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1. Introduction

This paper is motivated by the following simple problem. Assume that Ω ⊂ R
N is

a bounded domain with smooth boundary. Then the nonlinear Dirichlet problem{
∆u = u3 in Ω
u = 0 on ∂Ω

(1.1)

does not have any nontrivial solution, as can be observed by multiplication by u and
integration. A natural question is to see what happens if problem (1.1) is affected
by a certain perturbation. Let us consider the problem{

−∆u = λ|u|u − u3 in Ω
u = 0 on ∂Ω,

(1.2)

¶Corresponding author.
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where λ is a positive parameter. Then∫
Ω

|∇u|2 dx = λ

∫
Ω

|u|3 dx −
∫

Ω

u4 dx

≤ λ

(∫
Ω

u4 dx

)1/2 (∫
Ω

u2 dx

)1/2

−
∫

Ω

u4 dx

≤ λ√
λ1,Ω

(∫
Ω

u4 dx

)1/2 (∫
Ω

|∇u|2 dx

)1/2

−
∫

Ω

u4 dx , (1.3)

where λ1,Ω denotes the first eigenvalue of the Laplace operator in H1
0 (Ω). We recall

that λ1,Ω can be characterized from a variational point of view as the minimum of
the Rayleigh quotient, that is,

λ1,Ω = inf
u∈H1

0 (Ω)\{0}

∫
Ω

|∇u|2 dx∫
Ω

u2 dx

. (1.4)

Moreover, it is known that λ1,Ω is simple, that is, all the associated eigenfunctions
are merely multiples of each other (see, e.g., [12]). Furthermore, the corresponding
eigenfunctions of λ1,Ω never change sign in Ω.

Since ∫
Ω

|∇u|2 dx +
∫

Ω

u4 dx ≥ 2
(∫

Ω

u4 dx

)1/2 (∫
Ω

|∇u|2 dx

)1/2

,

relation (1.3) shows that a necessary condition for the existence of nontrivial solu-
tions to problem (1.2) is that λ ≥ 2

√
λ1,Ω. This means that problem (1.2) does

not have any nontrivial solution provided that λ > 0 is small enough. Similar argu-
ments show that the same conclusion holds if the term λ|u|u in (1.2) is replaced by
λ|u|s−1u, where 1 < s < 3.

In the present paper we are interested to obtain existence and nonexistence
results for related nonlinear elliptic equations in a more general setting. We consider
a model involving nonlinearities with variable exponent. The abstract framework
is based on the theory of Lebesgue–Sobolev spaces with variable exponent. We
point out that materials requiring such more advanced theory have been studied
experimentally since the middle of the last century. The first major discovery is
due to Willis Winslow in 1949 and is related to the theory of electrorheological
fluids. These fluids have the interesting property that their viscosity depends on
the electric field in the fluid. Winslow noticed that in such fluids (for instance,
lithium polymetachrylate) viscosity in an electrical field is inversely proportional to
the strength of the field. The field induces string-like formations in the fluid, which
are parallel to the field. They can raise the viscosity by as much as five orders of
magnitude. This phenomenon is known as the Winslow effect. For a general account
of the underlying physics we refer to Halsey [13] and for some technical applications
we refer to Pfeiffer et al. [26]. Electrorheological fluids have been used in robotics
and space technology.
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2. The Main Result

In this paper we are concerned with the study of the eigenvalue problem{−∆u + |u|q(x)−2u = λg(x)|u|r(x)−2u, for x ∈ Ω

u = 0, for x ∈ ∂Ω ,
(2.1)

where Ω ⊂ R
N is a bounded domain with smooth boundary, q, r : Ω → (1,∞)

are continuous functions verifying 2 < minΩ r ≤ maxΩ r < minΩ q < 2∗, and
g : Ω → [0,∞) is a bounded function for which there exists an open subset ω0 ⊂ Ω
such that g(x) > 0 for any x ∈ ω0. We have denoted

2∗ =




2N

N − 2
if N ≥ 3

+∞ if N ∈ {1, 2}.
The study of eigenvalue problems involving the Laplace operator is strongly

related to a basic result in the elementary theory of partial differential equations
which asserts that the linear problem{−∆u = λu, in Ω

u = 0, on ∂Ω
(2.2)

has an unbounded sequence of eigenvalues 0 < λ1,Ω < λ2,Ω ≤ · · · ≤ λn,Ω ≤ · · ·.
This celebrated result goes back to the Riesz-Fredholm theory of self-adjoint and
compact operators on Hilbert spaces (see [2]).

In a different context, we point out the inequality of Faber [8] and Krahn [15]
(see also [16]) which states that

λ1,Ω ≥ λ1,B1 |Ω|−2/N , (2.3)

where λ1,B1 is the lowest eigenvalue of problem (2.2) with Ω = B1, a ball of unit
volume in R

N . In other words, inequality (2.3) asserts that among all the domains
Ω, with a given volume |Ω|, the ball has the smallest lowest eigenvalue. Moreover,
by (2.3) it is clear that for a domain Ω with the volume |Ω| small, the eigenvalue
λ1,Ω is large.

Going further, another type of eigenvalue problem involving the Laplace oper-
ator is given by the nonlinear model equation{−∆u = λ|u|p(x)−2u, in Ω

u = 0, on ∂Ω ,
(2.4)

where Ω ⊂ R
N (N ≥ 3) is still a bounded domain with smooth boundary, while

p : Ω → (1, 2∗) is a given continuous function. (Obviously, the case when p is a
constant function on Ω is allowed but we avoid the case when p ≡ 2 since this
case is the object of problem (2.2), discussed above.) For this problem the growth
rate of the variable exponent p(·) will be essential in the description of the set of
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eigenvalues. First, assuming that minΩ p > 2, it can be proved (by using a mountain-
pass argument) that any λ > 0 is an eigenvalue of problem (2.4). Next, in the case
when minΩ p < 2 it can be proved (by using Ekeland’s variational principle) that
the problem has a continuous family of eigenvalues which lies in a neighborhood
of the origin (see, e.g., [21] or [9] for some extensions). Finally, we point out that
the above result can be completed in the particular case when maxΩ p < 2. More
exactly, in this situation it can be proved that the energy functional associated
with problem (2.4) has a nontrivial (global) minimum point for any positive λ large
enough. In other words, if maxΩ p < 2 then there exist two positive constants µ1

and µ2 such that any λ ∈ (0, µ1) ∪ (µ2,∞) is an eigenvalue of problem (2.4).
In what concerns the eigenvalue problems involving quasilinear operators we

remember, in the case of homogeneous elliptic operators, the contributions of
Anane [1], de Thélin [28, 29], Lindqvist [17] and Filippucci–Pucci–Rădulescu [11],
while in the case of nonhomogeneous elliptic operators we point out the recent
advances of Fan–Zhang–Zhao [10], Mihăilescu–Rădulescu [21–24], Mihăilescu–
Pucci–Rădulescu [18, 19], and Fan [9]. We also refer to the monographs by Ciarlet
[3, 4] for various important applications to mathematical physics and geometry.

Motivated by the above results on problems (2.2) and (2.4) we consider it impor-
tant to emphasize in what follows the situation offered by problem (2.1).

Undoubtedly, a weak solution corresponding to problem (2.1) will be sought in
the Sobolev space H1

0 (Ω). We say that λ ∈ R is an eigenvalue of problem (2.1) if
there exists u ∈ H1

0 (Ω)\{0} such that∫
Ω

∇u∇v dx +
∫

Ω

|u|q(x)−2uv dx − λ

∫
Ω

g(x)|u|r(x)−2uv dx = 0 , (2.5)

for all v ∈ H1
0 (Ω). We point out that if λ is an eigenvalue of problem (2.1) then the

corresponding eigenfunction u ∈ H1
0 (Ω)\{0} is a weak solution of problem (2.1).

The main result is given by the following theorem.

Theorem 1. There exist two positive constants λ� and λ� with λ� ≤ λ� such that
any λ ∈ (0, λ�) is not an eigenvalue of problem (2.1) while any λ ∈ [λ�,∞) is an
eigenvalue of problem (2.1).

Remark 1. Unfortunately, Theorem 1 does not describe entirely the set of eigen-
values corresponding to problem (2.1). Actually, by Theorem 1 it is not clear if
either λ� = λ� or λ� < λ�. In the last case a natural question arises regarding the
existence of eigenvalues in the interval (λ�, λ

�).

3. Notations and Auxiliary Results

Throughout this paper we denote by ‖ · ‖ the norm of the Hilbert space H1
0 (Ω), i.e.

‖u‖ =
(∫

Ω

|∇u|2 dx

)1/2

,
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and for any real p > 1 we denote by | · |p the norm on the Lebesgue space Lp(Ω), i.e.

|u|p =
(∫

Ω

|u|p dx

)1/p

if p ∈ (1,∞),

while for p = ∞ the norm on the Lebesgue space L∞(Ω) is defined by the following
relation:

|u|∞ = inf{C > 0; |u(x)| ≤ C, a.e. x ∈ Ω}.
Next, we highlight some basic results on the theory of Lebesgue–Sobolev spaces
with variable exponent. For more details we refer to the book by Musielak [25] and
the papers by Edmunds et al. [5–7], Kovacik and Rákosńık [14], Mihăilescu and
Rădulescu [20].

Set

C+(Ω) = {h; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.
For any h ∈ C+(Ω), we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω)

=
{

u; u is a measurable real-valued function such that
∫

Ω

|u(x)|p(x) dx < ∞
}

.

We define on this space the Luxemburg norm by

|u|p(x) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)
µ

∣∣∣∣
p(x)

dx ≤ 1

}
.

Let Lp′(x)(Ω) denote the conjugate space of Lp(x)(Ω), where 1/p(x)+1/p′(x) = 1.
For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the Hölder type inequality∣∣∣∣

∫
Ω

uv dx

∣∣∣∣ ≤
(

1
p−

+
1

p′−

)
|u|p(x)|v|p′(x) (3.1)

holds true.
An important role in manipulating the generalized Lebesgue–Sobolev spaces is

played by the modular of the Lp(x)(Ω) space, which is the mapping ρp(x):Lp(x)(Ω) →
R defined by

ρp(x)(u) =
∫

Ω

|u|p(x) dx.

If (un), u ∈ Lp(x)(Ω) then the following relations hold true

|u|p(x) > 1 ⇒ |u|p−

p(x) ≤ ρp(x)(u) ≤ |u|p+

p(x) (3.2)
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|u|p(x) < 1 ⇒ |u|p+

p(x) ≤ ρp(x)(u) ≤ |u|p−

p(x) (3.3)

|un − u|p(x) → 0 ⇔ ρp(x)(un − u) → 0. (3.4)

Finally, we point out that if s ∈ C+(Ω) and s(x) < 2∗ for all x ∈ Ω then the
embedding H1

0 (Ω) ↪→ Ls(x)(Ω) is compact.

4. Proof of the Main Result

First, we will point out that there exists λ� > 0 such that any λ ∈ (0, λ�) is not an
eigenvalue of problem (2.1). Indeed, let us define

λ� = inf
u∈H1

0 (Ω)\{0}

∫
Ω

|∇u|2 dx +
∫

Ω

|u|q(x) dx∫
Ω

g(x)|u|r(x) dx

. (4.1)

We show that λ� > 0. In order to do that we point out first that by relation
(1.4) there exists λ1,Ω > 0 such that∫

Ω

|∇u|2 dx ≥ λ1,Ω

∫
Ω

u2 dx , (4.2)

for any u ∈ H1
0 (Ω). On the other hand, we notice that using the fact that 2 <

r(x) < q(x), for any x ∈ Ω, we find

u2(x) + |u(x)|q ≥ |u(x)|r ,

for any x ∈ Ω and any u ∈ H1
0 (Ω). Integrating the above inequality over Ω we

obtain∫
Ω

u2 dx +
∫

Ω

|u|q(x) dx ≥
∫

Ω

|u|r(x) dx ≥ 1
|g|∞

∫
Ω

g(x)|u|r(x) dx, (4.3)

for any u ∈ H1
0 (Ω). Combining relations (4.2) and (4.3) we get∫

Ω

|∇u|2 dx +
∫

Ω

|u|q(x) dx ≥ 1
|g|∞ min{1, λ1,Ω}

∫
Ω

g(x)|u|r(x) dx, (4.4)

for any u ∈ H1
0 (Ω). The last inequality shows that

λ� >
1

|g|∞ min{1, λ1,Ω} > 0. (4.5)

Let us now define, J1, I1, J0, I0 : H1
0 (Ω) → R by

J1(u) =
1
2

∫
Ω

|∇u|2 dx +
∫

Ω

1
q(x)

|u|q(x) dx, I1(u) =
∫

Ω

1
r(x)

g(x)|u|r(x) dx,

and

J0(u) =
∫

Ω

|∇u|2 dx +
∫

Ω

|u|q(x) dx, I0(u) =
∫

Ω

g(x)|u|r(x) dx.
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Standard arguments imply that J1, I1 ∈ C1(H1
0 (Ω), R) with

〈J ′
1(u), v〉 =

∫
Ω

∇u∇v dx +
∫

Ω

|u|q(x)−2uv dx,

and

〈I ′1(u), v〉 =
∫

Ω

g(x)|u|r(x)−2uv dx ,

for any u, v ∈ H1
0 (Ω).

Lemma 1. Assume λ� is defined by relation (4.1). Then, any λ ∈ (0, λ�) is not an
eigenvalue of problem (2.1).

Proof. Indeed, assuming by contradiction that there exists λ ∈ (0, λ�) an eigen-
value of problem (2.1), it follows that we can find wλ ∈ H1

0 (Ω)\{0} such that

〈J ′
1(wλ), v〉 = λ〈I ′1(wλ), v〉 ,

for any v ∈ H1
0 (Ω). Letting v = wλ, we deduce

〈J ′
1(wλ), wλ〉 = λ〈I ′1(wλ), wλ〉 ,

or

J0(wλ) = λI0(wλ).

Since wλ �= 0 we deduce that J0(wλ) > 0 and thus, I0(wλ) > 0. Combining that
fact with the ideas that λ ∈ (0, λ�) and λ� = infu∈H1

0 (Ω)\{0}
J0(u)
I0(u) , we infer

J0(wλ) ≥ λ�I0(wλ) > λI0(wλ) = J0(wλ)

and that is a contradiction. The proof of Lemma 1 is complete.

Next, for any λ > 0 we define the functional associated with problem (2.1),
Tλ : H1

0 (Ω) → R by

Tλ(u) = J1(u) − λ · I1(u), ∀ u ∈ H1
0 (Ω).

It is clear that λ is an eigenvalue for problem (2.1) if and only if there exists
uλ ∈ H1

0 (Ω)\{0}, a critical point of the functional Tλ.
Define

λ� = inf
u∈H1

0 (Ω)\{0}
J1(u)
I1(u)

. (4.6)

Using the same method as in the proof of the fact that λ� > 0, we can deduce that

J1(u)
I1(u)

≥ min
{

λ1,Ω

2
,

1
q+

}
· r−

|g|∞ , ∀ u ∈ H1
0 (Ω) ,

and thus,

λ� ≥ min
{

λ1,Ω

2
,

1
q+

}
· r−

|g|∞ > 0. (4.7)
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Lemma 2. For any λ ∈ (0,∞) we have

lim
‖u‖→∞

Tλ(u) = ∞.

Proof. It is clear that by relation (4.2) and the fact that 2 < r− ≤ r+ < q−

we have

Tλ(u) =
1
2

∫
Ω

|∇u|2 dx +
∫

Ω

1
q(x)

|u|q(x) dx − λ

∫
Ω

g(x)
r(x)

|u|r(x) dx

≥ 1
2
‖u‖2 + C1

∫
Ω

|u|q(x) dx − C2

∫
Ω

|u|r(x) dx

≥ 1
4
‖u‖2 +

λ1,Ω

4

∫
Ω

u2 dx + C1

∫
Ω

|u|q(x) dx − C2

∫
Ω

(|u|r+
+ |u|r−

) dx

≥ 1
4
‖u‖2 + C3

∫
Ω

|u|s dx − C2

∫
Ω

(|u|r+
+ |u|r−

) dx ,

for any u ∈ H1
0 (Ω), where s ∈ (2, q−) is a fixed real number, while C1, C2 and C3

are three positive constants. Moreover, since s > r±, it follows by the Lebesgue
embeddings that there exist two positive constants C± such that

|u|r±
r± ≤ C±|u|r±

s , ∀ u ∈ H1
0 (Ω).

Combining the last two relations, we infer that for any u ∈ H1
0 (Ω) we have

Tλ(u) ≥ 1
4
‖u‖2 +

(
C3

2
|u|ss − C4|u|r−

s

)
+

(
C3

2
|u|ss − C4|u|r+

s

)
,

where C4 and C5 are two positive constants.
Next, we show that for any u ∈ H1

0 (Ω) there exist two positive constants Mi =
Mi(r, q, C3, C4), with i ∈ {1, 2}, and such that

C3

2
|u|ss − C4|u|r−

s ≥ −M1 , (4.8)

and

C3

2
|u|ss − C4|u|r+

s ≥ −M2. (4.9)

In order to prove that, we point out that the functional Φ : (0,∞) → ∞ defined by

Φ(t) = α · ta − β · tb ,

where α, β, a, b are positive constants with a < b, achieves its positive global
maximum

Φ(t0) =
b − a

a
·
(a

b

)a/(b−a)

· αb/(b−a) · βa/(a−b) > 0 ,
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where t0 = ((α · a)/(β · b))1/(b−a) > 0. Thus, we deduce that

α · ta − β · tb ≤ C(a, b) · αb/(b−a) · βa/(a−b), ∀ t > 0 , (4.10)

where C(a, b) = (b − a) · (aa

bb

)1/(b−a)
.

Relations (4.8)–(4.10) show that the conclusion of Lemma 2 holds true.

Lemma 3. Any λ ∈ (λ�,∞) is an eigenvalue of problem (2.1).

Proof. We fix λ ∈ (λ�,∞). By Lemma 2 we deduce that lim‖u‖→∞ Tλ(u) = ∞, i.e.
Tλ is coercive. On the other hand, it is clear that the functional Tλ is weakly lower
semi-continuous. These two facts enable us to apply [27, Theorem 1.2] in order to
prove that there exists uλ ∈ H1

0 (Ω), a global minimum point of Tλ.
Next, we show that uλ is not trivial. Indeed, since λ� = infu∈H1

0 (Ω)\{0}
J1(u)
I1(u) and

λ > λ�, it follows that there exists vλ ∈ H1
0 (Ω) such that

J1(vλ) < λI1(vλ),

or

Tλ(vλ) < 0.

Thus,

inf
H1

0 (Ω)
Tλ < 0

and we conclude that uλ �= 0.
Next, we show that λ is an eigenvalue of problem (2.1). We notice that if v ∈

H1
0 (Ω) then, since uλ �= 0, it follows that for each ε > 0 small enough we have

(uλ + εv) �= 0. Thus, we deduce

d

dε
Tλ(uλ + εv)|ε=0 = 0 ,

or

〈J ′
1(uλ), v〉 − λ〈I ′1(uλ), v〉 = 0, ∀ v ∈ H1

0 (Ω).

Thus, λ is an eigenvalue of problem (2.1). The proof of Lemma 3 is complete.

Finally, we concentrate our efforts to show that λ�, given by relation (4.6), is
also an eigenvalue of problem (2.1). In order to do that we prove first the following
auxiliary result:

Lemma 4.

lim
‖u‖→0

J0(u)
I0(u)

= ∞.

Proof. Since 2 < r− ≤ r+ < 2∗ it follows that the following continuous embed-
dings hold true

H1
0 (Ω) ⊂ Lr±

(Ω).
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Consequently, there exists a positive constant D such that∫
Ω

g(x)|u|r(x) dx ≤ |g|∞
∫

Ω

|u|r(x) dx

≤ |g|∞
∫

Ω

(|u|r−
+ |u|r+

) dx

≤ D · (‖u‖r−
+ ‖u‖r+

), ∀ u ∈ H1
0 (Ω).

Using the above inequality we obtain the estimates∫
Ω

|∇u|2 dx +
∫

Ω

|u|q(x) dx∫
Ω

g(x)|u|r(x) dx

≥ ‖u‖2

D · (‖u‖r− + ‖u‖r+)
, ∀ u ∈ H1

0 (Ω).

Since r± > 2 it follows that passing to the limit as ‖u‖ → 0 in the above inequality,
we deduce that Lemma 4 holds true.

Lemma 5. The real number λ�, given by relation (4.6), is an eigenvalue (2.1).

Proof. Let (λn) be a sequence in R such that λn ↘ λ� as n → ∞. By Lemma 3
we deduce that for each n there exists un ∈ H1

0 (Ω)\{0} such that

〈J ′
1(un), v〉 − λn〈I ′1(un), v〉 = 0, ∀ v ∈ H1

0 (Ω). (4.11)

Taking v = un in the above equality, we find

J0(un) = λnI0(un), ∀ n. (4.12)

The above equality and Lemma 2 imply that (un) is a bounded sequence in H1
0 (Ω).

Indeed, assuming by contradiction that (un) is not bounded in H1
0 (Ω) it follows that

passing, if necessary, to a subsequence, still denoted by (un), we have ‖un‖ → ∞.
On the other hand, the fact that λn ↘ λ� and relation (4.12) imply that for each
n large enough it holds true that

J0(un) = λnI0(un) ≤ (λ� + 1)I0(un).

Lemma 2 shows that the above inequality and the fact that ‖un‖ → ∞ lead to a
contradiction. Consequently, (un) is bounded in H1

0 (Ω). We deduce the existence of
u ∈ H1

0 (Ω) such that un converges weakly to u in H1. Since q(x), r(x) ∈ (2, 2∗) the
Rellich–Kondrachov compact embedding theorem shows that un converges strongly
to u in Lq(x)(Ω) and in Lr(x)(Ω). Thus, passing to the limit as n → ∞ in (4.11)
we get

〈J ′
1(u), v〉 − λ�〈I ′1(u), v〉 = 0, ∀ v ∈ H1

0 (Ω).

Thus, λ is an eigenvalue of problem (2.1), provided that u �= 0.
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On the other hand, we point out that taking v = u in the above equality we
find

J0(u) = λ�I0(u).

We also point out that passing to the limit as n → ∞ in (4.12), we obtain

lim
n→∞J0(un) = λ�I0(u).

Combining that last two equalities we infer that, actually, un converges strongly to
u in H1

0 (Ω).
Now, we are ready to prove that u �= 0. Assuming by contradiction that u = 0

we deduce that un converges strongly to u in H1
0 (Ω). By relation (4.12) we deduce

that for any n the equality

J0(un)
I0(un)

= λn

holds. Passing to the limit as n → ∞ and taking into account the result of Lemma 4
and the fact that λn ↘ λ�, we obtain a contradiction. Consequently, u �= 0, and,
thus, λ� is an eigenvalue of problem (2.1). The proof of Lemma 5 is complete.

Obviously, the numbers λ� and λ� defined by relations (4.1) and (4.6) verify
λ� ≤ λ�. Moreover, the estimates in Theorem 1 are valid since relations (4.5) and
(4.7) hold true. The conclusion of Theorem 1 follows by Lemmas 1, 3 and 5.
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[21] M. Mihăilescu and V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue prob-
lem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007)
2929–2937.
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