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Abstract: We consider a nonlinear Robin problem driven by a nonlinear, nonhomogeneous differential op-
erator, and with a Carathéodory reaction term which is (p — 1)-superlinear near +co without satisfying
the Ambrosetti-Rabinowitz condition and which does not have a standard subcritical polynomial growth.
Using a combination of variational methods and Morse theoretic techniques, we prove a multiplicity theo-
rem producing three nontrivial solutions (two of which have constant sign). In the process we establish some
useful facts about the boundedness of the weak solutions of critical equations and the relation of Sobolev
and Holder local minimizers for functionals with a critical perturbation term.
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1 Introduction

Let Q ¢ RN be a bounded domain with a C?>-boundary 0Q and consider the following semilinear Dirichlet
problem:
- Au(z) = flu(z)) inQ, Ulpq = 0. (1.1)

Suppose that the reaction term f: R — R satisfies the following conditions:
f e CHR,R), f(0)=f"(0) =0, ')l < ci(1+1x]™2) forallx € R,
where ¢; > 0and 2 < r < 2* with
) {% ifN >3,
+oo ifN=1,2,
and there exist y > 2 and M > 0 such that

0 < uF(x) < f(x)x forall |x| > M, with F(x) = Jf(s) ds. (1.2)
0

In (1.2) we recognize the Ambrosetti—-Rabinowitz condition (AR-condition for short). Integrating (1.2), we
obtain the following weaker condition:

c|x* < F(x) forall |x| > M and some ¢, > 0. (1.3)
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From (1.2) and (1.3), it follows that f( - ) is superlinear near +co, that is,

lim @ =400
X—*o0 X

Under (1.2), in a well-known paper, Wang [42] proved that problem (1.1) admits at least three nontrivial
solutions. The multiplicity result of Wang [42] was extended to Dirichlet problems driven by the p-Laplacian
by Liu [25]. More recent works relaxed the AR-condition. In this direction, we mention the papers [22, 28, 38]
for Dirichlet problems, and [2] for Neumann problems always with the p-Laplacian as differential operator.
Very recently Mugnai and Papageorgiou [31] extended the aforementioned result of Wang to Dirichlet (p, q)-
equations (that is, equations driven by the sum of a p-Laplacian and a g-Laplacian, 1 < g < p < 00), without
assuming the AR-condition.

The aim of this paper is to prove such a “three solutions theorem” for a larger class of differential equa-
tions in which the differential operator need not be homogeneous and covers as a special case the p-Laplacian
(1 < p < 00). So, as above, let Q ¢ RN be a bounded domain with a C>-boundary 0Q. The problem under con-
sideration is the following:

—diva(Du(z)) = f(z, u(z)) inQ,
0 (1.4)

_u p-2 = Q
on, +B@)uP“u=0 on 0Q.

In this problem a: RY — RY is continuous and strictly monotone and satisfies certain other regularity and
growth conditions. The precise requirements on the map a(-) are listed in hypotheses (Ha) below. These
hypotheses are quite general and incorporate in our framework many differential operators of interest such
as the p-Laplacian and the (p, g)-Laplacian. In the boundary condition, aT”a denotes the generalized normal

derivative defined by
ou

e - (a(Du), n)gw,

with n(-) being the outward unit normal on 0Q. This particular normal derivative is dictated by the nonlinear
Green’s identity (see, for example, [13, p.210]) and is also used by Lieberman in [23]. The reaction term
f(z, x) is a Carathéodory function (that is, z — f(z, x) is measurable for all x € R and continuous for almost
all z € Q), which is (p — 1)-superlinear in the x-variable but without satisfying the AR-condition. In this way
we can fit in our analysis superlinear nonlinearities with “slower” growth near +oco which fail to satisfy the AR-
condition. In addition, f(z, - ) needs not to satisfy a polynomial subcritical growth and it grows in an almost
critical fashion (see hypothesis (Hf) (i)). The nonhomogeneity of the differential operator and the failure of
the Poincaré inequality in the ambient Sobolev space W1?(Q), as well as the almost critical growth of the
reaction term, are sources of difficulties which require new methods and techniques in order to overcome
them.

Our approach uses variational tools based on the critical point theory together with Morse theory (critical
groups). Also, the almost critical growth of f(z, - ) requires a careful analysis of the boundedness of the weak
solutions of (1.4).

2 Mathematical Background

Let X be a Banach space and X* its topological dual. By (-, -) we denote the duality brackets for the pair
(X, X*). Given @ € C1(X, R) we say that ¢ satisfies the “Cerami condition” (the “C-condition” for short), if the
following property holds:

o Every sequence {un}n>1 € X such that {¢(un)}n>1 € Ris bounded, with

(1 + |unl)e' (uy) - 0 inX* asn — oo,

admits a strongly convergent subsequence.
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This is a compactness-type condition on the functional ¢ which compensates for the fact the ambient space
X need not be locally compact (usually X is infinite dimensional). It is more general than the usual Palais—
Smale condition. Nevertheless, the C-condition leads to a deformation theorem from which one can derive the
minimax theory of the critical values of ¢. Prominent in this theory is the so-called “mountain pass theorem”,
due to Ambrosetti and Rabinowitz [4]. Here we state it in a slightly more general form (see, for example, [13,
p. 648]).

Theorem 2.1. Let X be a Banach space, let ¢ € C'(X, R) satisfy the C-condition, let ug, u; € X be such that

luy —uoll > p >0, max{p(uo), p(u1)} < inf{epu) : [lu - uol = p} = my,

and let
¢ = inf max @(y(t)), whereT ={y € C([0, 1], X) : y(0) = uo, y(1) = u1}.
yel 0<t<1

Then ¢ = m, and c is a critical value of .

Let 9 € C1(0, co) and assume that it satisfies the following growth conditions:

<co and c1tP1<9() <cr(1+tP7Y) (2.1)

forallt > 0 and some c1,c2 > 0,1 < p < 00.
We introduce the precise conditions on the map y — a(y), y € RV, involved in the definition of the differ-
ential operator.
(Ha) Weset a(y) = ao(|y|)y for all y € RN with ao(t) > 0 forall t > 0, and assume the following:
(i) ao € CY0, 00), t — ap(t)tis strictly increasing on (0, 00), ap(t)t — 0* ast — 0* and

ay(t)t
im
t—0* (10([’)

(ii) Forsomecs >0Oandally € RV \ {0},

9
[Va(y)l < c3 (M)-

(iii) Forally e RN \ {0} and all ¢ € RV,

9(yD

Wlﬂz < (Vay)&, Opv.

(iv) If

t
Go(t) = J ap(s)sds forallt>0,
0

then we have
—& < pGo(t) — ap(t)t> forall t > 0 with & > 0.

Remark 2.2. Hypotheses (Ha) (i)—(iii) are dictated by the nonlinear regularity theory of Lieberman [24] and
the nonlinear maximum principle of Pucci and Serrin [36]. Hypothesis (Ha) (iv) corresponds to the particular
features of our problem, but it is very mild and it is satisfied in all the major cases of interest as the examples
below illustrate.

Set G(y) = Go(ly|) for all y € RN, We have

VG(y) = G{)(Iyl)l = ao(lyl)y = a(y) forally e RN\ {0}, VG(0) = 0.

[yl
So, G(-) is the primitive of a(-).
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Hypotheses (Ha) imply that the functions G(-), Go(-) are both strictly convex and Go(-) is also strictly
increasing. The convexity of G(-) and the fact that G(0) = 0 imply

G(y) < (a(y),y)gv forally e RV, (2.2)

The next lemma summarizes the main properties of the map a( - ) and it is a straightforward consequence
of hypotheses (Ha).

Lemma 2.3. If hypotheses (Ha) (i)—(iii) hold, then so do the following:

(a) y — al(y) is continuous and strictly monotone, hence maximal monotone too,
(b) la)| < c4(1 + |y|P~Y) for some cs >0 and ally € RN,

(© (@), y)rv = 3%yl forally e RV

This lemma, together with (2.1) and (2.2), leads to the following growth estimates for the primitive G(-).
Corollary 2.4. If hypotheses (Ha) (i)—(iii) hold, then

pc—lllylp <Gy) <cs(1+|ylP) forally e RN and some cs > 0.

Example 2.5. The following maps a( - ) satisfy hypotheses (Ha):
(@) a(y) = |ylP~2y with 1 < p < co. This map corresponds to the p-Laplace differential operator defined by

Apu = div(|DulP~*Du) forallu e WHP(Q).

(b) a(y) = lylP~2y + |y|972y with 1 < p < g < oco. This map corresponds to the (p, q)-differential operator de-
fined by
Apu +Aqu  forallu e WHP(Q).

Such differential operators arise in many physical applications, see [6] (quantum physics) and [8] (plasma
physics). Recently there have been some existence and multiplicity results for such equations, see [5, 9,
15, 27, 34, 35, 39, 40].

(© a)=@1+|yl>)P-22y with 1 < p < co. This map corresponds to the generalized p-mean curvature dif-
ferential operator defined by

div((1 + [Du|>)®2/2Dpu) forallu e WHP(Q).
@) a(y) = lyP~2y(1 +1/(1 + [y|*")}/?) with 1 < p < co.

Our hypothesis on the boundary weight function (-) is the following:
(HB) B e CH*(0Q) witha € (0,1),8 > 0.

Remark 2.6. If § = 0, then we have the Neumann problem.

In the analysis of problem (1.4), in addition to the Sobolev space WP (Q) we will also use the Banach space
C1(Q). This is an ordered Banach space with positive cone given by

Cy ={ueCHQ):u(z) 2 0forall z € Q}.
This cone has a nonempty interior given by
intC, = {ueC, :u(z)>0forall z € Q}.

On 0Q we use the (N - 1)-dimensional surface (Hausdorff) measure o(-) and using this measure we
can define the Lebesgue spaces L?(0Q) (1 < p < 00). We know that there exists a unique continuous lin-
earmap yo: WHP(Q) — LP(0Q), known as the trace map, such that yo(u) = ulyq for all u € WHP(Q) n Q).
Recall that im yo = W/P"P(3Q) (I% + 1% =1)and keryg = Wé’p (Q). Moreover, the trace map yo is compact in
L1(0Q) for all q € [1, Np—_‘;). In the sequel for the sake of notational simplicity, we will drop the use of the
trace map yp. It is understood that all restrictions of Sobolev functions on the boundary 0Q are defined in the
sense of traces.
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In what follows, by | - | we denote the norm of the Sobolev space W1 ?(Q) defined by
lull = [l + 1Dulp]""?  forallu e WHP(Q).
For every x € R, we set x* = max{+x, 0}. Then, for u ¢ WH?(Q), we define u*(-) = u(-)*. We have
u=u"-u", |ul=ut+u and u*,u e WHP(Q).

Also, by | - |y we denote the Lebesgue measure on RN and by A,: WP (Q) — WHP(Q)* the nonlinear map
defined by

(Ap(u), hy = JlDulP‘z(Du, Dh)gv dz forallu, h € WHP(Q).
Q
Let A: WHP(Q) — WLP(Q)* be the nonlinear map defined by

(A(u), h) = J(a(Du),Dh)IRN dz forallu,h e WHP(Q). (2.3)
Q
The next proposition is a special case of a more general result of Gasinski and Papageorgiou [14, 16].

Proposition 2.7. The map A: WYP(Q) — WP (Q)*, defined by (2.3), is bounded (that is, it maps bounded
sets to bounded sets), continuous, monotone (hence maximal monotone too) and of type (S)., that is, if

up Lu inwWhPQ)  and lim sup (A(uy), un — u) <0,
n—+o0o

then u, — uin WHP(Q) as n — co.

We consider the following nonlinear Robin problem:

—diva(Du(z)) = fo(z,u(z)) inQ,

(2.4)
ou +B@)ulP?u=0 on 0Q.
ong

In this problem, f5: Q x R — Ris a Carathéodory function with critical growth in the x-variable, that is,
Ifo(z, X)| < ao(z)(1 + |x[P"~1) foralmostallz € Qandallz € R, (2.5)

with ag € L*°(Q), and
= NN—_’; ifp <N,
+oo if N <p.

By a weak solution of problem (2.4) we understand a function u € WHP(Q) such that

J(a(Du),Dh)]RN dz+ J B)ulP2uh do = j folzowhdz forall h e WhP(Q).
Q 0Q Q

Next we establish the boundedness of weak solutions. Due to the critical growth of f(z, - ), the Moser itera-
tion technique used by Hu and Papageorgiou [18], and Winkert [43] does not work. Instead, we follow the
approach of Garcia Azorero and Peral Alonso [11] (see also [41] for semilinear equations). An alternative
method can be based on the work of Guedda and Véron [17].

Proposition 2.8. If hypotheses (Ha), (HB) hold and u € WVP(Q) is a weak solution of (2.4), thenu € LI(Q) for
all g € [1, c0).

Proof. Recalling that u = u* — u~ and performing the argument on u* and u~ separately, we see that without
any loss of generality, we may assume that u > 0.
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For § > 1 and A > 0, we introduce the following Lipschitz continuous functions:

H(E) = th ifo<t<a,
Bt -2) + A8 ifA <t

) = tB-Lp+1 ifo<t<Aa,
T BB - p + DABDP(E - 2y £ AV F A < ¢

It is easy to check that these two functions satisfy the following properties (see, e.g., [13, p. 194] or [11]):

(P1) S(t) < tS'(t)forall t > 0,
(P2) csH'(t) < S'(t) for all t > 0 with ¢5 > 0 independent of A > 0,

(P3) tP715(t) < c7H(t)P for all t > O with c; > 0 independent of A > 0, and H(y), S(y) € WHP(Q) for every

y e WhP(Q),

We fix B > 1 such that fp < p*, and let 9 € C2(RN, R) with 0 < 9 < 1 to be fixed precisely in the process

of the proof. We use the test function

h=9Su) e WhP(Q), h=>o0.

We have
j(a(Du), Dh)gy dz + J BwP " h do = J fo(z, u)h dz.
Q 0Q Q
Note that
Dh = p9~1S(u)DI + 9 G' (u)Du,
and so

J(a(Du), Dh)pvdz =p J 9P~1S(u)(a(Du), D)y dz + J 9P G'(u)(a(Du), Du)gn dz.
Q Q Q
Using (2.7) in (2.6), we have

j 9 G' (u)(a(Dw), Du)gy dz + j B2~ hdo < j folz, Whdz - p J 9P-1S(w)(a(Du), DI dz.
Q

Q 0Q Q

From Lemma 2.3 and since 9?S'(u) > 0 (see (P1)), we have

C_l 1 J 9°S"(u)|DulP dz < J 9 S’ (u)(a(Du), Du)gy dz.
Q Q

Also, using (P1) and Young’s inequality with € > 0, we have

lp J 9P-1S(u)(a(Du), D9)gy dz| <p J 9P-1S(u)|a(Dw)||DY| dz
Q

9P1Sw) P S(w)P~V/P|a(Du)||DY| dz

Il
=

9P a(Dw)|Sw)YP (uS' (w)P~V/P|DI| dz

IN
S

O, O, D, D —nu, D

I la(Dw)P'PVS"(w) dz + ¢ | uP~1Sw)|DY| dz

IA
m

cg(1 + |DulP)S" (W) dz + ce | uP~1S(u)|DIP dz

IN

€

O — o,

for some cg > 0, with ¢, > O (see Lemma 2.3).

(2.6)

(2.7)

(2.8)

(2.9

(2.10)
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We return to (2.8) and use (2.9) and (2.10). So, choosing € € (0, 1) small and since Iao B(z)uP*hdo > 0,
we have (see (2.5) and (P3))

J 9°S"(w)|DulP dz < eco | 9PS'(u) dz + coce J uPLSW)|DIP dz + co Jfo(z, w9 S(u) dz

Q s! Q Q
< eco J 9PS' (u) dz + coce J H(u)?|DIP dz
0 e
+ Collaolos j 9PS(u) dz + collaolles j WP L9 S(u) dz (2.11)
) )
for some c¢9 > 0. Using (P2), we obtain
C10 J(SH'(u))I"IDuI]‘J dz < J 9PS'(w)|Dul? dz for some c1g > O. (2.12)

Q Q
Then, on account of (P3), (2.11) and (2.12), we have the following estimate:

jID(SH(u))IP dz = JISH'(u)Du + H(u)DIP dz

Q Q

<cyl JlSH’(u)Dulp dz + JH(u)plD.9|P dz]
Q Q

<12 J 95" ()| DulP dz + j Hw)? D3P dz]
Q Q

< c13 JH(u)”IDSIp dz+ j WP P (SHW))P dz + J 9P S(u) dz]
Q Q Q

< Cu JH(u)pIDSIP dz + J’ uP P(9H))P dz + 1] (2.13)
Q Q

forsome cqy; >0,i=1,2,3,4,since 0 < 9 <1and |DI(-)|is bounded.
We choose p > 0 such that for any ball B, of radius p > 0 with B, N Q # &, we have

. 1
b -p :
||u||Lp*(Ban) < ﬁ with n> 0 (2.14)

(recall that WHP(Q) — LP*(Q)).
Given zg € Q choose 9 € C‘CX’(]RN) with0<9<1,suppd = Bp(zo) and 9=1on Bp/z(zo). Using Holder’s
inequality and (2.14), we have
jup*‘pBPH(u)p dz = I uP"PYPH(u)P dz
Q B, (20)NQ

. . plp* . (p*-p)/p*
< <J8p H(u)? dz) ( J u? dz)
Q

B, (20)NQ

<
NCiy

( JSP*H(u)P* dz)p/p*. (2.15)
Q

Note that for 6 > 0, u — 6lullp- + [|[Dull, is an equivalent norm on the Sobolev space WLP(Q) (see, for exam-
ple, [13, p. 227]). So, by choosing § > 0 small, we can find c¢15 > 0 such that

. . p/p*
(jap Hu)? dz) < C1s j \D(SHW)P dz. (2.16)
Q Q
Using (2.16) in (2.15), we obtain
J WP PP Hu) dz < nc% jID(SH(u))lp dz. (2.17)
14
Q Q
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Returning to (2.13) and using (2.17) with > %’:, we have
JlD(SH(u))lp dz < c16[ JH(u)p dz + 1]
Q Q
for some c1¢ > 0, and hence, by (2.16),
. . plp*
( J 9" H(u)? dz) < 617[ JH(u)p dz + 1] (2.18)
Q Q

for some c17 > 0. Letting A — +0c0 in (2.18) (see the definition of H(-) in the beginning of the proof) yields

. p/p*
( J ubp dz) < C17[ j uPP dz + 1]. (2.19)
Bp2(z0)NQ Q

Since Bp < p* and u € WHP(Q), we have that u ¢ Lﬁp*(Bp/z(zo) N Q). Then, from (2.19) and since Q is
totally bounded, we infer that u € LAP"(Q). Fix €o > 0 such that  — €y > 1. Then, by repeating the above
argument, we can generate a sequence {f,}n>1 such that f1p* < Bp*, Bn = (B — €0)" and u € LA (Q) for all
n € N. Since ( — €9)" — +00, we conclude that u € L4(Q) forall g € [1, c0). O

Next we will establish the essential boundedness of u and produce a useful bound for its L>-norm. We start
with a lemma, which is essentially [20, Lemma 5.1, p. 71]. For completeness in our argument we include it
here.

Lemma 2.9. Ifu e W-P(Q),0<u,q € (1,p*), ko > 1 and ¢ > O are such that

JlDulp dz < Sk |E/ forallk > ko, (2.20)

Ey
where Ey = {z € Q : u(z) > k}, then there exists M, = M1(Q, ¢, q, ko) > 0 such that ||u|ls, < M.
Proof. From [20, p. 45], we know that

1/p 1/p .
( J(u ~loPdz) < e JIDqu dz) " IEdP (2.21)
Ek Ek

for some cyg > 0. Using (2.20), (2.21) and Holder’s inequality, we have

J(u -k)dz < ( J(u — P dZ>1/p|EkI;]_l/p

Ex Ey
1p .
< crs( [IDuP dz) I B
Ex
< C1ok|Ex|* V9P forall k > ko. (2.22)
Let9 = Ll] - 1% > 0 (recall that 9 € (1, p*)). Then from (2.22) we have

J(u K dz < croklExl}? forall k = ko. (2.23)
Ex

We set (see Ziemer [44, p. 19])

£(k) = j(u _kdz= ju:“sm ds,
Ex k
and have
— £'(K) = |Exly. (2.24)
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From (2.23) we have
&) > (cq0k) I ELE,

and using (2.24) this yields
=& (&) 5 (cq9k)~1/AHI), (2.25)

Let k* = esssupg u and integrate (2.25) from ko to k*. Then
(k*).9/(1+.9) < kg/(1+«9) T Clg{(ko)wuw) _ M(11+8)/‘9. 0

Now we are ready to establish the essential boundedness of the weak solutions of problem (2.4) and provide
a useful description of their bound.

Proposition 2.10. If hypotheses (Ha), (HB) hold and u € WYP(Q) is a weak solution of problem (2.4), then
there exists M, = M (p, N, |lullp+, Q) > 0 such that |ul e < M>.

Proof. As in the proof of Proposition 2.8, without any loss of generality, we may assume that u > 0.
Let ux = (u - k)* € WHP(Q) and Ey = supp uy k € N. Since u € WHP(Q) is a weak solution of the Robin
problem (2.4), we have

J(a(Du), DR)gv dz + j B’ hdo = J folz,whdz forall h e W“P(Q). (2.26)
Q 0Q Q

In (2.26), we choose h = ux € WP(Q) and, by hypothesis (Hp), we obtain

J(a(Du), Du)py dz < Jfo(z, uudz,
Ek Ek

which implies (see Lemma 2.3)

S [ 1Du dz < [ fotz wudz. (2.27)
Ey

Ey

Note that, using (2.5), we have

I Ifo(z, uu dZ‘ < jlfo(z, wlluldz

Er By
< Cy0 J(l +uP  YHudz
Ex
< 2¢a0 J w ludz (since k € N)
Ey
=2¢20 j uPuP P dz (2.28)
Ey

for some ¢y > 0,
We choose ¢ ¢ (p, p*). Using Proposition 2.8, we have uP € L%P(Q) and u?" P ¢ L9/(4-P)(Q). Note that

% + % = 1. So, using Hélder’s inequality in (2.28), and in view of Proposition 2.8, (2.19) and [20, p. 45], we
have
plq . (g-p)/q
| Jfo(z, u)u dz{ < 2c20< J ud dz) (J u® -Pale-9 dz)
Ex Ex Ex
rlq
< 621( J u? dz)
Ey
plq
= cz1( J(u —k+ k)1 dz)
Ex
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plq plq
< sz( J(u - k) dz) + kP |Exly
Ex
1/q-1/p*
< colB/ " [IDul dz + coo P IEY
Ex

for some c21 = c21(Jlullp+) > 0, c22 > 0and cp3 > 0.
Returning to (2.27) and choosing k € N big so that |Ex|y is small, we have

lequ dz < CoukP |Ex P9 (2.29)
Ey

for some ¢4 > 0 (note that all the above estimation constants depend only on (p, N, |lull,+, Q)). Then, from
(2.29) and Lemma 2.9, we see that we can find M, = M, (p, N, |ullp-, Q) > O such that

ueL®(Q) with ulle < M. O

Remark 2.11. As we already said, an alternative approach can be based on the work of Guedda and Véron,
see [17]. Indeed, let
sign (w)fo(2, u(2))

1+ lu(z)P?

K(z) =

Then from (2.5) we have

cas(1+ [u@)P" - 1)

Lt up < Co6(1 + [u(z)|P"P) foralmostall z € Q,

IK(2)| <

for some c>5, c26 > 0. Note that p* —p = Np—; for p < N and recall that u € L?"(Q). Hence, K € LN/P(Q). We
have

—diva(Du(z)) = K@)|u(@)P~%u(z) + sign(u)K(z)
= K(2)(lu(2)lP2u(z) + sign(u))
_ folz, u(2))
T 1+ |u(zx)pt

= fo(z, u(2)).

So, keeping in mind that for every € > 0, u — €llullp- + | Dull, is an equivalent norm on W'-?(Q), we can follow
the proof of [17, Proposition 2.1] (with suitable modifications to accommodate the more general differential
operator and the boundary term), to prove that u € L4(Q) for all g € [1, +0co0). Then we can continue with
Lemma 2.9 and Proposition 2.10 to reach the desired conclusion.

(1+u@)P™)

We can use Proposition 2.10 to prove a result comparing Sobolev and Hélder local minimizers of certain C*-
functionals. Such a result was first proved by Brezis and Nirenberg [7] for functionals defined on Hé(Q) and
it was extended to functionals defined on Wé’p (Q) by Garcia Azorero, Peral Alonso and Manfredi [12] and to
functionals defined on WP (Q) by Motreanu and Papageorgiou [30], and Papageorgiou and Ridulescu [33].
All these works involve perturbation terms with subcritical growth. Our result here is more general, since the
functional is more general and the perturbation has critical growth.

So, let Fo(z, x) = f(ffo(z, s)ds and consider the C'-functional @o: WP(Q) — R defined by

Po(u) = I G(Du) dz + % j B()ulP do - JFO(Z, wdz forallu e WP(Q).
Q 0Q Q

Proposition 2.12. Ifug € WYP(Q) is a local C1(Q) minimizer of po, that is, we can find po > O such that
Po(uo) < Po(uo +h) forall h € C'(Q) with |hll g, < po,

then ug € CY1(Q) for some n € (0, 1) and ug is also a local WP (Q)-minimizer of @o, that is, we can find p1 > 0
such that
@o(uo) < @o(up +h) forallh e WYP(Q) with ||h|| < P1.
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Proof. Since by hypothesis ug is a local C!(Q)-minimizer of ¢, for every h € C1(Q) and for ¢ > 0 small, we
have @o(uo) < @o(up + th), and hence

0 < (pH(uo), hy forallh e C1(Q). (2.30)

Recalling that C(Q) is dense in WP (Q), from (2.30) we infer that ¢{ (o) = 0, and therefore

(A(uo), h) + J B)uolP2uoh do = jfo(z, ug)hdz forall h e WhP(Q). (2.31)
0Q Q

From the nonlinear Green’s identity, we have

(A(ug), h) = {(~diva(Dug), h) + <%, h>aQ forall h e WHP(Q), (2.32)
a

where by (-, - )9q we denote the duality brackets for the pair (W-1/7"?'(9Q), W/P":P(3Q)). Note that
diva(Duo) € WP/ (Q) = WP (Q)*.
So, if by (-, - )o we denote the duality brackets for the pair (W‘I’P' (Q), Wé’p(Q)), from (2.32), we have
(~div a(Duo), h)o = (A(uo), h)o = (A(up), h) forall h e WyP(Q) € W'P(Q).

Hence, by (2.31),
(— div a(Dug), h)o = jfo(z, uo)hdz forallh e WoP(Q),

Q
and therefore
—diva(Duo(z)) = fo(z, up(z)) foralmostall z € Q. (2.33)
From (2.31), (2.32) and (2.33), we obtain
Ouo + B(2)|uolP2uo, h> =0 forallh e WHP(Q). (2.34)
ong 20

Recall that, if yg is the trace map, then im yy = W/P'p(9Q). So, from (2.34) it follows that

auo

+ B@)uol’2up =0 in W PP (9Q).
ong

From Proposition 2.10 we have that ug € L>(Q). So, the nonlinear regularity result of Lieberman [24, p. 320]
implies that
up € CV1(Q) forsomen € (0, 1).

Next we show that uo is also a local WP (Q)-minimizer of ¢o. We argue indirectly. So, we assume that
uo is not a local WP (Q)-minimizer of ¢q. Given € > 0, we consider the set

B; = {h e WYP(Q) : Al < €},
and define
m; = inf{@o(uo + h) : h € BZ}. (2.35)

By our contradiction hypothesis, we have
m; < @o(uo). (2.36)

Let {hn}n>1 € B} be a minimizing sequence for (2.35). Then, since u — lullp- + IDul is an equivalent norm
on the Sobolev space WP (Q), we see that {h,},s1 € WHP(Q) is bounded and so we may assume that

hy % he  in WHP(Q)and in P (Q),
hn(z) — he(z) foralmostall z € Q. (2.37)
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Using the extended Fatou’s lemma, we see that ¢ is sequentially weakly lower semicontinuous. So, we have

®o(uo + he) < lim inf o (uo + hn).

Since [|h¢llp+ < € (see (2.37)), it follows that m} = @(uo + he), hence, by (2.36), he 0. By the Lagrange mul-
tiplier rule (see, for example, [32, p. 35]), we can find A, < O such that

(@o(uo + he), vy = Ae Jlﬁglp*‘zfzev dz forallv e WYP(Q),
Q
which implies
(A(ug, he), vy + J B(@)|uo + helP~2(uo + he)v do = jfo(Z, Uo + he)vdz + A¢ J|il€|p*_2ilev dz (2.38)
o0 Q Q
for all v e WHP(Q). From (2.38), as above using the nonlinear Green’s identity, we obtain
—diva(D(uo + he)(2)) = fo(z, (Uo + he)(2)) + Aelhe(2)|P" 2he(z) for almostall z € Q,

' A A (2.39)
a(u§n+ he) | Bl + helP2(up + ) = 0 on o,
a

First assume that A € [-1, 0] for all € € (0, 1]. Then, from (2.39) and Proposition 2.10, we can find M3 > 0
such that
luo + hello < M3 foralle € (0, 1]. (2.40)

Invoking the regularity result of Lieberman [24], we can find 1 € (0, 1) and M4 > O such that
uo + he € CV1(Q), o + bl < My foralle € (0,1]. (2.41)

Next suppose that there exists €, | O suchthatA, = A¢, < -1 foralln € N.From (2.39) with fzn = flen , we have

1 " 1 . . s
S diva(D(uo + hn)(2)) = me(z’ (Uo + hn)(2)) + |hn(2)IP" 2 hn(2) (2.42)
n n
for almost all z € Q. Also, from the first part of the proof, we have
1 1
ST diva(Dug(z)) = me(z’ Up(z)) foralmostall z € Q. (2.43)
n n

Let u > 1 and consider the function Ifznlﬂﬁn n € IN. We have

D(|hnl*hn) = [hn*Dhy + phy Iﬁn |hnl*~ Dhy = ( + 1)lhnl* Dhy,

n

which, by (2.41) and the fact that uy € C11(Q), implies
|hnlFhn € WHP(Q).
Using this as test function, from (2.5), (2.40), (2.42) and (2.43), we have

0 < (A(uo + hy) — A(uo), |hnl*hn) + j B(2)[luo + hnlP~2(uo + hy) - [uolP2uo] do

0Q
= j[fo(z, Uo + ) = fo(z, uo)||Anl* hn dz + Ay jmnv’*ﬂ‘ dz
Q Q
< Ms J|ﬁn|ﬂ+1 dz + Ay Jlfznlp*“‘ dz
Q Q
< Ms1QIF O R IBTL, + AnllhnlE
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for some M5 > O and all n € N, where we have used Holder’s inequality with the exponents 1‘;: =E, zit’f .Thus,

R e
Ml < MsQy /@0,

and hence
InlB: %, < Mg
for some My > O (independent of 4 > 1) and all n € IN (recall that |A,| > 1). Since u > 1 is arbitrary, we let

U — oo and obtain that
Ihnlleo < M7

for some M7 > 0 and all n € IN. So, the nonlinear regularity theory of Lieberman [24] implies that for some
1 € (0, 1) and some Mg > 0, we have (see (2.42) and recall that uy € C1(Q))

h, € CV(Q), IIfznllcl@ <Mg forallneN.

Therefore, in both cases (case 1: A € [-1, 0] for all € € (0, 1] and case 2: A, < —1 for some €, | 0), we
reach the same uniform C1"(Q) bounds for the sequence {h,}ns1 € WL (Q) such that (see (2.36))

@o(ug + hy) < Po(up) foralln e N.
Recalling that || fln lp+ < enforalln € Nand exploiting the compact embedding of C L1(Q) into C1(Q), we have

h, — 0in C}(Q),

hence
Uo + hy — ug in C1(Q),
and therefore
®o(uo) < @o(uo + hy) foralln > ng.
But recall that
@olup + fln) < @o(ug) foralln e N,
a contradiction. This proves that uy € C1(Q) is also a local W' (Q)-minimizer of ¢,. O

Remark 2.13. A careful reading of the proof of Proposition 2.8 reveals that the result remains valid if instead
we use the more general nonlinear boundary condition

ou
o, &(z,u) onoQ

with & € C%1(0Q x R), 0 < 17 < 1, such that
[€(z, )| < ca51x|"  forall (z,x) € 0Q X R,

with ¢5 > 0 and 7 € (1, p]. For simplicity in our presentation, we have used in problem (2.4) the Robin
boundary condition from problem (1.1), simplifying this way a little the necessary estimates.

As we already mentioned in the introduction, we will also use tools from Morse theory (critical groups). So,
let us recall some basic definitions and facts from that theory.
Given a Banach space X, a function ¢ € C (X, R) and ¢ € R, we introduce the following sets:

p-={ueX:pu<c}, Kp={ueX:9'(u)=0}, Kj={ueKy:qp)=c}

Let (Yq, Y3) be a topological pair such that Y, € Y; € X and k € Ny. By Hy(Y;, Y>) we denote the kth-
relative singular homology group for the topological pair (Y1, Y,) with integer coefficients. The critical groups
of ¢ at an isolated u € K, are defined by

Cr(p,u) = Hi(nU, e nU\{u}) forall k € Np.
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Here U is a neighborhood of u such that K, n ¢ n U = {u}. The excision property of singular homology im-
plies that the above definition of critical groups is dependent of the choice of the neighborhood U of u.
Suppose that ¢ satisfies the C-condition and that inf ¢(K,) > —oo. Let ¢ < inf ¢(Ky). The critical groups
of ¢ at infinity are defined by
Cr(p, 00) = Hx(X, p€) forall k € No.

The second deformation theorem implies that this definition is independent of the choice of the level
¢ <inf @(Kyp).
Suppose that ¢ € C1(X, R) satisfies the C-condition and that Ky, is finite. We define

M(t,u) = Z rank Cy (¢, u)tk forallt e Rand all u € K,

kG]NO
P(t, 00) = Z rank Cy (¢, oo)t" forall t € R.
kE]No
The Morse relation says that
Y M(t,u) = P(t,c0) + (1 +1)Q(t) forallteR, (2.44)
ueky,

where Q(t) = Y ke, Btk is a formal series in t € R with nonnegative integer coefficients Bx.
Finally, from [33] we recall that the nonlinear eigenvalue problem

— Apu(z) = Au)P%u(z) inQ,

ou
el P2, _
; +B@)|ulf“u=0 on 0Q

has a smallest eigenvalue 711(p, B) = 0. If B #0, then fll(p,ﬁ) > 0, while if 8 = 0 then fll(p, 0) = fll(p) =0
(Neumann problem). The eigenfunctions corresponding to this eigenvalue have constant sign and

IDullh + (2)|ulP do
4 JﬁQ"/f, tue WhP(Q),u # o}.
Ulip

A, p) = inf{

By i11(p, B) we denote the LP-normalized (that is, [|lit1(p, Bl = 1) positive eigenfunction corresponding to
fll(p, B). We have
M. §) = 1D . P + | B (p. B do,
00

and from the nonlinear regularity theory and the nonlinear maximum principle, we have it; (p, ) € int C,.

3 Three Solutions Theorem

The hypotheses on the reaction f(z, x) are as follows:
(Hf) f: Q xR — Ris a Carathéodory function with the following properties:

(i) We have
flz, x)

———— =0 uniformly for almost all z € Q,
x—*0o |x|P -2y

and for every p > 0 there exists a, € L*(Q), such that
If(z, x)| < ap(z) foralmostallz e Qandall x| < p.
(i) IfF(z,x) = [, f(z, s)ds, then

F(z, x)

x—zxoo |x|P

=+oo uniformly for almost all z € Q.
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(iii) If &(z, x) = f(z, X)x — pF(z, x), then there exists n € L'(Q), such that
&(z,x) < é(z,y)+n(z) foralmostallze QandallO<x<yory<x<O.
(iv) There exist § > 0 and ys > 0 such that
-ysIx|P < f(z, x)x for almost all z € Q and all |x| < 6.

o Iff # 0, thenthereexists J € L*°(Q), suchthat J(z) < 711(p, B) foralmostallz € Q, 7 # ﬁl(p, B),
with 8 = 221 and

. flz, x)
lim su
gy P |x[P=2x

< J(x) uniformly for almostall z € Q.

« IfB =0, then f(z, x)x < 0 for almost all z € Q and all |x| < §.

Remark 3.1. Hypothesis (Hf) (i) is more general than the usual polynomial subcritical growth condition
which says that
If(z, X)| < c26(1 + |x|"™!) foralmostallz € Qandallx € R, (3.1)

with c6 > 0and 1 < r < p*. For example the function (for the sake of simplicity we drop the z-dependence)

Ix|P"~2x p [X[P" |x[P=2x

T = S+ )~ p I+ 2@+ )

with primitive

1 x>
p* In(1 + [xP)’
satisfies hypothesis (Hf) (i) but fails to satisfy the subcritical polynomial growth (3.1). The lack of compact-
ness in the embedding of W1P(Q) into LP" (Q) is a source of difficulties which we have to overcome. We do this
without any appeal to the concentration-compactness principle (see Ambrosetti and Malchiodi [3, p. 252]).
It is not clear how hypothesis (Hf) (i) can lead to concentration phenomena and for this reason our approach
avoids the use of the concentration-compactness method of Lions. Instead we show that despite the almost
critical growth of the reaction term f(z, - ) (see hypothesis (Hf) (i)), the compactness condition is still valid for
the energy functional of the problem and so we can proceed with the usual variational methods of critical
point theory. Hypothesis (Hf) (iv) implies that

F(x) =

f(z,0) =0 foralmostallz € Q.
Then hypothesis (Hf) (iii) implies
&(z,0)=0<é&(z,x) +n(z) foralmostallz € Qandall x € R,

hence
PF(z,x) < f(z,x)x + n(z) foralmostall z € Q,
and therefore, from hypothesis (Hf) (ii), we obtain

I flz, x)

x—koo |x|P~2x

= +00 uniformly for almost all z € Q.

Hypotheses (Hf) (ii)—(iii) replace the AR-condition and allow in our framework superlinear reactions
with “slower” growth near +co which fail to satisfy the AR-condition (see the examples below). Hypothe-
sis (Hf) (iii) is a quasimonotonicity condition on &(z, - ) and it is satisfied if, for example, we can find My > 0
such that for almost all z € Q,

. f(z, x)

xp-1

flz, x)

|x|P—2x

is nondecreasing on [My, +c0) and x — is nonincreasing on (—oo, —My].
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More restrictive versions of hypothesis (Hf) (iii) were used by Li and Yang [22], Liu [26], Miyagaki and Souto
[28], and Sun [38]. We should mention that all these conditions originate from the important work of Jeanjean
[19] (see also Struwe [37]), who was the first to employ an alternative to the AR-condition. So, Jeanjean [19]
assumed (for p = 2) that there exists 9 > 1 such that

&(z,sx) < 9&(z,x) foralmostallz € Q,allx e Rands € [0, 1].

The disadvantage of this condition is that it is global. In contrast, the previous remarks show that condi-
tion (Hf) (iii) avoids this global character and so it is a quite generic condition. For a further discussion and
comparison of these extensions of the AR-condition, we refer to the paper by Li and Yang [22].

Example 3.2. The following primitive functions satisfy hypotheses (Hf) (for the sake of simplicity we drop
the z-dependence):

1 1
F1(x) = =|x|? - =|x]?,

q p
1

x|P" —Lixp if|x] < 1,
Foo LW { 1ix] x|

p* In(1 + [x|P") SIxPInix| - £ if 1< |x],

with 1 < p < g < p*. Note that f>(x) = %F 2(x) fails to satisfy (3.1) and the AR-condition.
We introduce the following truncations-perturbations of the reaction term f(z, - ):

fi(z,x) = {0 ifx<0, (3.2)

flz, x) + xP1 ifx >0,

-2 .
f,(z, X = {f(z, x)+|x[P~*x ifx <O, (3.3)

0 if x > 0.

Both are Carathéodory functions. We set
X
Foz 0 = [ 1oz, 5) ds,
0

and consider the C'-functionals ¢.: WP(Q) — R defined by

1 1 .

D2 (u) = J G(Du)dz + ~Julf} + = j B2)(utY do - jFi(z, wdz forallu e WHP(Q).
Q p P 20 Q
Also, let ¢ : WHP(Q) — R be the energy functional for problem (1.4) defined by
o) = J G(Du) dz - IF(Z, u)dz forallu e WhP(Q).

Q Q
Evidently, ¢ € CL(WLP(Q)).
Proposition 3.3. If hypotheses (Ha), (HB) and (Hf) hold, then the functionals ¢. satisfy the C-condition.

Proof. We give the proof (similarly, in two other occurrences) for the functional ¢, ; the proof for ¢_ is similar.
Consider a sequence {up}ns1 € WHP(Q) such that

|@+(un)| < M1o forsome Mio >0andalln € N, (3.4)
A + lunl)@" (up) — 0 in WHP(Q)* as n — oo. (3.5)

From (3.5) we have

el

3.6
L+ [Junll G0

2 +yp-1 R <
|(A(un),h)+(!|u,,|p u,,hdz+a£ﬁ(z)(un)p hdo (!f(zu)hdz}<
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forall h € WHP(Q) with €, — 0*. In (3.6) we choose h = —u;,, € W'P(Q). Then, by Lemma 2.3 and (3.2),
I%llDugllﬁ +luplb < e, forallneN,
hence
u, -0 in Wh?(Q). (3.7)
We use (3.7) in (3.4). Then, because of Corollary 2.4 and (3.2), we have
l JpG(Du;) dz + J B(z)(u)P do - JpF(z, uy) dz| <My, forallneNN, (3.8)
Q 20 Q
for some M1 > 0. In (3.6) we choose h = u}; ¢ W'P(Q). Then
- J(a(Du;), Duj)py dz - J B(z)(uf)P do + Jf(z, upuydz<e, forallneN. (3.9)
Q 20 Q
We add (3.8) and (3.9) and use hypothesis (Ha) (iv) to obtain
J{(z, up)dz < My, foralln e N, (3.10)
Q
for some M1, > O.
Claim 1. {u}}n>1 € WHP(Q) is bounded.

We argue indirectly. So, suppose that Claim 1 is not true. By passing to a subsequence if necessary, we may
assume that [[u}| — co. Lety, = "Z—i", n € N. Then |yl = 1, y, = 0 for all n € IN, and so we may assume that

Yn—y inW'P@Q) and y,—y inIP(Q)andinL?(3Q), y>O0. (3.11)
Suppose that y # 0 and let Q. (y) = {y > 0}. Then |Q.(y)|y > 0 and we have
uy(z) — +oo foralmostall z € Q. (y).

Hypothesis (Hf) (ii) implies that

F(z,ut(z F(z,ut(z
(lluﬁﬁlf’ 2 (u;(;); ))yn(z)"J — +oo foralmost all z € Q,(y).

From this fact and Fatou’s lemma (see also hypothesis (Hf) (ii) and (3.11)), we have

J Fz, uy) dz — +00o. (3.12)

lun P

From (3.8) and in view of Corollary 2.4, hypothesis (HB) and (3.11) (recall also that p > 1), we have

F(z,u}) J
< 1 [cou)d J d
j <Mt | G@uD 2+ | BEyndo
Q 0Q
< c7(1 + llynl?)
<cyg forallneN, (3.13)

for some c,7, c2g > 0. Comparing (3.12) and (3.13), we reach a contradiction.
So, we assume that y = 0. Let k > 0 and set v, = (kp)'/Py,, for all n € N. From (3.11) we have

Vn "0 in wbHP(Q) and Vi — 0 inILP(Q)andin L?(0Q). (3.14)
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Let 29 = SUpP,=1 IVn ||5: < +00 (see (3.14)). Hypothesis (Hf) (i) implies that given € > 0, we can find ¢, > 0
such that

|F(z, x)| < %lx#’* +ce foralmostallz € Qandall x € R. (3.15)
29
From (3.15), for every measurable set E ¢ Q with |[Ey| < 2—;, we have
€ »* € €
’ F(z, va) dz‘ < [IFGz, va)l dz < =S vals + celElv < S+ E ¢ forallneN,
2C29 p 2 2

hence {F(-, vn(:))}ns1 € L1(Q) is uniformly integrable. Since F(z, v,(z)) — O for almost all z € Q, from the
extended dominated convergence theorem (Vitali’s theorem), we have

jF(z, vp)dz - 0 asn— oo. (3.16)
Q

Recall that we have assumed that ||u;;| — co. So, we can find ny € N such that

0< (kp)””i+| <1 foralln > ng. (3.17)
n

Consider the C!-functional i, : W1?(Q) — R defined by

1 1 .
IDullh + I-)||u||§ t5 J Bz) () do - sz, u)dz forallu e WHP(Q).

0Q Q

C1

Yo (u) = m

Let t, € [0, 1] be such that
l:b+(tnu;) = max l])+(tu;) foralln € N.
<t<

From (3.16) we see that we can find n; € N, n1 > ng such that

C1
([F(z, vp)dz < mk foralln > n;. (3.18)

Using (3.17), (3.18) and hypothesis (HB), we have

R N c1k c1k cik
Yo (tnity) = ho(vy) ﬁ - 2(p1_ i IVl = ﬁ foralln > n;. (3.19)
Recall that k > 0 is arbitrary. So, from (3.19) it follows that
l]u(tnu;) — 400 asn — 0o. (3.20)

From (3.4) and (3.7) and since 1])+ < @ (see Corollary 2.4), we see that
(. (U)}Ins1 € Ris bounded. (3.21)

Also, we have
1.(0) = 0. (3.22)

From (3.20)-(3.22), it follows that we can find n, € N such that
thn € (0,1) foralln > n,. (3.23)

Then, for n > n,, we have
d -
b (tud)

= 0’
t=ty

which, by the chain rule, yields

p—c_ll (Ap(tnuy), uy) + j B (taup)P1ul do = Jf(z, ta(u)u?) dz,
20 )
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and therefore
C1
p-1

||D(tnu:;)||§ + J Bz)(thu;)P do = Jf(z, thau)(tyuy) dz  foralln > nj.
20 Q

From hypothesis (Hf) (iii) and (3.23), we have

Jf(z, ttt?) (bt dz < Jé,’(z, ut)dz + ij(z, taut)dz + Il forall n > ny.
Q Q Q

Using (3.25) in (3.24), from (3.10) we obtain
l:b+(tnu;) <M, + 1l =My3 foralln > n,.
Comparing (3.20) and (3.26), we reach a contradiction. This proves Claim 1.

From (3.7) and Claim 1, it follows that {u,},s1 € WHP(Q) is bounded. So, we way assume that

Up Y u in WP (Q) and u, — u inL?(Q)andinL?(0Q).

— 755

(3.24)

(3.25)

(3.26)

(3.27)

Let c30 = SUP,s1 ||un||§: < +0o (see (3.27)). Hypothesis (Hf) (i) implies that given € > 0, we can find ¢, > 0

such that .
Ifz, x)| < Tlxlp*‘1 +Ce foralmostallz € Qandall x € R.
30

For E ¢ Q measurable, we have

| Jf(z, Un)(un — u) dZ| < Jlf(z, Un)llun —uldz

E E

€ *_ N

s—jlunlp 1Iun—uldz+c€jlu,,—uldz.
2C30

E E

Using Holder’s inequality, we have (recall that 1% + ﬁ =1)

®\/ ®\/ *
& J lun — ul dz < el ELY Jup - ully- < 28BN P

E

Thus,
€ *_ €
Ilunlp YNup —uldz < ——

_— forall n € IN.
2C30
E

-1
Nl lun = ully- <

N @

2C30

Choose E < Q measurable with .

lEly € ————
2(2¢6)® ;7!
Then from (3.29) we have

éejlun—uldzs foralln € N.
E

From (3.28), (3.30) and (3.31), it follows that

N o

sup Jlf(z, wn)llin — ul dz < €,

n=1

(3.28)

(3.29)

(3.30)

(3.31)

hence {f(-, un(:))(un — u)(-)}ns1 € LY(Q) is uniformly integrable. From (3.27) we have (at least for a subse-

quence) that
flz, un(2))(uy, —u)(z) - 0 foralmostall z € Q.

So, employing the extended dominated convergence theorem (Vitali’s theorem), we have

Jf(z, Up)(up—u)dz — 0 asn — oco.
Q

(3.32)
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In (3.6), we choose h = u, — u € WHP(Q), pass to the limit as n — oo, and use (3.27), (3.32) and hypoth-
esis (HB). Then
Aim (A(un), un - u) =0,

and by Proposition 2.7,
up, - u in WhHP(Q),

which implies that @, satisfies the C-condition. Similarly for ¢_ using (3.3). O

A careful reading of the above proof shows with minor and straightforward changes, we can have the same
result for the energy functional ¢. Therefore, we can state the following proposition.

Proposition 3.4. If hypotheses (Ha), (HB) and (Hf) hold, then the energy functional ¢ satisfies the C-condition.
Hypothesis (Hf) (ii) leads easily to the following result.
Proposition 3.5. If hypotheses (Ha), (HB) and (Hf) hold and u ¢ int C,, then p.(tu) — —co as t — +co.

The next result establishes the mountain pass geometry (see Theorem 2.1) for the functionals (.. Also, this
result will be useful in generating a third nontrivial solution for problem (1.4), since it identifies the nature
of u =0 € K,.

Proposition 3.6. If hypotheses (Ha), (HB) and (Hf) hold, then u = 0 is a local minimizer of the functional ¢
and .

Proof. We do the proof for the functional ¢.; the proofs for ¢_ and ¢ are similar.

First suppose 8 # 0. Hypothesis (Hf) (iv) implies that given € > 0, we can find §; = §1(€) > 0 such that

F(z,x) < %(](z) +€)|x/? foralmostall z € Qandall |x| < 6. (3.33)
Let u € C1(Q) with lull g1 gy < 61. Then, in view of (3.2), (3.33), [33] and (Hf) (iv), we have

7 _ 1 -1P l +\p _ +
<p+<u>—£G(Du)dz+pnu I+ pa£ﬁ(z)(u) do JF(z,u )dz

¢ + P + + + 1r_c - -
> | "§+a£ By dU—JJ(Z)(u pdz- et |+ 2] CiDutf + ]

> (c31 = e)uIP + c3llu™ [P
for some ¢31, c32 > 0, withB = pc;llﬁ. Choosing € € (0, c31), from (3.33) we infer that
$+(u) > c33lluP forallu e C'(Q) with IIuIIC1@ <61,

hence u = 0 is a local C!(Q)-minimizer of @+, and therefore, by Proposition 2.12, u = 0is a local WP (Q)-
minimizer of ¢.

Next suppose that §=0. Let § >0 be as postulated by hypothesis (Hf) (iv) and let u € C1(Q) with
lullcr @y < 6. Then hypothesis (Hf) (iv) implies

—JF(Z, u)dz > 0.
Q

So, we have
$+(w)20=,(0) forallu e C'(Q)with Jlul g <86,

and again by Proposition 2.12, u = 0 is a local WP (Q)-minimizer of ¢ ..
Similarly for the functionals ¢_ and ¢. O

Proposition 3.7. If hypotheses (Ha), (Hp) and (Hf) hold, then Ky, < C, and Ky_ < C,.
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Proof. Letu € Ky, . Then @', (u) = 0 and (3.2) imply

(A, hy + Jlulp‘zuh dz + J B2 hdo = J[f(z, ')+ WP hdz forallh e WWP(Q).  (3.34)
Q 0Q Q
In (3.34) we choose h = —u~ € WHP(Q). Then, by Lemma 2.3,

C1
p-1

1Dl + "Iy <0,

hence u > 0. From Proposition 2.10 we have that u € L*(Q). So, we can use the regularity theory of Lieberman
[24, p. 320] and have that u € C,. Therefore,

I(¢+ C C+ .
Similarly, for the functional ¢_, using this time (3.3), we show that K3 < -C,. O
Now we are ready to produce two constant sign solutions for problem (1.4).

Proposition 3.8. If hypotheses (Ha), (HB) and (Hf) hold, then problem (1.4) has at least two constant sign
solutions ug € int C, and vo € —int C,.

Proof. Proposition 3.7 together with (3.2) and (3.3) indicate that we may assume that K, and K;;_are infinite
or, otherwise, we already have a whole sequence of distinct solutions of constant sign.

From Proposition 3.6 we know that u = 0 is a local minimizer of ¢.. So, we can find p € (0, 1) small such
that (see the proof of [1, Proposition 29])

$+(0) =0 <inf{p,(w) : Jull = p} = mg. (3.35)

Combining (3.35) with Propositions 3.3 and 3.5, we see that we can apply Theorem 2.1 (the mountain pass
theorem). So, by Proposition 3.7, we can find ug € WH?(Q) such that

uop € Kp, <C, and ﬁi; < @+ (uo). (3.36)
From (3.35) and (3.36), we have that ug # 0. Also, since ug > 0 (see (3.36)), by (3.2), we have

(A(uo), h) + J Bl hdo = j f(z, up)hdz forall h € W-P(Q).

20 Q
Thus,
—diva(Duo(z)) = f(z, ug(z)) foralmostallz € Q,
gzz +ﬁl(z)u€71 =0 on 0Q. G:37)
Hypothesis (Hf) (iv) implies that given p > 0, we can find Ep > 0 such that
flz, x)x + ;fplxlp >0 foralmostallz € Qand all |x| < p. (3.38)
Let p = [uplleo (recall that ug € C; \ {0}) and let Ep > 0 as in (3.38). Then from (3.37) we have
div a(Du(2)) < &uo(z)P!  foralmostall z € Q. (3.39)
Let y(t) = ap(t)t for t > 0. Then (1.2) and hypothesis (Ha) (ii) ensure that
Y (Ot = al ()t + ao(t)t = c1 P71,
By integration, we obtain
¢ ¢
Jy'(s)s ds = y(t)t - J y(s) ds = ao(D)E - Go(t) = %t” forall ¢ > 0. (3.40)
0 0
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Let
d(t) = ap()t2 — Go(t) and do(t) = %t" forall t > 0.

Let s > 0 and consider the following two sets:
C1={te(0,1):d(t)=5s}, Cy={te(0,1):do(t)=s}.

From (3.40) we see that C, < C; and so inf C; < inf C,. Therefore, d~1(s) < EI(‘)l(s) (see, e.g., [21, p. 6]). Then
for 6 > 0 we have

5 5 .6

J%dszj%d5=i1§=+m.
- ~ s

0 d_l(%sp) 0 dol(%sp) L

Hence, because of (3.39), we can apply the nonlinear strong maximum principle of Pucci and Serrin [36,
p. 111] and have that
Uup(z) >0 forallz € Q.

Then the boundary point theorem of Pucci and Serrin [36, p. 120] implies that ug € int C,.
Similarly, working with the functional ¢_, we produce a second constant sign solution vo € —intC,. [

To produce a third nontrivial solution, we will use Morse theoretical tools (critical groups). To this end we
compute the critical groups of ¢ at infinity.

Proposition 3.9. Ifhypotheses (Ha), (HB) and (Hf) hold andinf ¢(K,) > —oo, then Ci(¢, 00) = O for all k € No.

Proof. From hypotheses (Hf) (i)—(ii) we see that given y > 0, we can find ¢34 = ¢34(y) > 0 such that
F(z,x) 2 y|x|P — c34 foralmostall z € Q and all x € R. (3.41)

Letu € 0By = {u € WHP(Q) : |u| = 1} and t > 0. On account of Corollary 2.4, (3.41) and hypothesis (Hp), we

have

p(tu) < tP[c3s|Dully + c36llully, oq) — Viulp] + c37 (3.42)

for some c3s, ¢3¢, 37 > 0. Because y > 0 is arbitrary, from (3.42) we see that
@(tu) - —co ast — —co. (3.43)

Also, using the chain rule, and hypotheses (Ha) (iv) and (Hf) (iii), we have

d )
Ewtu) = (@ (tu), u)

- L', twy
= %[ J(a(tDu), tDu)gy dz + J’ B(2)|tulP do - Jf(z’ tu)tu dz]
Q 0Q Q

<

%[JPG(tDu) dz +a£ B(z)|tul? do - (J;pF(z, tu) dz + c38]

1
= ?[p(p(tu) + C38]
for some c3g > 0. Then (3.43) implies that for large t > 0 we have ¢(tu) < Jo < —c3s, and thus
d
E(p(tu) <0 forlarget > 0.

Therefore, we can find a unique r(u) > 0 such that ¢(r(u)u) = Jo. The implicit function theorem implies that
r € C(0B1). We extend r(-) to all of WP (Q) \ {0} by

1
ro(u) = —r(i) forallu € WHP(Q)\ {0}.
fluall™ \ fluell
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Then ro € C(WHP(Q) \ {0}) and @(ro(u)u) = Jo. Also, if ¢(u) = Jo, then ro(u) = 1. So, we set

Po(u) = {1 %f(p(u) < Jo, (3.44)
ro(w) if Jp < ().

Evidently, 7o € C(W™P(Q) \ {0}). Consider the deformation h(t, u) defined by
h(t,u) = (1 - tu + tig(w)u  forall (¢, u) € [0, 1] x (WLP(Q) \ {0}).

We have
hO,u) =u, h(1,u)=ro(uu e ™

and (see (3.44))
h(t, : )l(pjo = id|(p]0 fOl‘ all te [0, 1].

It follows that

Jo

@7 is a strong deformation retract of WP (Q) \ {0}. (3.45)

We consider the radial retraction 7: WP (Q) \ {0} — R defined by

F(u) = ﬁ forallu e WHP(Q) \ {0}.

This map is continuous and 7|yp, = id|sp, . Therefore, 0B is a retract of WP (Q) \ {0}. We consider the defor-
mation h(t, u) defined by

fl(t, u)=(1-tu+tr(u) forall (t,u) € [0, 1] x (WHP(Q) \ {0}).

Then
h(0,u)=u, h(1,u)=#u)eoB; and h(1,-)lss, =idlss,-

Hence, we infer that
OB is a deformation retract of WP (Q) \ {0}. (3.46)

From (3.45) and (3.46), it follows that ¢’ and 0B, are homotopy equivalent, hence
Hy (WHP(Q), ) = Hi (WP (Q), 0B;) forall k € N,
and therefore, by choosing Jy < 0 even more negative if necessary, we have
Cr(@, 00) = H(WHP(Q), 0B1) forall k € N. (3.47)
The space WP(Q) is infinite dimensional and so 0B is contractible. Hence, from [29, p. 147], we have
Hi(W"P(Q),0B1) =0 forall k € No,

and therefore, by (3.47),
Cr(p,00) =0 forall k € No. O

With suitable changes in the above proof, we can also compute the critical groups at infinity for the function-
als @.. So, we have the following proposition.

Proposition 3.10. Assume that hypotheses (Ha), (HB) and (Hf) hold and also that inf $.(Kp,) > —co. Then
Ci(p+,00) =0 forall k € No.

Proof. We do the proof for ¢ the proof for the functional ¢_ being similar.
Let 0B] = {u € 0By : u* # 0}. Consider the deformation h, : [0, 1] x 0B] — 0B defined by

(1-tu + tuy(p, B)

hy(t,u) = (1 - Ou + tig (p, P

forall (¢, u) € [0, 1] x O0B7.
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We have

ﬂl(p’ﬁ) +
h(1, = ————"" €0B7,
W=z <05

hence 0B7 is contractible. Hypotheses (Hf) (ii)-(iii) imply that for every u € 0B7, we have
¢+(tu) - —co ast — +oo. (3.48)

For u € 0B] and t > 0, using the chain rule, (3.2), and hypotheses (Ha) (iv) and(Hf) (iii), we have
d . -
Equ(tu) = (@, (tw), u)

= @, )

= 1[ J(a(tDu), tDu)py dz + ||tu‘||§ + J B(z)(tu™)P do - Jf(z’ tut)tu* dz]

t
Q 0Q Q
< %[pG(tDu) dz + |t + j B(z)(tu)P dz - j PF(z, tu') dz + c39]
0Q Q
1. .
= ;[p<p+(tu) +C39]. (3.49)

From (3.48) and (3.49), it follows that

%(Zu(tu) < —% <0 forlarget > 0. (3.50)

Choose c
& < min{—ﬁ, inf(i)+}
P B

(recall that By = {u e WHP(Q) : |u| < 1}). Given u € 0B, because of (3.50) we see that there is unique
So(u) > 1 such that
@+ (tu) > & ift € [0, so(w)),
@ (tu) =& ift =so(u), (3.51)
P4(tu) < & ifso(u) < t.

The implicit function theorem implies that so € C(0B7). Note that (see (3.51))
PP ={tu:ue 0B7, t > yo(u)}.

We define E, = {tu : u € 0B7, t > 1}. We have (Z)f’ c E,. We consider the deformation f1+(r, tu) defined by

forall (r, tu) € [0, 1] X E,.

- <‘(1 —-rtu+rsog(w)u ift € [0, so(u)],
hi(r, tu) =
tu if sp(u) < t,

We have (see (3.51))

hoO,tu) = tu,  h.(1,tw) e 9™  and R,y =idl o forall T € [0, 1].

Therefore, (i)i" is a strong deformation retract of E, . Hence,
H(WP(Q), §%°) = Hu(W™P(Q), E,) forall k € No,
and thus (by choosing &, < 0 even more negative if necessary)

Cr(P+,00) = Hy(WHP(Q), E,) forall k € No. (3.52)
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Consider the deformation

hi(r,tu) =(1-r)tu+ r";—Z” for all (r, tu) € [0, 1] x E,.

We see that
hi(0, tu) = tu, hi(1,tu) € 0B] and hi(1,-)lsp; = idlop:-

Therefore, 631r is a deformation retract of E... Hence,
Hi(WHP(Q), 0B}) = H(W'P(Q), E;) forall k € No,
which implies (recall that 0Bj is contractible)
Hi(WhP(Q),E,) =0 forall k € No.

Thus, by (3.52),
Cx(p+,00) =0 forall k € No.

Similarly for the functional ¢_. O

Using Propositions 3.9 and 3.10, we can compute precisely the critical groups of the energy functional ¢ at
the two constant sign solutions ug € int C, and vg € —int C, produced in Proposition 3.8.

First, we relate the critical groups of ¢ with those of ¢.. In what follows we assume that the critical
sets K, and K, are finite. Otherwise, we already have a whole sequence of distinct solutions of (1.4) (see
Proposition 3.7, (3.2) and (3.3)).

Proposition 3.11. If hypotheses (Ha), (HB) and (Hf) hold, then

Ci(p, uo) = Ci(@+,uo) and  Ci(p, uo) = Cr(¢-,vo) forallk € No.

Proof. We do the proof for the triple (¢, ¢, up), the proof for the other triple (¢, ¢_, vo) being similar.
We consider the homotopy

h(t,u) = (1 - t)ou) + td,(u) forall (t,u) € [0, 1] x WHP(Q).
Suppose we can find {t;}n>1 € [0, 1] and {un}ns1 € WHP(Q) such that
th > t, up—up inWHP(Q) and  hl(ty,un) =0 forallneN. (3.53)
Then, from the equation in (3.53) and (3.2), we have

(A(up), v) + J B)(ui)Ptvdo -ty J B2 (uy)P tvdo -ty J(u;)v—lv dz
0Q 0Q Q

= Jf(z, uHvdz + (1 -ty) jf(z, —uy)dz forallv e W'P(Q),
Q Q

which implies
—diva(Dun(2)) - thu, (2’71 = f(z, uh(2)) + (1 - tn)f(z, —u,(z)) foralmostall z € Q,

ouy,
ong

+B@ ()P~ ta(up)P ) = 0 on 0Q.
From Proposition 2.10 we know that there exists M4 > O such that
lunlloo < M14 foralln e N.
So, from Lieberman [24] we know that there exist a € (0, 1) and M5 > O such that
up € CH%(Q) and |unllragy < Mis foralln e N. (3.54)
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Because of (3.53) and since C1%(Q) is embedded compactly into C(Q), from (3.54) we have
un — up in CH(Q).
Recall that ug € int C, (see Proposition 3.8). So, we can find ng € N such that
u, €intC, foralln > ng,

hence {un}nsn, are distinct (positive) solutions of (1.4) (see (3.53)), a contradiction (recall that we have as-
sumed Ky, is finite). Therefore (3.53) can not happen. Then, invoking [10, Theorem 5.2] (the homotopy in-
variance of critical groups), we have

Cr(@, up) = Cx(p+,up) forall k € Np.
In a similar fashion we show that
Ci(p, vo) = Ck(@p-,vp) forall k € No. O

Proposition 3.12. Ifhypotheses (Ha), (HB) and (Hf) hold, then Ci(p+, uo) = Ck(p—, vo) = Sk,1Z for all k € Ny.

Proof. We do the proof for the pair (¢, uo), the proof for the pair (¢_, vo) being similar.
From Proposition 3.7 we know that K3, < C,. So, we may assume that

Ky, = {0, uo} (3.55)

or, otherwise, we already have a third nontrivial solution for problem (1.4) which in fact is positive. From the
proof of Proposition 3.8 (see (3.35) and (3.36)) we have

0= 0.(0) < m} < P (uo).
Let §_ < 0 < §; < m,, and consider the triple of sets
P5 < ¢l cwhP(Q).

For this triple of sets, we consider the following corresponding long exact sequence of singular homology
groups (see [29, p. 143]):

L& & o, L& L
o H(WHP(Q), 95) -5 Hi(WHP(Q), 5) 25 Hi (@3, 95) — -, (3.56)

with i, being the homomorphism induced by the inclusion i: (WP (Q), qﬁf) - (WLrP(Q), (i)i*) and 0. is the
boundary homomorphism. From (3.55) and since é_ < 0 = ¢ (0), we have (see Proposition 3.10)

H(WP(Q), 5) = Ci(@4, 00) =0 forall k € No. (3.57)

Also, we have
0=¢.(0) <& < @.(uo)-

Then from (3.55) we have
H(WYP(Q), %) = Ci(@+, uo) forall k € No. (3.58)
Similarly, we have (see Proposition 3.6)
Hi1 (@5, %) = Crer (@4, 0) = 8x_1.0Z = 6x1Z  forall k € No. (3.59)

From (3.57)-(3.59) and the exactness of (3.56), we see that only the tail of that chain (that is, k = 1) is non-
trivial. From the rank theorem, the exactness of (3.56), and using (3.57) and (3.59), we have

rank H; (WYP(Q), (ﬁf*) =rankKker 9, + rankim 9, = rankimi, + rankim o, < 1. (3.60)
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From the proof of Proposition 3.8 we know that u is a critical point of ¢, of mountain pass type. Therefore,
C1(@+,up) # 0. (3.61)

From (3.58), (3.60), (3.61) and recalling that only for k = 1 the chain (3.56) is nontrivial, we conclude that

Ci(p+,up) = 6xk1Z forall k € No.

Similarly, for the pair (¢_, vo). O

From Propositions 3.11 and 3.12, we infer the following corollary.

Corollary 3.13. If hypotheses (Ha), (HB) and (Hf) hold, then Cx(¢p, ug) = Ci(@, vo) = 8x,1Z for all k € Ny.

Now we ready for the “three solutions theorem” for problem (1.4).

Theorem 3.14. Ifhypotheses (Ha), (HB) and (Hf) hold, then problem (1.4) has at least three nontrivial solutions
uo € int C,, vo € —int C, and yo € C1(Q).

Proof. From Proposition 3.8 we already have two constant sign solutions ug € int C, and v € —intC,.
Suppose that these are the only nontrivial solutions of problem (1.4) (that is, K, = {0, uo, vo}). From Corol-
lary 3.13 we have

Cr(@, uo) = Ck(¢p, vo) = 6xk,12 forall k € Np. (3.62)

From Proposition 3.6 we have
Cr(@,0) = 6x,07Z forall k € No. (3.63)

Finally, Proposition 3.9 implies that
Ci(p,00) =0 forall k € No. (3.64)

From (3.62)-(3.64) and the Morse relation with ¢ = -1 (see (2.44)), we have 2(-1)! + (-1)° = 0, which
implies (-1)! = 0, a contradiction. So, we can find y, € Ky, yo ¢ {0, uo, vo}. This is the third nontrivial solu-
tion of problem (1.4) and, as before, the nonlinear regularity theory implies yo € C1(Q). O
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