PROPOSED TO THE AMERICAN MATHEMATICAL MONTHLY !

(a) Find a sequence of distinct complex numbers (z,),>1 and a sequence of nonzero
real numbers (o, )n>1 such that the series Y - | o |z — 2,| 71 either converges to a
positive number or diverges to +oco for almost all complex numbers z, but not all a,
are positive.

(b) Let (zn)n>1 be a sequence of distinct complex numbers. Assume that y .- | o, is an
absolutely convergent series of real numbers such that Y 2 | oy |z — zn| ™1 converges
to a nonnegative number, for almost all z € C. Prove that «, are nonnegative for all
n > 1.
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SOLUTION. (a) We prove that the series
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diverges to +oo for all z € C\ {O,i%, e ,:I:%, )
Indeed, we first observe that, for any fixed z € C\ {O, :l:%, ey :l:%, .. .}, the above series

has the same nature as the series —1 +1+ 14 1+ ..., which diverges. Next, we observe
that
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The above relations show that for any z € C\ {O,j:%,...,:l:%, .. } with Rez # 0 there

exists IV € N such that _\zil + Zivzl <|Z+11’ + 1> > (. It remains to prove that this is
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also true if z = iy, y € R\ {0}. For this purpose we observe that
S L S S
[z 45 =3 e4a) le=al

2 2 n—2 1 1

[y2 + [y2 + L [y2 + % | 2]

n
provided 2|y| > (4n? — 8n + 3)~1. In conclusion, the series (1) diverges to +oco for all
z€C\{0,£3,...,£3,...}.
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Another example of series with the above properties is
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(b) It is sufficient to focus on an arbitrary term of the sequence, say a1, and to show that
a1 > 0. We can assume, without loss of generality, that z; = 0. Fix arbitrarily € € (0, 1).
Since ) 7 |on| < 00, there exists a positive integer N such that » 7%\ | |oy| < e. Next,
we choose r > 0 small enough so that |a;| > r/e, for all i € {2,...,N}. Set

It follows that
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For every i € {2,... N} we have |z — z;| > [z| — 2| > L —r =1(1 —¢) /e, so
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If i > N + 1 we distinguish two cases: either |z;| > 2r or |z;| < 2r. In the first situation we
deduce that |z — z;| > r, for any z € B,(0). Thus
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The above two relations show that

d
sup / & < 8mr. (4)
i>N+1JB,(0) |7 — 2l

If |z| < 2r then

Using (2), (3) and (4) we obtain
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Dividing by r and letting ¢ — 0 we deduce that a; > 0. O

Remark. For part (a) of this proposal, we have not been able to find an example
of series Y 0% | a, |2 — 2|7 which converges to a positive number for almost all complex
numbers z, but not all «,, being positive. It might be possible that such a series does not
exist and the unique situation which can occur is that, under our assumptions described in
(a), the series Y °° | ay, |2 — 2| 7! always diverges to +o0o. We let at your choice to decide
if this assertion could be included as an open problem in this proposal.



