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Abstract. We consider a semilinear Neumann problem with an indefinite
and unbounded potential and an asymmetric reaction that crosses at least
the principal eigenvalue of the operator −Δ + βI in H1(Ω), β being the po-
tential function. Using a combination of variational methods, with truncation
and perturbation techniques and Morse theory, we prove multiplicity theorems
providing precise sign information for all the solutions.

1. Introduction

Let Ω ⊂ R
N be a bounded domain with a C2–boundary ∂Ω. In this paper we

study the following semilinear Neumann problem

(1)

{
Δu(z) + β(z)u(z) = f(z, u(z)) in Ω
∂u

∂n
= 0 on ∂Ω.

Here, β ∈ Ls(Ω) with s > N and, in general, it is indefinite (sign changing)
and unbounded. We assume that the reaction f(z, x) is a measurable function
which is C1 in the x–variable. The aim of this paper is to prove a multiplicity
theorem for problem (1) providing information for all the solutions, provided that
the reaction x → f(z, x) exhibits an asymmetric behavior at +∞ and −∞ (crossing
and jumping nonlinearity).

The multiplicity of solutions for such semilinear elliptic equations was first
studied by Hofer [13], who examined a Dirichlet problem with β ≡ 0. Assuming
that f(z, x) = f(x) with f ∈ C1(R), f(0) = 0, f ′(0) ∈ (λi, λi+1) for some i ≥ 2
(here {λi}i≥1 denotes the sequence of distinct eigenvalues of (−Δ, H1

0 (Ω)) and that
lim supx→±∞ f(x)/x < λ1, Hofer [13] proved that the equation has at least four
nontrivial solutions, two of which have constant sign (one positive and the other
negative). Later, Bartsch & Wang [3] proved that from the other two solutions, one
is nodal (sign-changing). In fact, Dancer & Du [7] and Li & Wang [16] established
that both solutions are nodal. In the aforementioned works it is assumed that
asymptotically at ±∞ the quotient f(z, x)/x stays below λ1 and this makes the
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energy functional of the problem coercive. Problems with asymmetric (crossing)
reaction, are usually studied using the so-called “Fučik spectrum”. We refer to the
works Các [5], Cuesta & Gossez [6], Magalhaes [19], and Perera & Schechter [22].
However, this approach has two serious limitations. First, the use of the Fučik
spectrum requires that the limits limx→±∞ f(z, x)/x do exist. Second, our knowl-
edge of the Fučik spectrum is limited (see Schechter [24]). More recently, Liu &
Sun [18] considered the asymmetric Dirichlet problem with β = 0 and without any
use of the Fučik spectrum. Their method of proof is based on some elaborate flow
invariance arguments. In fact, Liu & Sun [18, p. 1071] mention that alternatively
“Morse theory could work, but then the techniques will be more complicated”. In
the present paper, working in the framework of Neumann problems (which in prin-
ciple are more difficult to deal with, due to the failure of the Poincaré inequality)
with an indefinite and unbounded potential β(·), using a combination of variational
methods and Morse theory, we prove multiplicity results with precise sign infor-
mation for all the solutions, under weaker conditions on the reaction f(z, x) than
in Liu & Sun [18]. Our approach is based on the critical point theory, together
with suitable perturbation, truncation and comparison techniques and with the use
of Morse theory (critical groups). In the next section, for the convenience of the
reader, we recall the main mathematical tools which we will use in the sequel. Also,
we examine the spectral properties of the operator H1(Ω) � u 	−→ −Δu+ βu.

2. Mathematical Background

In the study of problem (1), in addition to the Sobolev space H1(Ω), we will
also use the Banach space C1(Ω). This is an ordered Banach space with positive
cone

C+ = {u ∈ C1(Ω); u(z) ≥ 0 for all z ∈ Ω}.
This cone has a nonempty interior given by

intC+ = {u ∈ C+; u(z) > 0 for all z ∈ Ω}.

Let g : Ω × R → R be a Carathéodory function (that is, for all x ∈ R, the
mapping z 	−→ g(z, x) is measurable, and for a.a. z ∈ Ω, the function x 	−→ f(z, x)
is continuous) with subcritical growth in x ∈ R, namely

|g(z, x)| ≤ α(z) (1 + |x|r−1) for a.a. z ∈ Ω and for all x ∈ R

with α ∈ L∞(Ω)+ and 1 < r < 2∗, where 2∗ = 2N/(N − 2) if N ≥ 3 and 2∗ = +∞
if N = 1, 2. Also, let β ∈ Ls(Ω) with s > N , G(z, x) =

∫ x

0
g(z, t)dt, and consider

the C1–functional Ψ0 : H1(Ω) → R defined by

Ψ0(u) =
1

2
‖Du‖22 +

1

2

∫
Ω

βu2dz −
∫
Ω

G(z, u)dz for all u ∈ H1(Ω) .

The next result was first proved by Brezis & Nirenberg [4] for the “Dirichlet”

space H1
0 (Ω) and was later extended to the space W 1,p

0 (Ω) (with 1 < p < ∞) by
Garcia-Azorero, Manfredi & Peral Alonso [11] and to the space W 1,p(Ω) (Neumann
case) by Iannizzotto & Papageorgiou [14]. The proof of [14] applies in the present
setting using the regularity results of Wang [26]. So, we have:

Proposition 2.1. Assume that u0 ∈ H1(Ω) is a local C1(Ω)–minimizer of Ψ0,
that is, there exists ρ0 > 0 such that Ψ0(u0) ≤ Ψ0(u0 + h) for all h ∈ C1(Ω) with
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‖h‖C1(Ω) ≤ ρ0 . Then u0 ∈ C1,γ(Ω) for some γ ∈ (0, 1) and u0 is a local H1(Ω)–

minimizer of Ψ0, that is, there exists ρ1 > 0 such that Ψ0(u0) ≤ Ψ0(u0 + h) for all
h ∈ H1(Ω) with ‖h‖H1(Ω) ≤ ρ1 .

Here and in the sequel, we denote by ‖ · ‖ the norm in H1(Ω), that is,

‖u‖ =
(
‖u‖22 + ‖Du‖22

)1/2
for all u ∈ H1(Ω).

Next we recall some basic definitions and facts from critical point theory.
For details, we refer to the books by Gasinski & Papageorgiou [12] and Kristaly,
Rădulescu & Varga [15].

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we denote
the duality brackets for the dual pair (X∗, X). Let ϕ ∈ C1(X). We say that ϕ
satisfies the “Cerami condition” (the “C–condition” for short), if the following is
true:
“Every sequence {xn}n≥1 ⊂ X such that {ϕ(xn)}n≥1 ⊂ R is bounded and

(1 + ‖xn‖X)ϕ′(xn) → 0 in X∗,

admits a strongly convergent subsequence.”
This compactness-type condition is in general weaker than the more usual

Palais-Smale condition. Nevertheless it suffices to prove a deformation theorem
and to deduce the minimax theory for certain critical values of ϕ. In particular, we
have the following result, known in the literature as the “mountain pass theorem”.

Theorem 2.1. Assume that ϕ ∈ C1(X), x0, x1 ∈ X, ‖x1 − x0‖X > ρ > 0,

max ‖ϕ(x0), ϕ(x1)} < inf{ϕ(x); ‖x− x0‖X = ρ} = ηl

c = inf
γ∈Γ

max
0≤t≤1

ϕ(γ(t)), where Γ = {γ ∈ C([0, 1];X); γ(0) = x0, γ(1) = x1} ,

and ϕ satisfies the C–condition. Then c ≥ ηl and c is a critical value of ϕ.

Next, from Morse theory, we recall the definition of critical groups and the
Morse relation. So, let ϕ ∈ C1(X) and c ∈ R. We define the following sets:

ϕc = {x ∈ X; ϕ(x) ≤ c}, Kϕ = {x ∈ X; ϕ′(x) = 0}, Kc
ϕ = {x ∈ Kϕ; ϕ(x) = c} .

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X and k ≥ 0 be
an integer. By Hk(Y1, Y2) we denote the kth singular homology group for the
topological pair (Y1, Y2) with integer coefficients. The critical groups of ϕ at an
isolated x ∈ Kc

ϕ are defined by

Ck(ϕ, x) = Hk(ϕ
c ∩ U , ϕc ∩ U \ {x}) for all k ≥ 0,

where U is a neighborhood of x such that Kϕ ∩ ϕc ∩ U = {x}. The excision
property of singular homology implies that the above definition of critical groups
is independent of the neighborhood U of x.

Suppose that ϕ ∈ C1(X) satisfies the C–condition and inf ϕ(Kϕ) > −∞. Let
c < inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ≥ 0.

The second deformation theorem (see for example Gasinski & Papageorgiou
[12, p. 628]) implies that the above definition of critical groups of ϕ at infinity is
independent of the choice of the level c < inf ϕ(Kϕ).
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Suppose that Kϕ is finite. We define

M(t, x) =
∑
k≥0

rankCk(ϕ, x)t
k for all t ∈ R and all x ∈ Kϕ

P (t,∞) =
∑
k≥0

rankCk(ϕ,∞)tk for all t ∈ R .

The Morse relation says

(2)
∑

x∈Kϕ

M(t, x) = P (t,∞) + (1 + t)Q(t),

where Q(t) =
∑

k≥0 akt
k is a formal series with nonnegative integer coefficients ak,

k ≥ 0.
Suppose that X = H is a Hilbert space, x ∈ H, U is a neighborhood of x and

ϕ ∈ C2(U). If x ∈ Kϕ, then the Morse index of x denoted by μ = μ(x), is defined
as the supremum of the dimensions of vector subspaces of H in which ϕ′′(x) is
negative definite. The nullity of ϕ at x ∈ Kϕ, denoted by ν = ν(x), is defined to
be the dimension of Kerϕ′′(x). We say that x ∈ Kϕ is nondegenerate if ν(x) = 0,
that is, ϕ′′(x) is invertible. If x ∈ Kϕ is nondegenerate with Morse index μ, then
(see Mawhin & Willem [20])

(3) Ck(ϕ, x) = δk,μZ for all k ≥ 0,

where δk,μ denotes the Kronecker symbol.
Now we develop the spectrum of −Δu+ βu for u ∈ H1(Ω). We follow Willem

[27], where the Dirichlet eigenvalue problem is examined. For completeness we
provide the details. So, we examine the following liner eigenvalue problem

(4)

{ −Δu(z) + β(z)u(z) = λu(z) in Ω
∂u

∂n
= 0 on ∂Ω.

Set

σ(u) =
1

2
‖Du‖22 +

1

2

∫
Ω

βu2dz, u ∈ H1(Ω).

To analyze the linear eigenvalue problem (4) it suffices to impose the following
condition on the potential β. Eventually, in order to deal with problem (1) we will
have to strengthen this condition.

H0: β ∈ LN/2(Ω) if N ≥ 3, β ∈ Lr(Ω) with r > 1 if N = 2 and β ∈ L1(Ω) if N = 1.

Lemma 2.1. If hypothesis H0 holds, then

λ̂1 = inf{σ(u);u ∈ H1(Ω), ‖u‖2 = 1} > −∞.

Proof. We treat the case N ≥ 3, the other two cases being similar using the
Sobolev embedding theorem.

We proceed by contradiction. So, suppose that the conclusion of Lemma is not
true. Then we can find {un}n≥1 ⊂ H1(Ω) such that ‖un‖2 = 1 for all n ≥ 1 and
σ(un) → −∞ as n → ∞. So, we can find n0 ≥ 1 such that

(5) σ(un) ≤ −1 for all n ≥ n0.

Suppose that ‖un‖ → ∞ as n → ∞ and let yn = un

||un|| . Then ||yn|| = 1 for all

n ≥ 1 and so we may assume that

(6) yn → y weakly in H1(Ω) and yn → y in L2(Ω).
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Note that {y2n}n≥1 ⊂ L
N

N−2 (Ω) is bounded (by the Sobolev embedding theorem)
and so, by (6), we may assume that

(7) y2n → y2 weakly in L
N

N−2 (Ω).

Therefore

(8)
∫
Ω
βy2ndz →

∫
Ω
βy2dz (since N−2

N + 2
N = 1, see H0).

Thus, by (5) and (8) and passing at the limit as n → ∞, we obtain σ(y) ≤ 0.
If y = 0, then yn → 0 in H1(Ω), a contradiction to the fact that ||yn|| = 1 for

all n ≥ 1. Hence y �= 0. On the other hand

||yn||2 = ||un||2
||un|| = 1

||un|| → 0 as n → ∞,

which implies ||y||2 = 0 (see (6)), hence y = 0, a contradiction. This proves that
{un}n≥1 ⊂ H1(Ω) is bounded. So we may assume that

un → u weakly in H1(Ω)

un → u weakly in L2∗(Ω) (recall 2∗ = 2N
N−2 )

Therefore ∫
Ω
βu2

ndz →
∫
Ω
βu2dz.

Taking the limit as n → ∞ we obtain σ(u) ≤ λ̂1 = −∞, a contradiction. So,

we conclude that λ̂1 > −∞. �
By virtue of Lemma 2.1, we see that we can find γ̂ > max{−λ̂1, 0} such that

(9) σ(u) + γ̂||u||22 ≥ ĉ ||u||2 for all u ∈ H1(Ω) with ĉ > 0.

Then relation (9) suggests the introduction of the following inner product on
H1(Ω):

(u, y)∗ =

∫
Ω

(Du,Dy)RNdz +

∫
Ω

(β(z) + γ̂)uydz for all u, y ∈ H1(Ω).

Given h ∈ L2(Ω), by the Riesz representation theorem, we can find a unique
u ∈ H1(Ω) such that

(10) (u, v)∗ =

∫
hvdz for all v ∈ H1(Ω).

So, we can define the continuous linear map K0 : L2(Ω) → H1(Ω) which to each
h ∈ L2(Ω) assigns the unique u ∈ H1(Ω) satisfying (10). Let i : H1(Ω) → L2(Ω) be
the embedding map. By virtue of the Sobolev embedding theorem, i is compact and
soK0◦i is compact, self-adjoint and positive. Then by the spectral theorem for such
operators (see, for example, Gasinski & Papageorgiou [12, p. 296]), we can find
{μn}n≥1 a sequence of eigenvalues of K0 ◦ i such that μ1 > μ2 > . . . > μn > . . . > 0
and μn → 0.

We set λ̂n = 1
μn

− γ̂ for all n ≥ 1. Then {λ̂n}n≥1 is the sequence of distinct

eigenvalues of (4). We have −∞ < λ̂1 < λ̂2 < . . . < λ̂n < . . . , and λ̂n → +∞ as
n → ∞ .

To these eigenvalues corresponds a sequence {ûn}n≥1 ⊂ H1(Ω) of eigenfunc-
tions, which form an orthonormal basis of L2(Ω) and an orthogonal basis of H1(Ω).
Moreover, if β ∈ Ls(Ω) with s > N , then the regularity results of Wang [26]
imply {ûn}n≥1 ⊂ C1(Ω). These eigenvalues admit variational characterizations of
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Courant type using the Rayleigh quotient σ(u)
||u||22

for all u ∈ H1(Ω)\{0}. So, denoting
by E(λ̂i) the eigenspace corresponding to λ̂i, we have

(11) λ̂1 = inf

{
σ(u)

||u||22
;u ∈ H1(Ω), u �= 0

}
.

λ̂k = inf

{
σ(u)

||u||22
;u ∈ ⊕

i≥k
E(λ̂i), u �= 0

}
(12)

= sup

{
σ(u)

||u||22
;u ∈

k
⊕
i=1

E(λ̂i), u �= 0

}
for k ≥ 2.

The infimum in (11) and both the infimum and the supremum in (12) are

realized on E(λ̂k), k ≥ 1. The first eigenvalue λ̂1 is simple (that is, dimE(λ̂1) = 1)

and from (11) it is clear that the nontrivial elements of E(λ̂1) do not change sign.

In fact λ̂1 is the only eigenvalue with eigenfunctions of constant sign. All the other
eigenvalues have nodal (sign changing) eigenfunctions. By û1 we denote the L2-

normalized (that is, ||û1||L2
= 1) positive eigenfunction corresponding to λ̂1. If

β ∈ Ls(Ω) with s > N , then û1 ∈ C+\{0} and in fact by the Harnack inequality
of Pucci & Serrin [23, p. 163], we have û1(z) > 0 for all z ∈ Ω. Finally, if
β+ ∈ L∞(Ω), then the boundary point theorem of Pucci & Serrin [23, p. 120]

implies that û1 ∈ intC+. When β ∈ Ls(Ω) with s > N/2, the eigenspaces E(λ̂k)
have the so-called “Unique Continuation Property” (UCP for short). Namely, if

u ∈ E(λ̂k) and u vanishes on a set of positive measure, then u ≡ 0 (see de Figueiredo
& Gossez [10]).

A similar analysis can be conducted for a weighted version of the eigenvalue
problem (4). So, let m ∈ L∞(Ω), m ≥ 0, m �= 0 and consider the following linear
eigenvalue problem

(13)

{ −Δu(z) + β(z)u(z) = λm(z)u(z) in Ω
∂u

∂n
= 0 on ∂Ω .

As for (4), the eigenvalue problem (13) has a strictly increasing sequence

{λ̃k(m)}k≥1 of eigenvalues such that λ̃k(m) → +∞ as k → ∞. These eigenval-

ues admit variational characterizations in terms of Rayleigh quotient σ(u)∫
Ω
mu2dz

for

all u ∈ H1(Ω), u �= 0 (see (11), (12)). The first eigenvalues λ̃j(m) > 0 is simple and

has eigenfunctions of constant sign. These eigenspaces E(λ̃k(m)) have the UCP
and this leads to the following monotonicity property for the eigenvalues:

Proposition 2.2. If m1,m2 ∈ L∞(Ω) \ {0}, m1(z) ≤ m2(z) a.e. in Ω and

m1 �= m2, then λ̃k(m2) < λ̃k(m1) for all k ≥ 1.

Also, as a consequence of the Harnack inequality (see Pucci & Serrin [23, p.
163]), we have the following useful inequality.

Proposition 2.3. If ϑ ∈ Ls(Ω) with s > N
2 , ϑ(z) ≤ λ̂1 a.e. in Ω and ϑ �= λ̂1

then there exists c0 > 0 such that

η(u) = σ(u)−
∫
Ω

ϑ u2dz ≥ c0||u||2 for all u ∈ H1(Ω).
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Proof. Evidently η ≥ 0. Suppose that the result is not true. Then by virtue
of the 2-homogeneity of the functional η, we can find {un}n≥1 ⊆ H1(Ω) such that
||un|| = 1 for all n ≥ 1 and η(un) ↓ 0 as n → ∞. We may assume that

(14) un
w→ u in H1(Ω) and un → u in L2(Ω).

The functional σ(·) is sequentially weakly lower semi-continuous. Thus, for some
ξ ∈ R,

(15) σ(u) ≤
∫
Ω

ϑu2dz (see (14)) ⇒ σ(u) = λ̂1||u||22 (see (11)) ⇒ u = ξû1 .

If ξ = 0 then un → 0 in H1(Ω), which contradicts the fact that ||un|| = 1 for all
n ≥ 1. So ξ �= 0. By the Harnack inequality û1(z) > 0 for all z ∈ Ω (see Pucci
& Serrin [23, p. 163]). Hence |u(z)| > 0 for all z ∈ Ω and so from (15) we have

σ(u) < λ̂||u||22, which contradicts (11). �
For every x ∈ R, we set x± = max{±x, 0} and for u ∈ H1(Ω), we define

u±(·) = u(·)±. We know that u± ∈ H1(Ω), |u| = u+ + u−, and u = u+ − u−.
Given a measurable function h : Ω × R → R (for example a Carathéodory

function), we define

Nh(u)(·) = h(·, u(·)) for all u ∈ H1(Ω)

(the Nemytsky map corresponding to h). Also, A ∈ L(H1(Ω), H1(Ω)∗) is defined
by

〈A(u), y〉 =
∫
Ω

(Du,Dy)RNdz for all u, y ∈ H1(Ω).

Finally, by | · |N we denote the Lebesgue measure on R
N .

3. Solutions of Constant Sign

In this section we produce solutions of constant sign for problem (1). In section
4 we have the full multiplicity theorems.

The hypotheses on the data of (1), are the following:
H1 : β ∈ Ls(Ω) with s > N and β+ ∈ L∞(Ω).
H2 : f : Ω× R → R is measurable such that for a.a. z ∈ Ω, f(z, 0) = 0, f(z, ·) ∈
C1(R) and (i) |f ′

x(z, x)| ≤ a(z)(1 + |x|r−2) for a.a. z ∈ Ω, all x ∈ R, with a ∈
L∞(Ω), 2 ≤ r < 2∗;

(ii) there exist functions θ, θ̂ ∈ L∞(Ω) such that

θ(z) ≤ λ̂, a.e. in Ω, θ �= λ̂1 and

θ̂(z) ≤ lim inf
x→+∞

f(z, x)

x
≤ lim sup

x→+∞

f(z, x)

x
≤ θ(z) uniformly for a.a. z ∈ Ω;

(iii) there are functions η, η̂ ∈ L∞(Ω) such that

η(z) ≥ λ̂, a.e. in Ω, η �= λ̂1 and

η(z) ≤ lim inf
x→−∞

f(z, x)

x
≤ lim sup

x→−∞

f(z, x)

x
≤ η̂(z) uniformly for a.a. z ∈ Ω;

(iv) there exists integer � ≥ 2 such that

f
′

x(z, 0) ∈ [λ̂�, λ̂�+1] a.e. in Ω f ′
x(·, 0) �= λ̂�, f ′

x(·, 0) �= λ̂�+1 and

f
′

x(z, 0) = lim
x→0

f(z, x)

x
uniformly for a.a. z ∈ Ω.
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Remark: Hypotheses H2(ii), (iii) classify this nonlinearity as “crossing” or

“jumping” since as we move from −∞ to +∞ the quotient f(z,x)
x crosses at least

the principal eigenvalue λ̂1. This asymmetric behavior of f(z, ·) makes it impossible
to use the methods and techniques of the papers mentioned in the Introduction.

Let ϕ : H1(Ω) → R be the energy functional for problem (1) defined by

ϕ(u) =
1

2
σ(u)−

∫
Ω

F (z, u)dz for all u ∈ H1(Ω).

Evidently ϕ ∈ C2(H1(Ω)). Also let γ̂ > 0 be as in (9). We introduce the
following perturbations-truncations of the reaction ρ(z, ·):

f̂+(z, x) = f(z, x+) + γ̂x+ and f̂−(z, x) = f(z,−x−) + γ̂(−x−).

Both are Carathéodory functions. We set F̂±(z, x) =
∫ x

0
f̂±(z, s)ds and consider

the C1- functionals ϕ̂± : H1(Ω) → R defined by

ϕ̂±(u) =
1

2
σ(u) +

γ̂

2
||u||22 −

∫
Ω

F̂±(z, u)dz for all u ∈ H1(Ω).

Proposition 3.1. If hypotheses H1 and H2 hold, then ϕ satisfies the C-
condition.

Proof. Let {un}n≥1 ⊆ H1(Ω) be a sequence such that {ϕ(un)}n≥1 ⊆ R is
bounded and

(16) (1 + ||un||)ϕ
′
(un) → 0 in H1(Ω)∗.

From (16) we have

(17)
|
〈
ϕ

′
(un), h

〉
| ≤ εn||h||

1+||un|| for all h ∈ H1(Ω) with εn → 0

⇒ |
∫
Ω
unhdz +

∫
Ω
βunhdz −

∫
Ω
f(z, un)hdz| ≤ εn||h||

1+||un|| for all n ≥ 1.

In (17) we choose h = u+
n ∈ H1(Ω). Then

(18) ||Du+
n ||22 +

∫
Ω

β(u+
n )

2dz −
∫
Ω

f(z, u+
n )u

+
n dz ≤ εn for all n ≥ 1.

Suppose that ||u+
n || → ∞. We set yn =

u+
n

||u+
n || , n ≥ 1. Then ||yn|| = 1 for all n ≥ 1

and so we may assume that

(19) yn
w→ y in H1(Ω) and yn → y in L2s

′

(Ω) (
1

s
+

1

s′ = 1).

From (18) we have

(20) σ(yn)−
∫
Ω

f(z, u+
n )

||u+
n ||

yndz ≤ εn

||u+
n ||2

for all n ≥ 1.

From hypotheses H2(i), (ii) we obtain{
Nf (u

+
n )

||u+
n ||

}
n≥1

⊆ L2(Ω) is bounded.

So, we may assume that

(21)
Nf (u

+
n )

||u+
n ||

w→ g in L2(Ω).
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Moreover, hypothesis H2(ii) implies that

(22) g = θ0y with θ̂(z) ≤ θ0(z) ≤ θ(z) a.e. in Ω.

So, if in (20) we pass to the limit as n → ∞ and use (19), (21), (22), then

σ(y)−
∫
Ω

θ0y
2dz ≤ 0 ⇒ C0||y||2 ≤ 0 (see Proposition 2.3) ⇒ y = 0.

Then

σ(yn) → 0 ⇒ Dyn → 0 in L2(Ω, R) ⇒ yn → 0 in H1(Ω) (see (19)),

which contradicts the fact that ||yn|| = 1 for all n ≥ 1. This proves that

(23) {un}n≤1 ⊂ H1(Ω) is bounded.

From (17) and (23), we have for all n ≥ 1 and for some M1 > 0,

(24) |
〈
A(−u−

n ), h
〉
+

∫
Ω

β(−u−
n )hdz −

∫
Ω

f(z,−u−
n )hdz| ≤ M1||h|| .

Suppose that ||u−
n || → ∞. We set vn =

u−
n

||u−
n || , n ≥ 1. Then ||vn|| = 1 for all n ≥ 1

and so we may assume that

(25) vn
w→ v in H1(Ω) and vn → v in L2(Ω).

From (24), we have for all n ≥ 1,

(26) |
〈
A(−v−n ), h

〉
+

∫
Ω

β(−vn)hdz −
∫
Ω

f(z,−u−
n )

||u−
n ||

hdz| ≤ M1||h||
||u−

n ||
.

Again we have that
{

Nf (−u−
n )

||u−
n ||

}
n≥1

⊆ L2(Ω) is bounded and by virtue of hypothesis

H2(iii) we have

(27)
Nf (−u−

n )

||u−
n ||

w→ g∗ = η0v in L2(Ω) with η(z) ≤ η0(z) ≤ η̂(z) for a.a. z ∈ Ω.

So, if in (26) we pass to the limit as n → ∞ and use (25) and (27), then

(28)
〈A(−v), h〉+

∫
Ω
β(−v)hdz =

∫
Ω
η0(−v)hdz for all h ∈ H1(Ω)

⇒ A(v) + βv = η0v,
⇒ −Δv(z) + β(z)v(z) = η0(z)v(z) a.e. in Ω, θv

θn = 0 on θΩ.

Also, if in (26) we choose h = vn − v ∈ H1(Ω), pass to the limit as n → ∞ and
use (25) and (27), then

(29)
limn→∞ 〈A(−vn), vn − v〉 = 0 ⇒ ||Dvn||2 → ||Dv||2
⇒ vn → v in H1(Ω) (by the Kadec-Klee property, see (25))
⇒ ||v|| = 1, v ≥ 0.

By virtue of Proposition 2.2, we have

(30) λ̃1(η0) ≤ λ̃1(η) < λ̃1(λ̂1) = 1.

From (28) and (30) it follows that v �= 0 (see (29)) is nodal, a contradiction. This
means that

{u−
n }n≥1 ⊆ H1(Ω) is bounded ⇒ {un}n≥1 ⊆ H1(Ω) is bounded (see (23)).

Hence we may assume that

(31) un
w→ u in H1(Ω) and un → u in L2(Ω).
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In (17) we choose h = un − u ∈ H1(Ω), pass to the limit as n → ∞ and use (31).
Then

lim
n→∞

〈A(un), un − u〉 = 0 ⇒ ||Dun||2 → ||Du||2 ⇒ un → u in H1(Ω) .

This proves that ϕ satisfies the C-condition. �
Proposition 3.2. If hypotheses H1 and H2 hold, then problem (1) has a so-

lution u0 in intC+ which is a local minimizer of the functional ϕ.

Proof. Hypotheses H2(i), (ii) imply that given ε > 0, we can find Cε > 0 such
that

(32) F (z, x) ≤ 1

2
(θ(z) + ε)x2 + Cε for a.a. z ∈ Ω, and for all x ≥ 0.

Then for all u ∈ H1(Ω) we have

ϕ̂+(u) =
1

2
σ(u) +

γ̂

2
||u||22 −

∫
Ω

F̂+(z, u)dz

≥ 1

2
[σ(u)−

∫
Ω

θu2dz]− ε

2
||u||2 − Cε|Ω|N (see (32))

≥ C0 − ε

2
||u||2 − Cε|Ω|N (see Prop. 2.3).(33)

Choosing ε ∈ (0, C0), from (33) we infer that ϕ̂+ is coercive. Also, it is sequen-
tially weakly lower semi-continuous. So, by the Weierstrass theorem, we can find
v0 ∈ H1(Ω) such that

(34) ϕ̂+(u0) = inf{ϕ̂+(u) : u ∈ H1(Ω)}.
Hypothesis H2(iv) implies that we can find δ > 0 and ε > λ̂1 (recall � ≥ 2, see
H2(iv)) such that

(35) F (z, x) ≥ ε

2
x2 for a.a. z ∈ Ω, all x ∈ [0, δ] .

Since û1 ∈ intC+ (see Section 2), we can find t ∈ (0, 1) small such that tû1(z) ∈ [0, δ]
for all z ∈ Ω̄. Then

ϕ̂+(tû1) =
t2

2
σ(û1)−

∫
Ω

F (z, tû1) (recall the definition of f̂+(z, x))

≤ t2

2
[λ̂1 − ε] (see (35) and recall that ||û1||2 = 1)

< 0 (since ε > λ̂1) ⇒ ϕ̂+(u0) < 0 = ϕ̂+ (see (34)),

hence u0 �= 0. Therefore

(36) ϕ̂
′

+(u0) = 0 ⇒ A(u0) + (β + γ̂)u0 = Nf̂+
(u0).

On (36) we act with −u−
0 ∈ H1(Ω). Then

σ(u−
0 ) + γ̂||u−

0 ||22 = 0 ⇒ ĉ||u−
0 ||2 ≤ 0 (see (9)), hence u0 ≥ 0, u0 �= 0.

Then relation (36) becomes

(37) A(u0) + βu0 = Nf (u0) ⇒ −Δu0 + βu0 = f(z, u0) in Ω,
∂u0

∂n
= 0 on ∂Ω .

Hypotheses H2 imply

(38) |f(z, x)| ≤ c1|x| for a.a. z ∈ Ω, all x ∈ R and some c1 > 0 .
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We set

ζ(s) =

⎧⎨⎩
f(z,u0(z))

u0(z)
if u0(z) �= 0

0 otherwise.

Evidently ζ ∈ L∞(Ω) (see (38)). From (37) we have

(39) −Δu0(z) = (ζ − β)(z)u0(z) a.e. in Ω,
∂u0

∂n
= 0 on ∂Ω .

Note that ζ−β ∈ Ls(Ω) with s > N (see H1). Lemma 5.1 of Wang [26] implies
that u0 ∈ L∞(Ω). Then from (39) we have Δu0 ∈ Ls(Ω). Invoking Lemma 5.2
of Wang [26], we have u0 ∈ W 2,s(Ω). Since s > N , from the Sobolev embedding
theorem we have W 2,s(Ω) ⊂ C1+α(Ω̄) with α = 1−N

s > 0. Therefore u0 ∈ C+\{0}.
From (39) we have

Δu0(z) ≤ (||ζ||∞ + ||β+||∞) u0(z) a.e. in Ω (see H1)

⇒ u0 ∈ intC+ (see Pucci & Serrin [23, p. 120] and Vázquez [25]).

Note that ϕ̂+|C+
= ϕ|C+

. So, u0 ∈ intC+ is a local C1(Ω̄)–minimizer of ϕ,
hence by virtue of Proposition 2.1 uo ∈ intC+ is a local H1(Ω)–minimizer of ϕ. �

In fact we can show that problem (1) has a smallest nontrivial positive solution.

Proposition 3.3. Assume that hypotheses H1 and H2 hold. Then problem (1)
has a smallest nontrivial positive solution u+ ∈ intC+ (that is, if u is a nontrivial
positive solution of (1), then u+ ≤ u).

Proof : Let S+ be the set of nontrivial positive solutions of (1). From Proposi-
tion 3.2 and its proof, we have S+ �= Ø and S+ ⊆ intC+.

We know that S+ is downward directed (that is, if u1, u2 ∈ S+, then we can
find u ∈ S+ such that u ≤ u1, u ≤ u2, see Aizicovici, Papageorgiou & Staicu [1, p.
703]). So, without any loss of generality, we may assume that there exists M2 > 0
such that u(z) ≤ M2 for all z ∈ Ω̄, all u ∈ S+.

Let C ⊆ S+ be a chain (a totally ordered subset of S+). From Dunford &
Schwartz [8, p. 336], we know that we can find {un}n≥1 ⊆ C such that inf C =
infn≥1 un .

We have for all n ≥ 1,

(40) A(un) + βun = Nf (un) ⇒ {un}n≥1 ⊆ H1(Ω) is bounded.

So, we may assume that

(41) un
w→ u in H1(Ω) and un → u in L2(Ω).

Moreover, acting on (40) with un − u ∈ H1(Ω), passing to the limit as n → ∞
and using (41) and the Kadec-Klee property of Hilbert spaces, we obtain

(42) un → u in H1(Ω) .

Then passing to the limit as n → ∞ in (40) and using (41), we have

A(u) + βu = Nf (u) ⇒ u∈C+ is a solution of (1).

If we show that u �= 0, then u ∈ S+. Suppose that u = 0 and let yn =
un

||un|| , n ≥ 1. Then ||yn|| = 1 for all n ≥ 1 and so we may assume that

(43) yn
w→ y in H1(Ω) and yn → y in L2(Ω), y ≥ 0.
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From (40) we have

(44) A(yn) + βyn =
Nf (un)

||un||
for all n ≥ 1.

Since un → 0 in H1(Ω) (see (42)), by virtue of hypothesis H2(iv), we have

(45)
Nf (un)

||un||
w→ μ0 = my in L2(Ω), where m(·) = f

′

x(·, 0) ∈ L∞(Ω).

So, from (43) and (44) it follows that

A(y) + βy=my

⇒ −Δy(z) + β(z)y(z) = m(z)y(z) a.e. in Ω,
∂y

∂n
= 0 on ∂Ω.(46)

From Proposition 2.2 and hypothesis H2(iv), we have

(47) λ̃l(m) < λ̃l(λ̃l)=1 and 1= λ̃l+1(λ̃l+1) < λ̃l+1(m).

From (46) and (47) it follows that y = 0. On the other hand, acting on (44)
with yn − y ∈ H1(Ω) and using (43) and (45), we obtain

lim
n→∞

〈A(yn),yn − y〉 = 0 ⇒ yn→ y in H1(Ω) (as before) ⇒ ||y||=1,

a contradiction. Therefore u ∈ S+ and u ∈ intC.
Since C is an arbitrary chain, from the Kuratowski-Zara lemma it follows that

S+ has a minimal element u+ ∈ S+ ⊆ intC+. If u ∈ S+, then since S+ is downward
directed, we can find ũ ∈ S+ such that ũ ≤ ut, ũ ≤ u. The minimality of u+ implies
that ũ = u+ and so u+ ≤ u. Therefore u+ is the smallest nontrivial positive
solution of problem (1). �

Let S be the set of nontrivial negative solutions of problem (1).
In general hypotheses H2 do not guarantee that S �= ∅. If S �= Ø, then

S ⊆ −intC+ and it is upward directed (that is, v1, v2 ∈ S , then we can find
v ∈ S such that v1 ≤ v1, v2 ≤ v, see [1]).

Reasoning as in the proof of Proposition 3.3, we have:

Proposition 3.4. Assume that hypotheses H1 and H2 hold and S �= Ø. Then
problem (1) has a biggest nontrivial negative solution v ∈ −intC+ (that is, if v is
a nontrivial negative solution of (1), then v ≤ v ).

If we strengthen the conditions on f(z, ·) we can guarantee that S �= Ø. These
stronger conditions on the reaction f are the following:

H3 : f : Ω× R → R is a measurable function such that

for a.a. z ∈ Ω, f(z, 0) = 0, f(z, ·) ∈ C1(R), hypotheses

H3(i) → (iv) are the same as the corresponding hypotheses H2(i) → (iv)

and(v) there exists ξx > 0 such that f(z,−ξx) ≥ (−ξx)β(z) a.e. in Ω .

Remark 3.1. If β ≡ 0, then condition H3(v) implies that for a.a. z ∈
Ω, f(z, ·)
has a zero in (−∞, 0).

Proposition 3.5. If hypotheses H1 and H3 hold, then S �= Ø, S ⊆ −intC+.
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Proof. We consider the following perturbation-truncation of the reaction f(z, ·):

(48) τ (z, x) =

⎧⎨⎩ f(z,−ξx) + γ̂(−ξx) if x < −ξx
f(z, x) + γ̂x if − ξx ≤ x ≤ 0
0 if 0 < x.

Clearly τ (·, ·) is a Carathéodory function. We set T (z, x) =
∫ x

0
τ (z, s)ds and

consider the C1-functional χ0 : H1(Ω) → R defined by

χ0(u) =
1

2
σ(u) +

γ̂

2
||u||22 −

∫
Ω

T (z, u)dz for all u ∈ H1(Ω).

From (48) and (9), we see that χ0 is coercive. Also, it is sequentially weakly
lower semi-continuous. Se, we can find v0 ∈ H1(Ω) such that

(49) χ0(v0) = inf{χ0(v) : v ∈ H1(Ω)}.
As in the proof of Proposition 3.2, for t ∈ (0, 1) small such that at least we have

tû1(z) ∈ [0, ξx] for all z ∈ Ω̄, we have χ0(−tû1) < 0. Therefore χ0(v0) < 0 = χ0(0)
(see (49)), hence v0 �= 0.

From (49) we have

(50) χ
′

0(v0) = 0 ⇒ A(v0) + (β + γ̂)v0 = Nτ (v0) .

On (50) we act with (−ξx − v0)
+ ∈ H1(Ω). Then〈

A(v0), (−ξx − v0)
+
〉

+

∫
Ω

(β(z) + γ̂) v0 (−ξx − v0)
+ dz

=

∫
Ω

τ (z, v0) (−ξx − v0)
+ dz

=

∫
Ω

[f(z1 − ξx) + γ̂ − ξx] (−ξz − v0)
+ dz (see (48))

≥
〈
A(−ξx), (−ξx − v0)

+
〉

+

∫
Ω

(β(z) + γ̂)(−ξx)(−ξx − v0)
+ dz,

⇒
〈
A(−ξx − v0), (−ξx − v0)

+
〉

+

∫
Ω

(β(z) + γ̂)(−ξx − v0)(−ξx − v0)
+ dz ≤ 0,

⇒ σ((−ξx − v0)
+) + γ̂ ||(−ξx − v0)

+||22 ≤ 0,

⇒ −ξx ≤ v0 (see (9)).

Also, acting on (50) with v+0 ∈ H1(Ω), we obtain v0 ≤ 0, v0 �= 0. Therefore

v0 ∈ [−ξx, 0] = {v ∈ H1(Ω) : −ξx ≤ v(z) ≤ 0 a.e. in Ω}.
Therefore (50) yieldsA(v0)+βv0 = Nf (v0), hence v0 is a nontrivial negative solution
of problem (1). As before, from Wang [26] and the strong maximum principle, we
deduce that v0 ∈ −intC+. �

4. Nodal Solutions

In this section we present the full multiplicity theorems for problem (1) by
producing nodal solutions.

First we treat the case S �= Ø.

Theorem 4.1. Assume that hypotheses H1 and H2 hold and S �= Ø. Then
problem (1) has at least four nontrivial solutions: u0 ∈ intC+, v0 ∈ −intC+ and
y0, ŷ ∈ intC1(Ω̄)[v0, u0] both nodal.
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Proof. From Proposition 3.2 we already have a nontrivial positive solution
u0 ∈ intC+. In fact, by virtue of Proposition 3.3, we may assume that u0 is the
smallest nontrivial positive solution of (1) (that is, u0 = u+ ∈ intC+). Similarly,
since by hypothesis S �= Ø, from Proposition 3.4 we can have a nontrivial negative
solution v0 ∈ −intC+ which can be taken to be the biggest such solution of (1)
(that is, v0 = v ∈ −intC+). We introduce the following perturbation-truncation
of f(z, ·):

(51) g(z, x) =

⎧⎨⎩ f(z, v0(z)) + γ̂v0(z) if x < v0(z)
f(z, x) + γ̂x if v0(z) ≤ x ≤ u0(z)
f(z, u0(z)) + γ̂u0(z) if u0(z) < x.

This is a Carathéodory function. We set G(z, x) =
∫ x

0
g(z, s)ds and introduce the

C1-functional Ψ : H1(Ω) → R defined by

Ψ(u) =
1

2
σ(u) +

γ̂

2
||u||22 −

∫
Ω

G(z, u)dz for all u ∈ H1(Ω).

Also, let g±(z, x) = g(z,±x±) and G±(z, x) =
∫ x

0
g±(z, s)ds. We introduce the

C1–functional Ψ± : H1(Ω) → R defined by

Ψ±(u) =
1

2
σ(u) +

γ̂

2
||u||22 −

∫
Ω

G±(z, u)dz for all u ∈ H1(Ω).

Claim 1: KΨ ⊆ [v0, u0],KΨ+
= {0, u0},KΨ− = {0, v0}.

Let u ∈ KΨ. Then

(52) A(u) + (β + γ̂)u = Ng(u).

On (52) we act with (u− u0)
+ ∈ H1(Ω). Then〈

A(u), (u− u0)
+
〉

+

∫
Ω

(β(z) + γ̂) u(u− u0)
+ dz

=

∫
Ω

g(z, u)(u− u0)
+ dz

=

∫
Ω

[f(z, u0) + γ̂u0](u− u0)
+ dz (see (51))

=
〈
A(u0), (u− u0)

+
〉

+

∫
Ω

(β(z) + γ̂)u0(u− u0)
+ dz

⇒ σ((u− u0)
+) + γ̂||(u− u0)

+||22 = 0

⇒ ĉ||(u− u0)
+||2 ≤ 0 (see (9))

⇒ u ≤ u0.

In a similar manner acting on (52) with (v0 − u)+ ∈ H1(Ω), we obtain v0 ≤ u.
Hence

u ∈ [v0, u0] = {y ∈ H1(Ω) : v0(z) ≤ y(z) ≤ u0(z) a.e. in Ω} ⇒ KΨ ⊆ [v0, u0].

Similarly we show that

KΨ+
⊆ [0, u0] = {y ∈ H1(Ω) : 0 ≤ y(z) ≤ u0(z) a.e. in Ω}

and
KΨ− ⊆ [v0, 0] = {y ∈ H1(Ω) : v0(z) ≤ y(z) ≤ 0 a.e. in Ω} .

Recall that u0 and v0 are extremal constant sign solutions. So, it follows that
KΨ+

= {0, u0} and KΨ− = {0, v0}. This proves Claim 1.
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Claim 2: u0 ∈ intC+ and v0 ∈ −intC+ are local minimizers of Ψ.
From (9) and (51) it follows that the functional Ψ+ is coercive. Also, it is

sequentially weakly lower semi-continuous. So, by the Weierstrass theorem, we can
find ũ ∈ H1(Ω) such that

(53) Ψ+(ũ) = inf{Ψ+(u) : u ∈ H1(Ω)}.

As before (see the proof of Proposition 3.2), for t ∈ (0, 1) small (at least such
that tû1 ∈ [0, u0], recall u0 ∈ intC+), we have Ψ+(tû1) < 0. Therefore Ψ+(ũ) <
0 = Ψ+(0) (see (53)), hence ũ �= 0.

From (53) we have ũ ∈ KΨ+
= {0, u0} (see Claim 1). So, ũ = u0. Note that

Ψ+|C+
= Ψ|C+

and u0 ∈ intC+.

It follows that u0 is a local C1(Ω̄)–minimizer of Ψ. From Proposition 2.1 we
infer that u0 is a local H1(Ω)–minimizer of Ψ. Similarly for v0 ∈ −intC+ using
this time the functional Ψ−. This proves Claim 2.

Without any loss of generality, we may assume that Ψ(v0) ≤ Ψ(u0) (the analysis
is similar if the opposite inequality holds). By virtue of Claim 2, we can find
ρ ∈ (0, 1) such that

(54) Ψ(v0) ≤ Ψ(u0) < inf{Ψ(u) : ||u− u0|| = ρ} = ηρ .

The functional Ψ is coercive (see (9) and (52)), hence it satisfies the C-condition.
This fact and (54) permit the use of Theorem 2.1 (the mountain pass theorem).
So, we can find y0 ∈ H1(Ω) such that

(55) y0 ∈ KΨ ⊆ [v0, u0] (see Claim 1) and ηρ ≤ Ψ(y0).

From (54) and (55) we have y0 /∈ {v0, u0}.
Hypothesis H2(iv) via the UCP implies that u = 0 is a nondegenerate critical

point of ϕ ∈ C2(H1(Ω)). Therefore

(56) Ck(ϕ, 0) = δk,dl
Z for all k ≥ 0 with dl = dim

l
⊕
i=1

E(λ̂i) ≥ 2.

Note that

Ψ|[v0,u0] = ϕ|[v0,u0] (see (51)) and v0 ∈ −intC+, u0 ∈ intC+,

⇒ Ck(Ψ|C1(Ω̄), 0) = CK(ϕ|C1(Ω̄), 0) for all k ≥ 0,

⇒ Ck(Ψ, 0) = Ck(ϕ, 0) for all k ≥ 0 (see Palais [21] and Bartsch [2]),

⇒ Ck(Ψ, 0) = δk,dl
Z for all k ≥ 0 (see (56)).(57)

Recall that y0 is a critical point of mountain pass type for Ψ. Hence

(58) C1(Ψ, y0) �= 0.

Since dl ≥ 2, comparing (57) and (58), we infer that y0 �= 0. Since y0 ∈ [v0, u0],
the extremality of the solutions u0, v0 and (51) implies that y0 is a solution of (1).
Moreover, the regularity results of Wang [26] imply y0 ∈ C1(Ω̄).

We have

−Δy0(z) + β(z)y0(z) = f(z, y0(z)) a.e. in Ω,
∂y0
∂n

= 0 on ∂Ω.

HypothesesH(i) and the mean value theorem imply that if ρ = max{||u0||∞, ||v0||∞},
then we can find ξρ > 0 such that for a.a. z ∈ Ω the function x → f(z, x) + ξρx is
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nondecreasing on [−ρ, ρ]. We have

−Δy0(z) + (β(z) + ξρ)y0(z) = f(z, y0(z)) + ξρy0(z)

≤ f(z, u0(z)) + ξρu0(z) (since y0 ≤ u0)

= −Δu0(z) + (β(z) + ξρ)u0(z) a.e. in Ω

⇒ Δ(u0 − y0)(z) ≤ (||β+||∞ + ξρ)u0(z) a.e. in Ω (see H1)(59)

⇒ u0 − y0 ∈ intC+ (see Vázquez [25]).

Similarly we show that

y0 − v0 ∈ intC+ ⇒ y0 ∈ intC1(Ω̄)[v0, u0].

Recall that Ψ|[v0,u0] = ϕ|[v0,u0] (see (51)). Hence

Ck(Ψ|C1(Ω̄), y0) = Ck(ϕ|C1(Ω̄), y0) for all k ≥ 0,

⇒ Ck(Ψ, y0) = Ck(ϕ, y0) for all k ≥ 0 (see [21], [2]),(60)

⇒ C1(ϕ, y0) �= 0 (see (58)).(61)

Hypotheses H2 imply that ϕ ∈ C2(H1(Ω)) and for all u, v ∈ H1(Ω)

〈ϕ′′(y0)u, v〉 =
∫
Ω

(Du,Dv)RNdz +

∫
Ω

β(z)uv dz −
∫
Ω

m̂0 uv dz,

where m̂0(z) = f
′

x(z, y0(z)), m̂0 ∈ L∞(Ω)+ (see H2(i)). Therefore ϕ′′(y0) is a
Fredholm operator. Let σ(ϕ′′(y0)) denote the spectrum of ϕ′′(y0) and suppose that
σ(ϕ′′(y0)) ⊆ [0,∞). Then we have

(62)

∫
Ω

m̂0u
2 dz ≤ σ(u) for all u ∈ H1(Ω).

Let u ∈ Kerϕ′′(y0). Then

(63) −Δ u(z) = (m̂0 − β)(z)u(z) a.e. in Ω,
∂u

∂n
= 0 on ∂Ω.

We have m̂0−β ∈ Ls(Ω) with s > N (see H1). If (m̂−β)+ = 0, then from (63)
it follows that u = 0. If (m̂0 − β)+ �= 0, then from (62) and de Figueiredo [9], we
have Kerϕ′′(y0) ≤ 1. So, we can apply Proposition 2.5 of Bartsch [2] and obtain

Ck(ϕ, y0) = δk,1Z for all k ≥ 0(64)

⇒ Ck(Ψ, y0) = δk,1Z for all k ≥ 0 (see (60)).

From Claim 2 we know that v0 and u0 are local minimizers of Ψ. Hence

(65) Ck(Ψ, u0) = Ck(Ψ, v0) = δk,0Z for all k ≥ 0.

Finally recall that Ψ is coercive. Therefore

(66) Ck(Ψ,∞) = δk,0Z for all k ≥ 0.

Suppose that KΨ = {0, u0, v0, y0}. Then from (57), (64), (65), (66) and the
Morse relation (see (2)) with t = −1, we have (−1)dl + 2(−1)0 + (−1)1 = (−1)0,
a contradiction.

This means that there exists ŷ ∈ KΨ, ŷ /∈ {0, u0, v0, y0}. From Claim 1 and
Wang [26], we have ŷ ∈ [v0, u0] ∩ C1(Ω̄), hence ŷ is the second nodal solution of
problem (1). As we did for y0, using the strong maximum principle of Vázquez
[25], we have ŷ ∈ intC1(Ω)[v0, y0].
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Next we deal with the case when S = �. In this case there is no extremal neg-
ative solution. So, we introduce the following “unilateral” perturbation–truncation
of the reaction f(z, ·):

(67) g∗(z, x) =

{
f(z, x) + γ̂x if x ≤ u+(z)
f(z, u+(z)) + γ̂u+(z) if u+(z) < x.

This is a Carathéodory function. We set G∗(z, x) =
∫ x

0
g∗(z, s)ds and consider the

C1-functional ϕ∗ : H1(Ω) → R defined by

ϕ∗(u) =
1

2
σ(u) +

γ̂

2
||u||22 −

∫
Ω

G∗(z, u)dz for all u ∈ H1(Ω).

Proposition 4.1. Assume that hypotheses H1 and H2 hold. Then the func-
tional ϕ∗ satisfies the C–condition.

Proof. Let {un}n≥1 ⊆ H1(Ω) be a sequence such that {ϕ∗(un)}n≥1 ⊆ R is
bounded and

(68) (1 + ||un||)ϕ
′

∗(un) → 0 in H1(Ω)∗.

From (67) we have for all n ≥ 1,

| 〈ϕ′
∗(un), h〉 | ≤

εn||h||
1 + ||un||

for all h ∈ H1(Ω) with εn → 0+

⇒ | 〈A(un), h〉+
∫
Ω

(β(z) + γ̂)un hdz −
∫
Ω

g∗(z, un)hdz| ≤
εn||h||

1 + ||un||
.(69)

Let h = u+
n ∈ H1(Ω). We have

σ(u+
n ) + γ̂||u+

n ||22 ≤ M3 for some M3 > 0 (see (67))

⇒ ĉ||u+
n ||2 ≤ M3 for all n ≥ 1 (see (84))

⇒ {u+
n }n≥1 ⊆ H1(Ω) is bounded.(70)

We assume that ||u−
n || → ∞ and set yn =

u−
n

||u−
n || . Then ||yn|| = 1 for all n ≥ 1.

So we may assume that

(71) yn
w→ y in H1(Ω) and yn → y in L2s

′

(Ω) (
1

s
+

1

s′ = 1)

From (69) and (70), we have

(72) | 〈A(−yn), h〉 −
∫
Ω

(β(z) + γ̂)ynhdz −
∫
Ω

g∗(z,−u−
n )

||u−
n ||

hdz| ≤ M4
||h||
||u−

n ||
.

Hypotheses H2 (i),(ii),(iii) imply that{
Ng∗(−u−

n )

||u−
n ||

}
n≥1

⊂ L2(Ω) is bounded.

So, if in (72) we choose h = yn − y ∈ H1(Ω) and pass to the limit as n → ∞,
then

(73)
limn→∞ 〈A(−yn), yn − y〉 = 0 ⇒ ||Dyn||2 → ||Dy||2
⇒ yn → y in H1(Ω) (by the Kadec - Klee property)
⇒ ||y|| = 1, y ≥ 0.
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Then using hypothesisH2(iii) and by passing to a suitable suitable subsequence
if necessary we have

(74)
Ng∗(−u−

n )

||u−
n ||

w→ −(η0 + γ̂)y in L2(Ω) with η(z) ≤ η0(z) ≤ η̂(z) a.e. in Ω .

So, if in (72) we pass to the limit as n −→ ∞, and use (73), then

(75)

〈A(y), h〉+
∫
Ω
βy hdz =

∫
r
η0y hdz for all h ∈ H1(Ω),

⇒ A(y) + βy = η0y,

⇒ −Δy(z) + β(z)y(z) = η0(z)y(z) a.e. in Ω, ∂y
∂n = 0 on ∂Ω.

From Proposition 2.2 we have λ̃1(η0) ≤ λ̃1(η) < λ̃1(λ̂1) = 1. So, from (75) it
follows that y is nodal, witch contradicts (73). It follows that

{u−
n }n≥1 ⊂ H1(Ω) is bounded ⇒ {un}n≥1 ⊂ H1(Ω) is bounded (see (70)).

Therefore, we may assume that

(76) un
w→ u in H1(Ω) and un → u in L2s′(Ω).

In (69) we choose h = un − u ∈ H1(Ω), pass to the limit as n → ∞ and use
(76). Then

lim
n→∞

〈A(un), un − u〉 = 0 ⇒ un → u in H1(Ω) ⇒ ϕ∗ satisfies the C–condition.

�
The next result permits the computation of the critical groups of ϕ∗ at infinity.

Proposition 4.2. If hypotheses H1 and H2 hold, then Ck(ϕ∗,∞) = 0 for all k ≥
0.

Proof. Let λ > max{λ̂1,
1

|Ω|N
∫
Ω
βdz} and consider the C1–functional Ψ∗ :

H1(Ω) → R defined by

Ψ∗(u) =
1

2
σ(u) +

γ̂

2
||u||22 −

1

2
(λ+ γ̂)||u−||22 for all u ∈ H1(Ω) .

We consider the homotopy

h(t, u) = ht(u) = (1− t)ϕ∗(u) + tΨ∗(u) for all (t, u) ∈ [0, 1]×H1(Ω).

Claim 1. There exist ε ∈ R and δ > 0 such that

ht(u) ≤ ε ⇒ (1 + ||u||)||(ht)
′
(u)||∗ ≥ δ||u||2 for all t ∈ [0, 1].

We argue by contradiction. So, suppose that the Claim is not true. Since h maps
bounded sets to bounded sets, we can find {tn}n≥1 ⊂ [0, 1] and {un}n≥1 ⊂ H1(Ω)
such that

(77) tn → t, ||un|| → ∞, htn(un) → −∞ and ||(htn)
′
(un)|| <

1

n
||un|| .

From (77) we have
(78)
| 〈A(un), h〉+

∫
Ω
(β(z) + γ̂)unhdz − (1− tn)

∫
Ω
g∗(z, un)hdz − (λ+ γ̂)tn

∫
Ω
u−
n hdz|

< 1
n ||un|| · ||h|| for all n ≥ 1.

In (78) first we choose h = u+
n ∈ H1(Ω) then

(79) σ(u+
n ) + γ̂||u+

n ||22 ≤ 1

n
||un|| · ||u+

n || for all n ≥ 1.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

NEUMANN PROBLEMS WITH INDEFINITE AND UNBOUNDED POTENTIAL 311

Let yn = un

||un|| . Then from (79) we have

(80)
σ(y+n ) + γ̂||y+n ||22 ≤ 1

n ||yn|| · ||y+n ||
⇒ ĉ||y+n ||2 ≤ 1

n ||y+n || (see (9) and recall that ||yn|| = 1)
⇒ y+n → 0 in H1(Ω).

From (78) and (80), we have
(81)

| 〈A(−y−n ), h〉+
∫
Ω
(β(z) + γ̂)(−y−n )dz − (1− tn)

∫
Ω

q∗(z,−u−
n )

||un|| hdz + (λ+ γ̂)tn
∫
Ω
y−n hdz|

≤ εn||h|| with εn ↓ 0.

Since ||yn|| = 1 for all n ≥ 1, by passing to a suitable subsequence if necessary, we
may assume that

(82)
yn

w→ y in H1(Ω) and yn → y in L2s′(Ω),

⇒ y−n
w→ y− in H1(Ω) and y−n → y− in L2s′(Ω).

In (81) we choose h = y−n − y− ∈ H1(Ω) and pass to the limit as n → ∞.

Recalling that
{

Ng∗(−u−
n )

||u−
n ||

}
n≥1

⊆ L2(Ω) is bounded and using (82), we obtain

(83) lim
n→∞

〈
A(−y−n ), y

−
n − y−

〉
= 0 ⇒ y−n → y− in H1(Ω).

Note that y− �= 0 or otherwise from (80) and (83), we have yn → 0 in H1(Ω)
which contradicts the fact that ||yn|| = 1 for all n ≥ 1. Now, using hypothesis
H2(iii), we have

(84)
Ng∗(−u−

n )

||un||
w→ ξ = −(η0 + γ̂)y− in L2(Ω), with η ≤ η0 ≤ η̂.

So, if in (81) we pass to the limit as n → ∞ and use (83) and (84), then

(85)

〈A(y−), h〉+
∫
Ω
βy−hdz =

∫
Ω
η0y

−hdz for all h ∈ H1(Ω)
⇒ A(y−) + βy− = η0y

−

⇒ −Δy−(z) + β(z)y−(z) = η0(z)y
−(z) a.e. in Ω, ∂y−

∂n = 0 on ∂Ω .

By virtue of Proposition 2.2, we have λ̃1(η0) ≤ λ̃1(η) < λ̃1(λ̂1) = 1.
Therefore (85) implies that y− must be nodal (recall y− �= 0), contradiction.

This proves Claim 1.
Note that

|∂tht(u)| = |Ψ∗(u)− ϕ∗(u)| ≤ C1||u||2 for some c1 > 0 and u ∈ H1(Ω).

Finally note that h0(·) = ϕ∗ satisfies the C-condition (see Proposition 4.1)

while h1(·) = Ψ∗ also satisfies the C-condition since λ > λ̂1. So, we have

(86) Ck(ϕ∗,∞) = Ck(Ψ∗,∞) for all k ≥ 0 (see Liang & Su [17]).

It is easy to check thatKΨ∗ ⊂ −C+ and since λ > λ̂1, it follows that KΨ∗ = {0}
(recall that λ̂1 is the only eigenvalue with eigenfunctions of constant sign). Hence

(87) Ck(Ψ∗,∞) = Ck(Ψ∗, 0) for all k ≥ 0.

Let ζ ∈ L∞(Ω), ζ ≤ 0, ζ �= 0 and consider the homotopy

h̃t(u) = Ψ∗(u)− tζu for all t ∈ [0, 1], and u ∈ H1(Ω).

Claim 2: (h̃t)
′
(u) = 0 for all t ∈ [0, 1] and for all u ∈ H1(Ω) \ {0}.
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Again we argue indirectly. So suppose that we can find t ∈ [0, 1] and u ∈
H1(Ω), u �= 0 such that

(88) (h̃t)
′
(u) = 0 ⇒ A(u) + (β + γ̂)u = −(λ+ γ̂)u− + tζ.

On (88) we act with u+ ∈ H1(Ω). Then σ(u+) + γ̂||u+||22 = t
∫
Ω
ζu+dz ≤ 0.

Thus, by (9), ĉ||u+||2 ≤ 0, hence u ≤ 0, u �= 0. Then relation (88) becomes

(89)
A(u) + βu = λu− tζ
⇒ −Δu(z) + β(z)u(z) = λu(z)− tζ a.e. in Ω, ∂u

∂n = 0 on ∂Ω
⇒ u ∈ −intC+ (as before using [26], [25]).

Let v ∈ intC+ and consider the function

R(v,−u)(z) = ||Dv(z)||2 − (−Du(z), D(
v2

−u
)(z))RN .

From Picone’s identity (see, for example, Gasinski & Papageorgiou [12, p.
785]), we have

R(v,−u)(z) ≥ 0 for a.a. z ∈ Ω.

Therefore

0 ≤
∫
Ω

R(v,−u)dz = ||Dv||22 −
∫
Ω

(−Δu)
v2

u
dz (by Green’s identity)

= ||Dv||22 −
∫
Ω

(λ− β(z))v2dz + t

∫
Ω

ζv2dz

≤ ||Dv||22 −
∫
Ω

(λ− β(z))v2dz (since ζ ≤ 0).

Choose v ≡ 1 ∈ intC+. Then

0 ≤ −λ|Ω|N +

∫
Ω

β(z)dz < 0 (recall the choice of λ),

a contradiction. This proves Claim 2.
Then Claim 2 and the homotopy invariance of critical groups imply that for all

k ≥ 0,

Ck(Ψ∗, 0) = 0 ⇒ Ck(ϕ∗,∞) = 0 (see (86), (87)).

�
Now we are ready for the second multiplicity theorem for problem (1), taking

care of the case S = Ω.

Theorem 4.2. Assume that hypotheses H1 and H2 hold and S = Ω. Then
problem (1) has at least three nontrivial solutions u0 ∈ intC+ and y0, ŷ ∈ C1(Ω̄)
nodal solutions such that u0 − y0, u0 − ŷ ∈ intC+.

Proof. From Proposition 3.2 we already have a nontrivial positive solution
u0 ∈ intC+. By virtue of Proposition 3.3 we can always assume that u0 is the
smallest nontrivial positive solution of (1) (that is, u0 = u+ ∈ intC+). We still
consider the C1-functional ϕ∗ : H1(Ω) → R introduced in the beginning of this
section. Let

g+∗ (z, x) = g∗(z, x
+) (see (67)) and G+

∗ (z, x) =

∫ x

0

g+∗ (z, s)ds.
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We consider the C1-functional ϕ+
∗ : H1(Ω) → R defined by

ϕ+
∗ (u) =

1

2
σ(u) +

γ̂

2
||u||22 −

∫
Ω

G+
∗ (z, u)dz for all u ∈ H1(Ω) .

Claim 1. We have

Kϕ∗ ⊂ (u0] = {u ∈ H1(Ω) : u(z) ≤ u0(z) a.e. in Ω} and Kϕ+
∗
= {0, u0}.

Let u ∈ Kϕ∗ . Then

(90) A(u) + (β + γ̂)u = Ng∗(u).

On (90) we act with (u− u0)
+ ∈ H1(Ω). Then

〈A(u), (u− u0)
+〉+

∫
Ω
(β(z) + γ̂)u(u− u0)

+dz =
∫
Ω
g∗(z, u)(u− u0)

+dz
=

∫
Ω
[f(z, u0) + γ̂u0](u− u0)

+dz (see (67) and recall u0 = u+)
= 〈A(u0), (u− u0)

+〉+
∫
Ω
(β(z) + γ̂)u0(u− u0)

+dz
⇒ 〈A((u− u0)

+), (u− u0)
+〉+

∫
Ω
(β(z) + γ̂)[(u− u0)

+]2dz = 0
⇒ ĉ ||(u− u0)

+||2 ≤ 0 (see (9)),

hence u ≤ u0. This proves thatKϕ∗ ⊆ (u0] = {u ∈ H1(Ω) : u(z) ≤ u0(z) a.e. in Ω} .
In a similar fashion, we show that Kϕ+

∗
⊆ [0, u0] = {u ∈ H1(Ω) : 0 ≤ u(z) ≤

u0(z) a.e. in Ω}.
The extremality of u0 = u+ ∈ intC+ (see Proposition 3.3) implies Kϕ+

∗
=

{0, u0} . This proves Claim 1.
Claim 2: u0 ∈ intC+ is a local minimizer of the functional ϕ∗.
Evidently ϕ+

∗ is coercive (see (67)). Also, it is sequentially weakly lower semi-
continuous. So, we can find û0 ∈ H1(Ω) such that

(91) ϕ+
∗ (û0) = inf{ϕ+

∗ (u) : u ∈ H1(Ω)}.

For t ∈ (0, 1) small and using hypothesis H2(iv), we have

ϕ+
∗ (tû1) < 0 (see the proof of Proposition 3.2) ⇒ ϕ+

∗ (û) < 0 = ϕ+
k (0) (see (91)),

hence û0 �= 0. Then from (91) and Claim 1, we have û0 = u0 ∈ intC+. Since
ϕ∗|C+

= ϕt
∗|C+

(see (67)), it follows that u0 ∈ intC+ is a local C1(Ω̄)-minimizer of

ϕ∗. Invoking Proposition 2.1, we have that u0 ∈ intC+ in a local H1(Ω)-minimizer
of ϕ∗. This proves Claim 2.

Claim 2 implies that we can find ρ ∈ (0, 1) small such that

(92) ϕ∗(u0) < inf{ϕ∗(u) : ||u− u0|| = ρ} = η∗ρ, ||u0|| > ρ .

Hypothesis H2(iii) implies that

(93) ϕ∗(tû1) → −∞ as t → −∞ .

Finally recall that ϕ∗ satisfies the C-condition (see Proposition 4.1). This fact
together with (92) and (93), implies that we can apply Theorem 2.1 (the mountain
pass theorem). So, we can find y0 ∈ H1(Ω) such that

(94) y0 ∈ Kϕ∗ ⊆ (u0] and η∗ρ ≤ ϕ∗(y0) .

From (92) and (94), we see that y0 �= u0. Since y0 is a critical point of ϕ∗ of
mountain pass type, we have

(95) C1(ϕ∗, y0) �= 0.
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On the other hand, as in the proof of Theorem 4.1 (see (57)), using hypothesis
H2(iv), we have

(96) Ck(ϕ∗, 0) = δk1dl
Z for all k ≥ 0 and dl ≥ 2.

Comparing (95) and (96), we conclude that y0 �= 0. Since y0 ∈ (u0] (see Claim
1) and due to the extremality of u0, we infer that y0 is nodal and y0 ∈ C1(Ω̄) (see
Wang [26]). Moreover, we have

u0 − y0 ∈ intC+ (that is, y0 ∈ intC1(Ω̄)(u0])

and Ck(ϕ∗, y0) = δk,1Z for all k ≥ 0.(97)

From Claim 2 we have

(98) Ck(ϕ∗, u0) = δk,0Z for all k ≥ 0

while from Proposition 4.2 we have

(99) Ck(ϕ∗,∞) = 0 for all k ≥ 0.

Suppose Kϕ∗ = {0, u0, y0}. From (96), (97), (98), (99) and the Morse relation
(see (2)), we have (−1)dl + (−1)0 + (−1)1 = 0, a contradiction. So we can find
ŷ ∈ Kϕ∗ , ŷ /∈ {0, u0, y0}. We have ŷ ∈ (u0] (see Claim 1), hence ŷ ∈ C1(Ω̄)
(see Wang [26]) is nodal. Moreover, as for y0, we have u0 − ŷ ∈ intC+ (that is,
ŷ ∈ intC1(Ω̄)(u0]). �
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(Vicenţiu D. Rădulescu) Institute of Mathematics “Simion Stoilow” of the Romanian

Academy, P.O. Box 1-764, 014700 Bucharest, Romania & Department of Mathematics,

University of Craiova, Street A.I. Cuza No. 13, 200585 Craiova, Romania

E-mail address: vicentiu.radulescu@imar.ro

http://www.ams.org/mathscinet-getitem?mr=1776988
http://www.ams.org/mathscinet-getitem?mr=1776988
http://www.ams.org/mathscinet-getitem?mr=2168068
http://www.ams.org/mathscinet-getitem?mr=2168068
http://www.ams.org/mathscinet-getitem?mr=682663
http://www.ams.org/mathscinet-getitem?mr=682663
http://www.ams.org/mathscinet-getitem?mr=2503075
http://www.ams.org/mathscinet-getitem?mr=2503075
http://www.ams.org/mathscinet-getitem?mr=2683404
http://www.ams.org/mathscinet-getitem?mr=2683404
http://www.ams.org/mathscinet-getitem?mr=1785289
http://www.ams.org/mathscinet-getitem?mr=1785289
http://www.ams.org/mathscinet-getitem?mr=2510425
http://www.ams.org/mathscinet-getitem?mr=2510425
http://www.ams.org/mathscinet-getitem?mr=2211582
http://www.ams.org/mathscinet-getitem?mr=2211582
http://www.ams.org/mathscinet-getitem?mr=1077275
http://www.ams.org/mathscinet-getitem?mr=1077275
http://www.ams.org/mathscinet-getitem?mr=982267
http://www.ams.org/mathscinet-getitem?mr=982267
http://www.ams.org/mathscinet-getitem?mr=0189028
http://www.ams.org/mathscinet-getitem?mr=0189028
http://www.ams.org/mathscinet-getitem?mr=1807945
http://www.ams.org/mathscinet-getitem?mr=1807945
http://www.ams.org/mathscinet-getitem?mr=2356201
http://www.ams.org/mathscinet-getitem?mr=2356201
http://www.ams.org/mathscinet-getitem?mr=2512303
http://www.ams.org/mathscinet-getitem?mr=2512303
http://www.ams.org/mathscinet-getitem?mr=768629
http://www.ams.org/mathscinet-getitem?mr=768629
http://www.ams.org/mathscinet-getitem?mr=1125221
http://www.ams.org/mathscinet-getitem?mr=1125221
http://www.ams.org/mathscinet-getitem?mr=1400007
http://www.ams.org/mathscinet-getitem?mr=1400007

	Semilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity
	1. Introduction
	2. Mathematical Background
	3. Solutions of Constant Sign
	4. Nodal Solutions
	Acknowledgements
	References


