a unique tu > 0 such that

max
t>0

κλ(t) = κλ(tu) = ϕλ(tu(−u−)).

We conclude that

τuu+ − tuu− ∈ N0.

This ends the proof of the proposition. �

Using the previous proposition, we can have a minimax characterization of m̂0
λ = infN0 ϕλ. Let Wn ={

u ∈ W 1,p(Ω) : u± �= 0
}

(the nodal elements of the Sobolev space W 1,p(Ω)).

Proposition 6. If hypotheses H0,H
′
1 hold and λ < λ̂1, then m̂0

λ = infu∈Wn
maxτ,t�0 ϕλ(τu+ − tu−).

Proof. Let ξλ = infu∈Wn
maxτ,t�0 ϕλ(τu+ − tu−) < +∞ (since N0 ⊆ Wn). We have

ξλ � inf
u∈N0

max
τ,t�0

ϕλ(τu+ − tu−) (since N0 ⊆ Wn)

= inf
u∈N0

ϕλ (see Corollary 3)

= m̂0
λ. (13)

On the other hand, we have

max
τ,t�0

ϕλ(τu+ − tu−)

� ϕλ(τuu+ − tuu−)

� inf
N0

ϕλ (see Proposition 5)

= m̂0
λ,

⇒ ξλ � m̂0
λ. (14)

From (13) and (14), we conclude that ξλ = m̂0
λ. �

Next, we show that m̂0
λ is realized on N0.

Proposition 7. If hypotheses H0, H ′
1 hold and λ < λ̂1, then there exists û ∈ N0 such that ϕλ(û) = m̂0

λ > 0.
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Proof. Let {un}n∈N
⊆ N0 be a minimizing sequence. We show that this sequence is bounded in W 1,p(Ω).

Arguing by contradiction, suppose that up to a subsequence, we have ‖un‖ → +∞. Let vn = un

‖un‖ , n ∈ N.
We have that ‖vn‖ = 1 for all n ∈ N and so we may assume that

vn
w−→ v in W 1,p(Ω) and vn → v in Lr(Ω) and Lp(∂Ω). (15)

Suppose that v = 0. Using (11), we see that for every ρ > 0 we have∫
Ω

F (z, ρvn)dz � ερp‖vn‖p
p + c1ρ

r‖vn‖r
r,

⇒ lim sup
n→∞

∫
Ω

F (z, ρvn)dz � 0 (see(15) and recall that v = 0). (16)

With εn → 0+ and tn = ρ
‖vn‖ (n ∈ N), we have

m̂0
λ + εn = ϕλ(un)

� ϕλ(tnun) (see Corollary 4)

=
ρp

p

(
γp(vn) − λ‖vn‖p

p

) −
∫
Ω

F (z, ρvn)dz

� c7ρ
p‖vn‖p

p −
∫
Ω

F (z, ρvn)dz

for some c7 > 0, all n ∈ N (see (3) and recall that λ < λ̂1),

⇒ m̂0
λ � c7ρ

p (see (16)).

But ρ > 0 is arbitrary. Let ρ → +∞ to reach a contradiction. Therefore, v �= 0.
Let Ω∗ = {z ∈ Ω : v(z) �= 0}. We have |Ω∗|N > 0 and

|un(z)| → +∞ as n → ∞ for a.a. z ∈ Ω∗.

Hypotheses H ′
1(i), (ii) imply that there exists c8 > 0 such that

F (z, x) � −c8 for a.a z ∈ Ω, all x ∈ R. (17)

We have

m̂0
λ + εn

‖un‖p
=

ϕλ(un)
‖un‖p

=
1
p
γp(vn) − λ

p
‖vn‖p

p −
∫
Ω

F (z, un)
‖un‖p

dz

� 1
p
γp(vn) −

∫
Ω

F (z, un)
‖un‖p

dz

� c9 −
∫
Ω

F (z, un)
‖un‖p

dz for some c9 > 0, all n ∈ N,

⇒ 0 � c9 − lim inf
n→∞

∫
Ω

F (z, un)
‖un‖p

dz
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= c9 − lim inf
n→∞

⎛
⎜⎝

∫
Ω∗

F (z, un)
‖un‖p

dz +
∫

Ω\Ω∗

F (z, un)
‖un‖p

dz

⎞
⎟⎠

� c9 − lim inf
n→∞

∫
Ω∗

F (z, un)
‖un‖p

dz (see (16))

� c9 −
∫
Ω∗

lim inf
n→∞

F (z, un)
|un|p |vn|pdz (by Fatou’s lemma, see(17))

= −∞ (see hypothesis H1(ii)),

a contradiction. So, the minimizing sequence {un}n∈N
⊆ N0 is bounded in W 1,p(Ω). We may assume that{

un
w−→ û in W 1,p(Ω), un → û in Lp(Ω) and Lr(∂Ω),

u+
n

w−→ y+ and u−
n

w−→ y− in W 1,p(Ω), y+, y− � 0.

}
(18)

From (18), it follows that

un = u+
n − u−

n
w−→ û = y+ + y− in W 1,p(Ω),

⇒ û+ = y+ and û− = y−. (19)

Since un ∈ N0 (n ∈ N), we have

0 = 〈ϕ′
λ(un), u+

n 〉 = γp(u+
n ) − λ‖u+

n ‖p
p −

∫
Ω

f(z, u+
n )u+

n dz.

From (18), (19) and the sequential weak lower semicontinuity of γp(·), we have

γp(û+) − λ‖û+‖p
p −

∫
Ω

f(z, û+)û+dz � 0,

⇒ 〈ϕ′
λ(û), û+〉 � 0. (20)

Similarly, we show that

〈ϕ′
λ(û),−û−〉 � 0. (21)

We have

m̂0
λ = lim

n→∞ (ϕλ(un)) − 1
p
〈ϕ′

λ(un), un〉 (since un ∈ N0 ⊆ N)

= lim
n→∞

∫
Ω

(
1
p
f(z, un)un − F (z, un)

)
dz

=
∫
Ω

(
1
p
f(z, û)û − F (z, û)

)
dz (see(18))

= ϕλ(û) − 1
p
〈ϕ′

λ(û), û〉

� ϕλ(τûû+ − tûû−) +
1 − τp

û

p
〈ϕ′

λ(û), û+〉 − 1 − tpû
p

〈ϕ′
λ(û), û−〉

− 1
p
〈ϕ′

λ(û), û〉 (see Proposition 2)

� m̂0
λ − τp

û

p
〈ϕ′

λ(û), û+〉 +
tpû
p

〈ϕ′
λ(û), û−〉 (see Proposition 5),
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⇒ 〈ϕ′
λ(û), û+〉 = 〈ϕ′

λ(û), û−〉 = 0 (see(20), (21)). (22)

On account of hypotheses H ′
1(i), (iii), given ε > 0, we can find c10 = c10(ε) > 0 such that

f(z, x)x � ε|x|p + c10|x|r for a.a. z ∈ Ω, all x ∈ R. (23)

Since un ∈ N0 (n ∈ N), we have

γp(u+
n ) − λ‖u+

n ‖p
p =

∫
Ω

f(z, u+
n )u+

n dz,

⇒ c11‖u+
n ‖p � c12

(
ε‖u+

n ‖p + ‖u+
n ‖r

)
for some c11, c12 > 0, all n ∈ N (see (23)) and recall that λ < λ̂1). (24)

Choose ε ∈
(
0, c11

c12

)
. Then,

c13 � ‖u+
n ‖ for some c13 > 0, all n ∈ N (since p < r). (25)

Then, from (23), (24) and (25), we have

c14 � ‖u+
n ‖r

r for some c14 > 0, all n ∈ N,

⇒ c14 � ‖û+‖r
r (see (18) and recall that y+ = û+),

⇒ û+ �= 0.

In a similar fashion, we show that û− �= 0. Then, from (22), it follows that

û ∈ N0 and m̂0
λ = ϕλ(û). (26)

It remains to show that m̂0
λ > 0. We have

m̂0
λ = ϕλ(û) = ϕλ(û) − 1

p
ϕ′

λ(û), û〉 (since û ∈ N0 ⊆ N, see (26))

=
∫
Ω

(
1
p
f(z, û)û − F (z, û)

)
dz (27)

We define e(z, x) = f(z, x)x − pF (z, x).
Claim: For a.a. z ∈ Ω, e(z, ·) is strictly increasing on R+ = [0,+∞) and strictly decreasing on R− =
(−∞, 0].

First, we show the claim under the extra condition that for a.a. z ∈ Ω, f(z, ·) is differentiable. Then,
for x > 0, we have

0 <
d

dx

(
f(z, x)
xp−1

)
(see hypothesis H ′

1(iv) = (N))

=
f ′

x(z, x)xp−1 − (p − 1)xp−2f(z, x)
x2(p−1)

=
e′
x(z, x)
xp

,

⇒ 0 < e′
x(z, x).

In a similar fashion, we show that

e′
x(z, x) < 0 for a.a. z ∈ Ω, all x < 0.

Therefore, the claim is true if f(z.·) is differentiable.
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Next, we drop the differentiability hypothesis on f(z, ·). To this end, we consider a mollifier θ ∈ C∞
c (R)

such that

0 � θ � 1, supp θ ⊆ [0, 1],

+∞∫
−∞

θ(s)ds = 1.

We set θε(t) = 1
εθ

(
t
ε

)
. Then, θε ∈ C∞

c (R), supp θε ⊆ [0, ε],
+∞∫
−∞

θε(s)ds = 1. We define

fε(z, x) =

+∞∫
−∞

θε(x − s)f(z, s)ds =

ε∫
0

θε(τ)f(z, x − τ)dτ.

From Evans and Gariepy [1, pp. 122–123], we know that for a.a. z ∈ Ω

fε(z, ·) ∈ C∞
c (R),

fε(z, x) → f(z, x) as ε → 0+ uniformly on compacta.

For x > u > 0, we have

fε(z, x)
xp−1

− fε(z, u)
up−1

�
ε∫

0

θε(τ)
f(z, u − τ)
(u − τ)p−1

((
x − τ

x

)p−1

−
(

u − τ

u

)p−1
)

dτ

(see hypothesis H ′
1(iv) = (N))

� ĉ0(x, u) > 0 for all ε ∈
(

0,
1
2
u

)
.

Since fε(z, ·) is differentiable, from the first part of the proof of the claim we have that

0 < ĉ(x, u) � eε(z, x) − eε(z, u) for all ε ∈
(

0,
1
2
u

)
,

where eε(z, x) = fε(z, x)x − pFε(z, x), Fε(z, x) =
x∫
0

fε(z, s)ds. Passing to the limit as ε → 0+, we obtain

e(z, u) < e(z, x) for a.a. z ∈ Ω, all 0 < u < x.

Similarly we show that

e(z, x) < e(z, v) for a.a. z ∈ Ω, all v < x < 0.

This proves the claim.
Returning to (27) and recalling that e(z, 0) = 0 for a.a. z ∈ Ω we infer that

m̂0
λ > 0.

Therefore, finally we have

û ∈ N0, 0 < m̂0
λ = ϕλ(û).

This proof is now complete. �
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Remark 3. We indicate an alternative way show that m̂0
λ > 0. Using a contradiction argument as in

the proof Proposition 7, we can show that ϕλ|N is coercive. Since ϕλ is sequentially weakly lower
semicontinuous, invoking the Weierstrass–Tonelli theorem, we can find û0 ∈ N such that ϕλ(û0) =
infN ϕλ = m̂λ. Since N is a natural constraint for ϕλ (see [13]), we have that û0 ∈ Kϕλ

⊆ C1(Ω)
(nonlinear regularity theory). From Corollary 4, we know that ϕλ(û0) = maxτ�0 ϕλ(τ û0) and on account
of hypothesis H ′

1(iii) and since λ < λ̂1, for τ ∈ (0, 1) small we have ϕλ(τ û0) > 0, hence 0 < m̂λ = ϕλ(û0).
But clearly m̂λ � m̂0

λ (since N0 ⊆ N).

Next, following the arguments of Willem [18, p. 74] and of Szulkin and Weth [16, p. 612], we show
that the Nehari submanifold N0 is a natural constraint (see [13, p. 425]).

Proposition 8. If hypotheses H0,H
′
1 hold, λ < λ̂1 and û ∈ N0 is as in Proposition 7, then û ∈ Kϕλ

={
u ∈ W 1,p(Ω) : ϕ′

λ(u) = 0
}

(the critical set of ϕλ).

Proof. Since û ∈ N0, we have

〈ϕ′
λ(û+), û+〉 = 0 = 〈ϕ′

λ(−û−),−û−〉. (28)

For τ, t ∈ R̊\{1}, we have

ϕλ(τ û+ − tû−) = ϕλ(τ û+) + ϕλ(t(−û−))

< ϕλ(û+) + ϕ(−û−)

(see Corollary 3 and Proposition 5)

= ϕλ(û) = m̂0
λ. (29)

Arguing by contradiction, suppose that ϕ′
λ(û) �= 0. Then, we can find δ > 0 and η > 0 such that

‖u − û‖ � 3δ =⇒ ‖ϕ′
λ(u)‖∗ � η > 0.

Consider the parallelogram D =
(

1
2 , 3

2

)2 and the function μ(τ, t) = τu+ − tu−, τ , t � 0. From (29),
we see that

� = max
(τ,t)∈∂D

ϕλ(μ(τ, t)) < m̂0
λ.

Using Lemma 2.3 of Willem [18, p. 38], with ε=min
{

m̂0
λ−	
4 , ηδ

8

}
, S =Bδ(û)=

{
u∈W 1,p(Ω): ‖u−û‖�δ

}
,

we can find a deformation ĥ(t, u) such that

ĥ(1, u) = u if u ∈ ϕ−1
λ

(
[m̂0

λ − 2ε, m̂0
λ + 2ε]

)
,

ĥ
(
1, ϕ

m̂0
λ+ε

λ ∩ Bδ(û)
)

⊆ ϕ
m̂0

λ−ε
λ(

for every c ∈ R, ϕc
λ =

{
u ∈ W 1,p(Ω) : ϕλ(u) � c

})
,

ϕλ(h(1, u)) � ϕλ(u) for all u ∈ W 1,p(Ω).

From these properties of the deformation, we infer that

max
(τ,t)∈D

ϕλ

(
ĥ(1, μ(τ, t)

)
< m̂0

λ. (30)

Let β(τ, t) = ĥ(1, μ(τ, t)) and set

k0(τ, t) =
(〈ϕ′

λ(τ û), û+〉, 〈ϕ′
λ(tu),−û−〉) ,

k1(τ, t) =
(

1
τ

〈ϕ′
λ(β(τ, t)), β+(τ, t)〉, 1

t
〈ϕ′

λ(β(τ, t)),−β−(τ, t)〉
)

for all (τ, t) ∈ D.
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By d̂B , we denote the Brouwer degree. From the proof Proposition 5, we see that

d̂B(k0,D, 0) = 1. (31)

Note that μ|∂D = β|∂D (see (30)), the definition of � and the choice of ε > 0). So, from the properties
of the Brouwer degree (see [13, p. 178]), we have

d̂B(k0,D, 0) = d̂B(k1,D, 0),

⇒ d̂B(k1,D, 0) = 1 (see (31)),

⇒ ĥ(t, μ(D)) ∩ N0 �= ∅,

which contradicts (30).
Therefore, we conclude that û ∈ Kϕλ

. �
So, under the stronger monotonicity hypothesis (N) = H ′

1(iv), we have proved the existence of a
ground-state nodal solution for problem (Pλ), when λ < λ̂1.

Next, we replace the strong monotonicity condition by the relaxed one H ′
1(iv). To be able to treat this

more general situation, let θ > 0 and consider the following perturbation of f(z, x):

fθ(z, x) = f(z, x) + θr|x|r−2x.

Then, fθ(z, x) is a Carathéodory function which satisfies hypothesis H ′
1. We set Fθ(z, x) =

x∫
0

fθ(z, s)ds

and consider the C1-functional ϕθ
λ : W 1,p(Ω) �→ R defined by

ϕθ
λ(u) =

1
p
γp(u) − λ

p
‖u‖p

p −
∫
Ω

Fθ(z, u)dz

for all u ∈ W 1,p(Ω).
We see that

ϕθ
λ(u) = ϕλ(u) − θ‖u‖r

r for all u ∈ W 1,p(Ω).

For this functional, we introduce the Nehari manifold

Nθ =
{
u ∈ W 1,p(Ω) : 〈(ϕθ

λ)′(u), u〉 = 0, u �= 0
}

and the Nehari submanifold

Nθ
0 =

{
u ∈ W 1,p(Ω) : 〈(ϕθ

λ)′(u), u+〉 = 〈(ϕθ
λ)′(u), u−〉 = 0, u± �= 0

}
.

Proposition 9. If hypotheses H0,H1 hold and λ < λ̂1, then we can find ν0 > 0 such that

ϕθ
λ(u) � ν0 > 0 for all u ∈ Nθ, for all θ ∈ (0, 1].

Proof. Let u ∈ Nθ. We have

ϕθ
λ(u) = max

t�0
ϕθ

λ(tu) (see Corollary 4)

= max
t�0

⎛
⎝ tp

p

(
γp(u) − λ‖u‖p

p

) −
∫
Ω

F (z, tu)dz − θtr‖u‖r
r

⎞
⎠

� max
t�0

(c15t
p − c16t

r)

for some c15, c16 > 0 (see (11) and let ε ∈ (0, λ̂1 − λ)).

Since r > p, for t ∈ (0, 1) small we have

ϕθ
λ(u) � ν0 > 0 for all u ∈ Nθ, θ ∈ (0, 1].

The proof of the proposition is now complete. �
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Now, we are ready to state and prove the main result of this paper, Theorem 1, which establishes the
existence of a ground-state nodal solution under the relaxed monotonicity condition H1(iv).

3.1. Proof of Theorem 1

(a) Let u ∈ N0. We have

ϕλ(u) � ϕθ
λ(u)

� ϕθ
λ(τuu+ − tuu−) (see Proposition 5)

� m̂θ
λ (m̂θ

λ = inf
Nθ

0

ϕθ
λ)

> 0 (see Proposition 7). (32)

Now let θn → 0+. Using Propositions 7, 8, 9 and (32), we see that we can un = uθn
∈ Nθn (n ∈ N)

such that {
ϕθn

λ (un) = m̂θn

λ → m∗ > 0,

(ϕθn

λ )′(un) = 0 for all n ∈ N.

}
(33)

Claim: The sequence {un}n∈N
⊆ W 1,p(Ω) is bounded.

We argue indirectly. So, suppose that the claim is not true. Then, for at least a subsequence, we have

‖un‖ → +∞.

Let vn = un

‖un‖ , n ∈ N. Then, ‖vn‖ = 1 for all n ∈ N and so we may assume that

vn
w−→ v in W 1,p(Ω) and vn → Lr(Ω) and in Lp(∂Ω). (34)

Suppose that v = 0. Let k > 1. From (33), we have

m̂θn

λ = ϕθn

λ (un) � ϕλ

(
k

‖un‖un

)

(see Corollary 4 and recall that Nθn
0 ⊆ Nθn)

� ϕθn

λ (kvn)

� kp

p

(
γp(vn) − λ‖vn‖p

p

) −
∫
Ω

F (z, kvn)dz − θnkr‖vn‖r
r

� kp

p
c17 −

∫
Ω

F (z, kvn)dz − θnkr‖vn‖r
r

for some c17 > 0, all n ∈ N (since λ < λ̂1, ‖vn‖ = 1).

We pass to the limit as n → ∞. Since v = 0, from (34) we obtain

m∗ � kp

p
c17 > 0.

But k > 1 is arbitrary. So, let k → +∞ to have a contradiction.
Next, we assume that v �= 0. We set Ω̂ = {z ∈ Ω : v(z) �= 0}. Then, |Ω̂|N > 0 and we have |un(z)| →

+∞ for a.a. z ∈ Ω̂. We have

0 <
m̂θn

λ

‖un‖p
=

ϕθn

λ (un)
‖un‖p

� 1
p
γp(vn) −

∫
Ω

F (z, un)
‖un‖p

dz
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� c18 −
∫
Ω

F (z, un)
‖un‖p

dz

for some c18 > 0, all n ∈ N (see (34)). (35)

Since |Ω̂|N > 0 and |un(z)| → +∞ for a.a. z ∈ Ω̂, using hypothesis H1(ii) and reasoning as in the
proof Proposition 7, we show that ∫

Ω

F (z, un)
‖un‖p

dz → +∞.

So, if in (35) we pass to the limit as n → ∞, we have a contradiction. This proves the claim.
On account of the claim, we can say that

un
w−→ u∗ in W 1,p(Ω) and un → u∗ in Lr(Ω) and in Lp(∂Ω). (36)

From (33), we have

〈γ′
p(un), h〉 = λ

∫
Ω

|un|p−2unhdz +
∫
Ω

f(z, un)hdz + θnr

∫
Ω

|un|r−2unhdz (37)

for all h ∈ W 1,p(Ω), all n ∈ N.
In (37) we use the test function h = un − u∗ ∈ W 1,p(Ω). Passing to the limit as n → ∞ and using

(36), we obtain

lim
n→∞〈Ap(un), un − u∗〉 = 0,

⇒ un → u∗ in W 1,p(Ω),

⇒ u+
n → u+

∗ and u−
n → u−

∗ in W 1,p(Ω). (38)

Since u±
n ∈ Nθn (n ∈ N), using Proposition 9 and (38), we have

ϕλ(u±
∗ ) = lim

n→∞ ϕθn

λ (u±
n ) � ν0 > 0 = ϕλ(0)

⇒ u±
∗ �= 0 and so u∗ ∈ N0.

Then, we have

m∗ = ϕλ(u∗) � m̂0
λ.

We will show that in fact equality holds. Given ε > 0 let yε ∈ N0 such that

ϕλ(yε) � m̂0
λ + ε.

For τ , t > 0 we have

ϕθn

λ (τy+
ε − ty−

ε )

=
τp

p

(
γp(y+

ε ) − λ‖y+
ε ‖p

p

) −
∫
Ω

F (z, τy+
ε )dz − θn‖y+

ε ‖r
r

+
tp

p

(
γp(y−

ε ) − λ‖y−
ε ‖p

p

) −
∫
Ω

F (z,−ty−
ε )dz − θn‖y−

ε ‖r
r.

On account of hypothesis H1(ii), we see that we can find M > 1 such that

ϕθn

λ

(
τy+

ε − ty−
ε

)
< 0 for all τ, t � M, all n ∈ N. (39)

From Proposition 5, we know that there exist τn, tn > 0 (n ∈ N) unique such that

τny+
ε − tny−

ε ∈ Nθn
0 for all n ∈ N. (40)
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Since m̂θn

λ > 0 (see Proposition 7) and ϕθn

λ (τny+
ε − tny−

ε ) � m̂θn

λ > 0 (see (40)). Hence, from (39) we
infer that τn, tn < M for all n ∈ N. We have

m̂0
λ + ε � ϕλ(yε)

= ϕθn

λ (yε) + θn‖yε‖r
r

� ϕθn

λ

(
τny+

ε − tny−
ε

)
+

1 − τp
n

p
〈(ϕθn

λ )′(yε), y+
ε 〉

+
1 − tpn

p
〈(ϕθn

λ )′(yε),−y−
ε 〉 (see Proposition 2)

� m̂θn

λ − 1 + Mp

p

∣∣∣〈(ϕθn

λ )′(yε), y+
ε 〉

∣∣∣
− 1 + Mp

p

∣∣∣〈(ϕθn

λ )′(yε),−y−
ε 〉

∣∣∣
= m̂θn

λ − 1 + Mp

p
θnr‖y+

ε ‖r
r − 1 + Mp

p
θnr‖y−

ε ‖r
r

for all n ∈ N (since yε ∈ N0).

We pass to the limit as n → ∞ and obtain

m̂0
λ + ε � m∗.

Since ε > 0 is arbitrary, we let ε ↓ 0 and obtain

m̂0
λ � m∗,

⇒ m∗ = m̂0
λ,

⇒ u∗ ∈ N0, ϕλ(u∗) = m̂0
λ, u∗ ∈ Kϕλ

(see Proposition 8).

The regularity theory of Lieberman [6] implies that u∗ ∈ C1(Ω).
(b) With the additional assumption that e(z, x) > 0 for a.a. z ∈ Ω, all x �= 0, we will show that u∗

has two nodal domains.
We argue by contradiction. So, suppose that

u∗ = û1 + û2 + û3

and Ω1 = {û1 > 0}, Ω2 = {û2 < 0} are connected open subsets of Ω, Ω1 ∩ Ω2 = ∅ and

û1

∣∣
Ω\(Ω1∪Ω2)

= û2

∣∣
Ω\(Ω1∪Ω2)

= û3

∣∣
Ω1∪Ω2

. (41)

Let y = û1 + û2. Then, y+ = û1, y− = −û2. We have

ϕ′
λ(u∗) = 0 and 〈ϕ′

λ(u∗), û1〉 = 〈ϕ′
λ(u∗), û2〉 = 0. (42)

Then,

m̂0
λ = ϕλ(u∗)

= ϕλ(u∗) − 1
p
〈ϕ′

λ(u∗), u∗〉 (since u∗ ∈ N0 ⊆ N)

= ϕλ(y) + ϕλ(û3) − 1
p
〈ϕ′

λ(û3), û3〉 (see (41), (42))

� ϕλ (τ û1 + tû2) + ϕλ(û3) − 1
p
〈ϕ′

λ(û3), û3〉 (see Corollary 3)
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� m̂0
λ +

∫
Ω

1
p
e(z, û3)dz

> m̂0
λ if û3 �= 0,

which is a contradiction. Hence, û3 = 0 and we conclude that u∗ has two nodal domains.
The proof of Theorem 1 is now complete. �
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73. Birkhäuser Verlag, Basel (2007)

[15] Ross, L.W.: Perturbation analysis of diffusion-coupled biochemical reaction kinetics. SIAM J. Appl. Math. 19, 323–329
(1970)

[16] Szulkin, A., Weth, T.: The method of Nehari manifold. In: Gao, D., Motreanu, D. (eds.) Handbook of Nonconvex
Analysis and Application, pp. 597–632. International Press, Somerville, MA (2010)

[17] Tang, X.: Non-Nehari manifold for superlinear Schrödinger equation. Taiwan. J. Math. 18, 1957–1979 (2014)
[18] Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser
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