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Let g : (0,400) — (0,400) be a continuous function such that

lim 91 (1)

= T+00
z——o0 glta too,

for some a > 0. Let f : R — (0,+00) be a twice differentiable function. Assume that there
exists a > 0 and xy € R such that

f"(x) + f'(x) > ag(f(x)), for all x > zg. (2)

Prove that liril f(z) exists, is finite and compute its value.
T—T00

Vicentiu Radulescu, Department of Mathematics, University of Craiova, 200585
Craiova, Romania

SOLUTION. If 21 > xq is a critical point of f then, by (2), f”(x1) > 0, so x; is a relative
minimum point of f. This implies that f’(x) does not change sign if z is sufficiently large.
Consequently, we can assume that f is monotone on (zg,+00), hence ¢ := lim, | f(x)
exists.

The difficult part of the proof is to show that £ is finite. This will be deduced after
applying in a decisive manner our superlinear growth assumption (1). Arguing by contra-
diction, let us assume that ¢ = 4+o00. In particular, it follows that f is monotone increasing
on (zg, +00). Define the function

u(z) = e*?f(z), x > x0.

Then wu is increasing and, for any x > xq,

(@) = qu(e) + 12 (@) + (@) > Fule) +aeg(f(2)) Q

Our hypothesis (1) and the assumption ¢ = +o0o yield some 21 > xg such that

g(f(2)) = f1*%(2), Vo >ar (4)

So, by (3) and (4),

o (z) > iu(m) + Cu(x) f*(z) > Cu(x) f*(x), Vo > x, (5)
for some C' > 0. In particular, since £ = +00, there exists x5 > x1 such that
o’ (z) > u(z), Va > xo. (6)
We claim a little more, namely that there exists Cp > 0 such that
U (x) > Cou /% (), Vo > . (7)

Indeed, let us first choose 0 < § < min{e "2u(xz3), e "2u/(x2)}. We prove that

u(z) > de”, Vo > xo. (8)



For this purpose, consider the function v(z) = u(z) — de*. Arguing by contradiction and
using v(z2) > 0 and v'(z2) > 0, we deduce the existence of a relative maximum point
x3 > w9 of v. So, v(z3) > 0, v'(x3) = 0 and v”(z3) < 0. Hence de*® = u/(x3) < u(xs3). But,
by (6), u”(x3) > u(xs), which yields v”(z3) > 0, a contradiction. This concludes the proof
of (8).

Returning to (5) and using (8) we find

U () > Cu' T2 (2)u®? (2)e™ %2 > Cou'to/%(x), YV > x9,
where Cy = C§%/2. This proves our claim (7). So
o (2)u" (x) > Cou' T2 () (), Vo > .
Hence

2
where C1 = 2Cy/(4+ ) and = a/2 > 0. Therefore

/
<1u’2(a:) - Clu“ﬁ(x)) > 0, Vz > w9,

u?(z) > Cy + 03U2+ﬁ($), Vo > a9,

for some positive constants Co and C3. So, since u is unbounded, there exists x3 > xo and
C4 > 0 such that
u'(z) > Cyput ™ (2), Vo > x3,

where v = (/2 > 0.
Applying the mean value theorem we find

() —u (@) = A — ag)u €D (&) = Crylw —ws), Vo>,

where &, € (x3,x). Taking  — +oo in the above inequality we obtain a contradiction
since the left hand-side converges to u=7(x3) (because £ = +00) while the right hand-side
diverges to +00. This contradiction shows that ¢ = liril f(z) must be finite.

T—T00

We prove in what follows that ¢ = 0. Arguing by contradiction, let us assume that
¢ > 0. We first observe that relation (2) yields, by integration,

f'(@) = f'(zo) + f(z) — f(z0) > a/xg(f(t))dt- (9)

zo

Since / is finite, it follows by (9) that liI_’I_l f'(z) = +oo. But this contradicts the fact that

lim f(z) is finite.
T—+00

Remark. The result stated in our problem does not remain true if g has a linear growth
at +o0, so if (1) fails. Indeed, it is enough to choose f(x) = €* and g the identity map.
We also remark that “¢ is finite” does not follow if the growth hypothesis (1) is replaced by
the weaker one lim, o g(z)/2 = 400. Indeed, if g(z) = 2In(1 + z) and f(z) = e, then
{ = +o0.



