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PROBLEMS

11537. Proposed by Lang Withers, Jr., MITRE, McClean, VA. Let p be a prime and a
be a positive integer. Let X be a random variable having a Poisson distribution with
mean a, and let M be the pth moment of X . Prove that M ≡ 2a (mod p).

11538. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu,”
Bı̂rlad, Romania. Prove that a finite commutative ring in which every element can
be written as a product of two (not necessarily distinct) elements has a multiplicative
identity.

11539. Proposed by William C. Jagy, MSRI, Berkeley, CA. Let E be the set of all
positive integers not divisible by 2 or 3 or by any prime q represented by the quadratic
form 4u2 + 2uv + 7v2. (Thus, the first few members of E are 1, 5, 11, 17, 23, and 25.)
Show that 4x2 + 2xy + 7y2 + z3 is not in {2n3, −2n3, 32n3, −32n3} for n ∈ E and
x, y, z ∈ Z.

11540. Proposed by Marius Cavachi, “Ovidius” University of Constanta, Constanta,
Romania. Let n be an integer greater than 1, other than 4. Let p and q be positive
integers less than n and relatively prime to n. Let a = cos(2πp/n)

cos(2πq/n)
. Show that if ak is

rational for some positive integer k, then ak is either 1 or −1.

11541. Proposed by Nicuşor Minculete, “Dimitrie Cantemir” University, Brasov, Ro-
mania. Let M be a point in the interior of triangle ABC . Let Ra , Rb, and Rc be the
circumradii of triangles M BC , MC A, and M AB, respectively. Let |M A|, |M B|, and
|MC | be the distances from M to A, B, and C . Show that

|M A|
Rb + Rc

+ |M B|
Ra + Rc

+ |MC |
Ra + Rb

≤ 3

2
.

11542. Proposed by Cezar Lupu, student, University of Bucharest, Bucharest, Roma-
nia, and Vicenţiu Rădulescu, Institute of Mathematics “Simion Stoilow” of the Ro-
manian Academy, Bucharest, Romania. Show that for x, y, z > 1, and for positive
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α, β, γ ,

(2x2 + yz)�(x) + (2y2 + zx)�(y) + (2z2 + xy)�(z)

≥ (x + y + z)(x�(x) + y�(y) + z�(z)),

and

B(x, α)x2+2yz B(y, β)y2+2zx B(z, γ )z2+2xy

≥ (B(x, α)B(y, β)B(z, γ ))xy+yz+zx .

Here, B(x, α) is Euler’s beta function, defined by B(x, α) = ∫ 1
0 t x−1(1 − t)α−1dt .

11543. Proposed by Richard Stong, Center for Communications Research, San Diego,
CA. Let x, y, z be positive numbers with xyz = 1. Show that (x5 + y5 + z5)2 ≥ 3(x7 +
y7 + z7).

SOLUTIONS

A Euclidean Path

11390 [2008, 855]. Proposed by Jeffrey C. Lagarias, University of Michigan, Ann
Arbor, MI. Let G be the undirected graph on the vertex set V of all pairs (a, b) of
relatively prime integers, with edges linking (a, b) to (a + kab, b) and (a, b + kab)

for all integers k.
(a) Show that for all (a, b) in V , there is a path joining (a, b) and (1, 1).
(b)∗ Call an edge linking (a, b) to (a + kab, b) or (a, b + kab) positive if k > 0, and
negative if k < 0. Let the reversal number of a path from (1, 1) to (a, b) be one more
that the number of sign changes along the path, and let the reversal value of (a, b)

be the minimal reversal number over all paths from (1, 1) to (a, b). Are there pairs of
arbitrarily high reversal value?

Solution by M. D. Meyerson and M. E. Kidwell, U.S. Naval Academy.
(a) Suppose first that a and b are positive; we may assume that a < b. Let c = b − a.
Note that b and c are relatively prime (if d divides both, then it also divides a); hence
there are integers m and n such that mb + nc = 1. We may choose m positive and n
negative, since increasing m by c and decreasing n by b does not change mb + nc. We
can link (a, b) to (a, c) via two negative edges, since (a, b − mab) = (a, b − a(1 −
nc)) = (a, b − a + nac) = (a, c + nac). We can similarly link (b, a) to (c, a) via two
negative edges. By the Euclidean algorithm, we can thus reach (1, 1) via only negative
edges.

If ab = 0 then there is a negative edge from one of (−1, 1), (1, −1), or (1, 1) to
(a, b).

If exactly one of {a, b} is negative, then we can add (−2)ab to the negative compo-
nent of (a, b) to reach a pair with positive components via a negative edge, followed
by linking as above to (1, 1). If both a and b are negative, then to make at least one
coordinate positive we must use a sufficiently large positive multiple of their prod-
uct, after which we can reach (1, 1) via only negative edges. This process misses four
points, (0, ±1) and (±1, 0), which can easily be linked to (1, 1) via at most two edges.

(b)∗ By the process in part (a), we can reach (1, 1) via only negative edges unless a
and b are both negative, in which case we only need to use one positive edge to start
after which we can reach (1, 1) using only negative edges. Thus there is always a path
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from (a, b) to (1, 1) with reversal number at most 2, so there are no pairs (a, b) of
arbitrarily high reversal value.

Editorial comment. The sign of an edge is well defined; if the link can be viewed from
both ends, then the corresponding choices for k are equal and thus have the same sign.

Both parts also solved by P. Corn, K. Schilling, B. Schmuland (Canada), R. Stong, A. Vorobyov, and the Texas
State University Problem Solvers Group. Part (a) also solved by D. Klyve & C. Storm, M. A. Prasad (India),
GCHQ Problem Solving Group (U.K.), Microsoft Research Problems Group, and the proposer.

A Congruence for Vanishing Modular Sums

11391 [2008, 855]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu,” Bı̂rlad, Romania. Let p be a positive prime and s a positive integer. Let n
and k be integers such that n ≥ k ≥ ps − ps−1, and let x1, . . . , xn be integers. For
1 ≤ j ≤ n, let m j be the number of expressions of the form xi1 + · · · + xi j with
1 ≤ i1 < · · · < i j ≤ n that evaluate to 0 modulo p, and let n j denote the number
of such expressions that do not. (Set m0 = 1 and n0 = 0.) Apart from the cases
(s, k) = (1, p − 1) and s = p = k = 2, show that

k∑
j=0

(−1) j

(
n − k + j

j

)
mk− j ≡ 0 (mod ps),

and show that the same congruence holds with nk− j in place of mk− j .

Solution by Richard Stong, Center for Communications Research, San Diego, CA. We
prove a much stronger statement. Let X = {x1, . . . , xn}, and let q j be the number of
j-element subsets of X whose sum is congruent to a modulo p. For n ≥ k ≥ 1 +
s(p − 1), we prove that

k∑
j=0

(−1) j

(
n − k + j

j

)
qk− j ≡ 0 (mod ps), (1)

except in the excluded cases. The desired result for mk− j is the case a = 0, and the
result for nk− j follows by summing the remaining residue classes.

We first show that it suffices to prove the case n = k, which reduces to

k∑
j=0

(−1) j qk− j ≡ 0 (mod ps) (2)

for k ≥ 1 + s(p − 1). Assume (2), then, and let [n] denote {1, . . . , n}. For S ⊆ [n],
let S∗ = {T ⊆ S : ∑

i∈T xi ≡ a (mod p)}. For general n and k, (2) implies, modulo
ps ,

0 ≡
∑
S⊆[n]
|S|=k

(
k∑

j=0

(−1) j
∑
T ∈S∗

|T |=k− j

1

)
≡

k∑
j=0

(−1) j
∑

T ∈[n]∗
|T |=k− j

∑
T ⊆S⊆[n]

|S|=k

1

≡
k∑

j=0

(−1) j
∑

T ∈[n]∗
|T |=k− j

(
n − (k − j)

j

)
≡

k∑
j=0

(−1) j

(
n − k + j

j

)
qk− j .

This proves that (1) follows from (2). To prove (2), we work in the ring Z[t]/(t p − 1),
where t p = 1. In this ring, let

f (t) =
∏
x∈X

(1 − t x) = (1 − t)k
∏
x∈X

(1 + t + · · · + t x−1).
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The terms in the expansion of f have the form (−1)|Y | ∏
y∈Y t y , where Y ⊆ X . For

fixed a, (−1) j q j is the contribution to the coefficient of ta in the expansion of f due
to Y of size j and sum congruent to a mod p, and

∑k
j=0(−1) j q j = [ta] f (t). We now

show that each coefficient of f is a multiple of ps , from which (2) follows. To see that
each coefficient is a multiple of ps , we show that when k > (p − 1)s, every coefficient
of (1 − t)k is a multiple of ps .

First we construct a polynomial h(t) such that (1 − t)p = p · (1 − t)h(t). For p = 2
we have (1 − t)2 = 1 − 2t + t2 = 2 − 2t = 2(1 − t). For odd p, we have

(1 − t)p = 1 +
p−1∑
k=1

(
p

k

)
(−1)kt k − t p =

(p−1)/2∑
k=1

(
p

k

)
(−1)kt k(1 − t p−2k)

= p · (1 − t)
(p−1)/2∑

k=1

(
p

k

)
/p(−1)k t k(1 + t + · · · + t p−2k−1).

Now induction on s and the previous result imply when k > s(p − 1) that (1 − t)k =
ps · (1 − t)k−s(p−1)hs(t) for some polynomial hs(t).

Also solved by R. Chapman (U.K.), D. Grinberg, J. H. Lindsey II, and the proposer.

Runs Versus Isolated Heads in Coin Tossing

11394 [2008, 856]. Proposed by K. S. Bhanu, Institute of Science, Nagpur, India, and
M. N. Deshpande, Nagpur, India. A fair coin is tossed n times, with n ≥ 2. Let R be
the resulting number of runs of the same face, and X the number of isolated heads.
Show that the covariance of the random variables R and X is n/8.

Solution by Michael Andreoli, Miami Dade College, Miami, FL. Define binary n-
tuples U and V by letting Uk = 1 if and only if an isolated head occurs at toss k,
and Vk = 1 if and only if a run begins at toss k. Now X = ∑

k Uk and R = ∑
k Vk .

Because E(Uk) = P(Uk = 1), we have E(U1) = E(Un) = 1/4 and E(Uk) = 1/8 for
2 ≤ k ≤ n − 1. Similarly, E(V1) = 1 and E(Vk) = 1/2 for 2 ≤ k ≤ n. It follows that
E(X) = (n + 2)/8 and E(R) = (n + 1)/2.

Because E(Ui Vj ) = P(Ui = 1 and Vj = 1), we obtain
• E(U1V1) = E(U1V2) = 1/4 and E(U1Vj ) = 1/8 for 3 ≤ j ≤ n;
• E(Un V1) = E(Un Vn) = 1/4 and E(Un Vj ) = 1/8 for 2 ≤ j ≤ n − 1; and
• for 2 ≤ i ≤ n − 1 and 1 ≤ j ≤ n,

E(Ui Vj ) =
{

1/8 if j ∈ {1, i, i + 1};
1/16 otherwise.

Therefore,

E(X R) =
n∑

i=1

n∑
j=1

E(Ui Vj ) =
n∑

j=1

E(U1Vj ) +
n−1∑
i=2

n∑
j=1

E(Ui Vj ) +
n∑

j=1

E(Un Vj )

= n + 2

8
+ (n − 2)(n + 3)

16
+ n + 2

8
= n2 + 5n + 2

16
.

It follows that

Cov(X R) = E(X R) − E(X)E(R) = n2 + 5n + 2

16
− n + 2

8
· n + 1

2
= n

8
.

932 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 117



Also solved by D. Beckwith, M. A. Carlton, N. Caro (Brazil), R. Chapman (U.K.), M. P. Cohen, C. Curtis,
P. J. Fitzsimmons, N. Grivaux (France), C. C. Heckman, S. J. Herschkorn, G. Keselman, J. H. Lindsey II,
K. McInturff, E. Orney & S. Van Gulck (Belgium), A. Plaza & J. J. Gonzalez (Spain), M. A. Prasad (India),
R. Pratt & E. Lada, K. Schilling, B. Schmuland (Canada), A. Stadler (Switzerland), J. H. Steelman, R. Stong,
R. Tauraso (Italy), Armstrong Problem Solvers, GCHQ Problem Solving Group (U.K.), Microsoft Research
Problems Group, and the proposer.

Finite Subgroups of Continuous Bijections of [0,1]

11395 [2008, 856]. Proposed by M. Farrokhi D.G., University of Tsukuba, Tsukuba
Ibakari, Japan. Prove that if H is a finite subgroup of the group G of all continuous
bijections of [0, 1] to itself, then the order of H is 1 or 2.

Solution by Jeffrey Bergen, DePaul University, Chicago, IL. If g ∈ G, then g is contin-
uous and injective. Hence g is monotonic, by the intermediate value theorem. There-
fore, either (i) g(0) = 0 and g(1) = 1 or (ii) g(0) = 1 and g(1) = 0.

Set g2 = g ◦ g and gn+1 = g ◦ gn for n > 1. If g(0) = 0 and g(a) > a for some a ∈
[0, 1], then the sequence a, g(a), g2(a), . . . is increasing. Similarly, if g(0) = 0 and
g(a) < a, then a, g(a), g2(a), . . . is decreasing. Therefore, if g(0) = 0 and g(x) 
= x
for some x ∈ [0, 1], then g does not have finite order. We conclude that if g ∈ H and
g(0) = 0, then g is the identity map.

Next, if f1, f2 ∈ H with f1(0) = f2(0) = 1, then f1 ◦ f2 ∈ H with f1 ◦ f2(0) = 0.
Our previous argument shows that f1 ◦ f2(x) = x , and so both f2 and f1 are inverses
of f1. Since inverses are unique in a group, it follows that f1 = f2. As a result, H
contains at most one element other than the identity map, and so H has order either 1
or 2, as claimed.

Also solved by M. Barr (Canada), M. Bataille (France), D. R. Bridges, P. Budney, B. S. Burdick, N. Caro
& F. Valenzuela (Brazil), R. Chapman (U.K.), L. Comerford, P. Corn, P. P. Dályay (Hungary), D. Grinberg,
J. P. Grivaux (France), K. Hanes, E. A. Herman, S. P. Herschkorn, E. J. Ionascu, J. Konienczny, O. Kouba
(Syria), J. Kujawa & K. Shankar, J. H. Lindsey II, O. P. Lossers (Netherlands), A. Magidin, R. Martin (Ger-
many), S. Metcalfe, V. Pambuccian, J. W. Pfeffer, E. Pité (France), J. Schaer (Canada), B. Schmuland (Canada),
N. C. Singer, V. Stakhovsky, J. H. Steelman, R. Stong, T. Tam, M. Tetiva (Romania) J. Vinuesa (Venezuela),
G. Wene, M. Wildon (UK), N. Wodarz, Armstrong Problem Solvers, BSI Problems Group (Germany), Szeged
Problem Group “Fejéntaláltuka” (Hungary), GCHQ Problem Solving Group (U.K.), McDaniel College Prob-
lems Group, Microsoft Research Problems Group, Missouri State University Problem Solving Group, North-
western University Math Problem Solving Group, NSA Problems Group, and the proposer.

A Riemann (Zeta) Sum

11400 [2008, 948]. Proposed by Paul Bracken, University of Texas–Pan American,
Edinburg, TX. Let ζ be the Riemann zeta function. Evaluate

∑∞
n=1

ζ(2n)

n(n+1)
in closed

form.

Solution by Oliver Guepel, Brühl, NRW, Germany. The sum is log(2π) − 1
2 . Since

summation of absolutely convergent series can be interchanged, we have

∞∑
n=1

ζ(2n)

n(n + 1)
=

∞∑
n=1

∞∑
k=1

1

k2nn(n + 1)

= 1 +
∞∑

k=2

∞∑
n=1

1

n

(
1

k2

)n

−
∞∑

k=2

(
k2

∞∑
n=1

1

n + 1

(
1

k2

)n+1
)
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= 1 −
∞∑

k=2

log

(
1 − 1

k2

)
+

∞∑
k=2

(
1 + k2 log

(
1 − 1

k2

))

= 1 + lim
n→∞

n∑
k=2

[
1 + (k2 − 1) (log(k + 1) − 2 log k + log(k − 1))

]
.

With f (n) = n2 − 1 and g(n) = log n, this last line can be written as

1 + lim
n→∞

n∑
k=2

(1 + f (k)(g(k + 1) − 2g(k) + g(k − 1))).

Now put h(n) = f (n − 1)g(n) − f (n)g(n − 1). In general, h(n + 1) − h(n) =
f (n)(g(n + 1) − 2g(n) + g(n − 1)) − g(n)( f (n + 1) − 2 f (n) + f (n − 1)). Here,
the second difference of f is identically 2, so

f (n)(g(n + 1) − 2g(n) + g(n − 1)) = h(n + 1) − h(n) + 2 log n.

Thus

1 +
n∑

k=2

(1 + f (k)(g(k + 1) − 2g(k) + g(k − 1)))

= n +
n∑

k=2

(h(k + 1) − h(k) + 2 log k) = n + h(n + 1) − h(2) + 2 log(n!)

= n + (n2 − 1) log(n + 1) − (n2 + 2n) log n + 2 log(n!).
A straightforward application of Stirling’s formula yields log 2π − 1

2 as the limit. It
also follows now from

∞∑
n=1

ζ(2n)

n(2n + 1)
= log 2π − 1

(this MONTHLY 94 (1987), p. 467) that we have the rational sum

∞∑
n=1

ζ(2n)

(n + 1)(2n + 1)
= 1

2
.

Also solved by K. F. Andersen (Canada), R. Bagby, M. Bataille (France), D. Beckwith, B. S. Burdick, R. Chap-
man (U.K.), H. Chen, P. Corn, G. Crandall, P. P. Dályay (Hungary), B. E. Davis, Y. Dumont (France), O. Fur-
dui (Romania), M. L. Glasser, G. C. Greubel, J. Grivaux (France), N. Grossman, J. A. Grzesik, E. Hysnelaj
(Australia) & E. Bojaxhiu (Albania), G. Keselman, O. Kouba (Syria), G. Lamb, O. P. Lossers (Netherlands),
K. McInturff, M. Omarjee (France), P. Perfetti (Italy), E. Pité (France), Á. Plaza & S. Falcón (Spain), C. Po-
hoata (Romania), M. A. Prasad (India), P. R. Refolio (Spain), O. G. Ruehr, V. Rutherfoord, B. Schmuland
(Canada), N. C. Singer, S. Singh, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), D. R. Teske, M. Tetiva
(Romania), J. Vinuesa (Spain), M. Vowe (Switzerland), BSI Problems Group (Germany), GCHQ Problem
Solving Group (U.K.), Microsoft Research Problems Group, NSA Problems Group, and the proposer.

A Characterization of the Identity Matrix

11401 [2008, 949]. Proposed by Marius Cavachi, “Ovidius” University of Constanţa,
Constanţa, Romania. Let A be a nonsingular square matrix with integer entries. Sup-
pose that for every positive integer k, there is a matrix X with integer entries such that
X k = A. Show that A must be the identity matrix.
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Solution by Microsoft Research Problems Group, c/o Peter Montgomery, Redmond,
WA. For k ∈ N, let Xk be an integer matrix such that X k

k = A. Let p be a prime that
does not divide det A. Viewing Xk mod p as an element of the general linear group G
over the field Fp, Legendre’s theorem implies that X |G|

k ≡ I mod p for all k. Setting
k = |G| yields A = X |G|

|G| ≡ I mod p. That is, all entries of A − I are divisible by p.
Since there are infinitely many choices for p, we obtain A = I .

Also solved by P. Budney, N. Caro (Brazil), R. Chapman (U.K.), P. P. Dályay (Hungary), D. Grinberg, J. Gri-
vaux (France), E. A. Herman, J. Konieczny, K. Koo, T. Laffey & H. Šmigoc (Ireland), J. H. Lindsey II,
O. P. Lossers (Netherlands), A. Nakhash, S. Pierce, E. Pité (France), C. Pohoata (Romania), V. Rutherfo-
ord, R. A. Simon (Chile), N. C. Singer, R. Stong, T. Tam, M. Tetiva (Romania), T. Thomas (U.K.), Z. Vörös
(Hungary), J. Young, GCHQ Problem Solving Group (U.K.), NSA Problems Group, and the proposer.

A Double Factorial Sum

11406 [2009, 82]. Proposed by A. A. Dzhumadil’daeva, Almaty, Republics Physics and
Mathematics School, Almaty, Kazakhstan. Let n!! denote the product of all positive
integers not greater than n and congruent to n mod 2, and let 0!! = (−1)!! = 1. Thus,
7!! = 105 and 8!! = 384. For positive integer n, find

n∑
i=0

(
n

i

)
(2i − 1)!! (2(n − i) − 1)!!

in closed form.

Solution I by Kenneth F. Andersen, University of Alberta, Edmonton, Alberta, Canada.
The sum is 2nn!. To see this, let f (x) = (1 − 2x)−1/2 and g(x) = (1 − 2x)−1 for |x | <

1/2. Induction shows that the i th derivatives of f and g are given by

f (i)(x) = (2i − 1)!! (1 − 2x)−1/2−i

g(i)(x) = 2i i ! (1 − 2x)−1−i
(3)

for each nonnegative integer i . In particular, f (i)(0) = (2i − 1)!!, so

n∑
i=0

(
n

i

)
(2i − 1)!! (2n − 2i − 1)!! =

n∑
i=0

(
n

i

)
f (i)(0) f (n−i)(0).

Since g = f 2, the Leibniz rule for the nth derivative of a product shows that the latter
sum is g(n)(0). In view of (3), this equals 2nn!.
Solution II by Ulrich Abel, University of Applied Sciences Giessen-Friedberg, Fried-
berg, Germany. First note that

n∑
i=0

(
2i

i

)(
2n − 2i

n − i

)
= [zn]

( ∞∑
i=0

(
2i

i

)
zi

)2

= [zn]((1 − 4z)−1/2)2 = 4n.

Using (2k − 1)!! = (2k)!/(2kk!), the original sum becomes

n∑
i=0

(
n

i

)
(2i)!
2i i !

(2n − 2i)!
2n−i (n − i)! = n! 2−n

n∑
i=0

(
2i

i

)(
2n − 2i

n − i

)
= n! 2−n4n = n! 2n.

Also solved by 65 other readers.
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Some Intermediate Value Variants

11429 [2009, 365]. Proposed by Cezar Lupu, student, University of Bucharest,
Bucharest, Romania, and Tudorel Lupu, Decebal High School, Constanta, Roma-
nia. For a continuous real-valued function φ on [0, 1], let T φ be the function map-
ping [0, 1] → R given by T φ(t) = φ(t) − ∫ t

0 φ(u) du, and similarly define S by
Sφ(t) = tφ(t) − ∫ t

0 uφ(u) du. Show that if f and g are continuous real-valued func-
tions on [0, 1], then there exist numbers a, b, and c in (0, 1) such that each of the
following is true:

T f (a) = S f (a),

T g(b)

∫ 1

u=0
f (u) du = T f (b)

∫ 1

u=0
g(u) du,

Sg(c)
∫ 1

u=0
f (u) du = S f (c)

∫ 1

u=0
g(u) du.

Solution by Richard Stong, Center for Communications Research, San Diego, CA.

Lemma. If h is continuous on [0, α], and h(α) = 0, then there exists a ∈ (0, α) such
that h(a) = ∫ a

0 h(u) du.

Proof. Let H(t) = e−t
∫ t

0 h(u) du. Note that H(0) = 0, and H is continuously dif-
ferentiable with H ′(t) = e−t(h(t) − ∫ t

0 h(u) du). Thus it suffices to find an a ∈ (0, α)

with H ′(a) = 0. If no such a exists, then H(t) is monotone, and hence J (t) = H(t)2 is
monotone increasing and in particular J (α) > 0. This gives the contradiction J ′(α) =
2H(α)H ′(α) = −2e−2α

(∫ α

0 h(u) du
)2 = −2J (α)2 < 0.

Let F = ∫ 1
0 f (t) dt, G = ∫ 1

0 g(t) dt . Applying the lemma to h(t) = (1 − t) f (t)
with α = 1 gives a ∈ (0, 1) such that (1 − a) f (a) = ∫ a

0 (1 − u) f (u) du or T f (a) =
S f (a). Applying the lemma to h(t) = f (t)G − g(t)F , and noting that

∫ 1
0 h(t) dt = 0

implies the existence of some α ∈ (0, 1) with h(α) = 0, gives b ∈ (0, 1) such that

f (b)G − g(b)F =
∫ b

0
f (u) duG −

∫ b

0
g(u) duF,

or T f (b)G = T g(b)F . Applying the lemma to h(t) = t f (t)G − tg(t)F , and noting
that the α found in the previous case still works, gives c ∈ (0, 1) such that

c f (c)G − cg(c)F =
∫ c

0
u f (u) duG −

∫ c

0
ug(u) duF

or S f (c)G = Sg(c)F .

Also solved by K. F. Andersen (Canada), R. Bagby, R. Chapman (U.K.), W. J. Cowieson, P. P. Dályay (Hun-
gary), E. A. Herman, B.-I. Iordache (Romania), O. Kouba (Syria), J. H. Lindsey II, P. Perfetti (Italy), GCHQ
Problem Solving Group, and the proposers.
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