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1 Introduction

Let Q < RY be a bounded domain with a C?-boundary 0Q. We consider the nonlinear, nonhomogeneous
Robin problem
—diva(Du(z)) = f(z,u(z)) inQ,
d (1.1)

ana+ﬁ(z)|u| u=0 on 0Q.

In this problem, a : R¥Y — RY is a strictly monotone, continuous map which satisfies certain other regularity
and growth conditions listed in the hypotheses H(a) below. These conditions are general enough to incor-
porate in our framework many differential operators of interest, such as the p-Laplace operator, 1 < p < oo,
and the sum of a p-Laplacian with a g-Laplacian, 1 < g < p < co. The reaction term f(z, x) is a Carathéodory
function (that is, for all x € R, the map z — f(z, x) is measurable, while, for almost all z € Q, the function
X — f(z, x) is continuous).

The interesting feature of our work here is that we do not impose any global growth condition on f(z, - ).
Instead, we assume a local symmetry condition, namely, we require that, for almost all z € Q, the function
X — f(z, x) is odd in the bounded interval [-1, n7]. In the boundary condition, u denotes the generalized

ong
normal derivative corresponding to the differential operator div a(Du) and is defined by

ou _ (a(Du), n)gy  forallu € WHP(Q)
ong

with n(-) being the outward unit normal on 0Q. This kind of normal derivative is dictated by the nonlinear
Green’s identity (see, for example, Gasifiski and Papageorgiou [7, p. 210]) and can be also found in the work
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of Lieberman [13]. The boundary weight function f € C%%(0Q) with a € (0, 1) satisfies f(z) > Oforall z € 0Q.
When f = 0, then we have the Neumann problem.

Under these general hypotheses on the data of (1.1), we show that there exists a whole sequence
{fuptns1 € C1(Q) of distinct nodal (that is, sign-changing) solutions. Our approach uses variational tools
together with suitable truncation-perturbation techniques. Recently, nodal solutions for nonlinear, non-
homogeneous Robin problems were produced by Papageorgiou and Radulescu [20, 22]. However, in the
aforementioned works, the authors establish the existence of only one nodal solution.

2 Mathematical Background and Hypotheses

Let X be a Banach space and let ¢ € C'(X, R). We say that ¢ satisfies the Palais—Smale condition (PS-
condition for short) if every sequence {u,}n>1 <€ X such that {¢(u,)}n>1 € Ris bounded and

¢'(upy) -0 inX*asn— oo

admits a strongly convergent subsequence.

Our main variational tool will be a variant due to Heinz [10] of a classical result of Clark [4]. The next
result is essentially due to Heinz [10] and can be found in Wang [28]. Further extensions with applications
to semilinear elliptic Dirichlet problems and to Hamiltonian systems can be found in the works of Liu and
Wang [15] and Kajikiya [12].

Theorem 2.1. Let X be a Banach space and assume that ¢ € C L(X, R) satisfies the PS-condition, it is even,
bounded from below, ¢(0) = 0 and, for every n € N, there exist an n-dimensional subspace Y,, of X and p,, > 0O
such that

sup{p(u):ue¥,NnoB,} <0,

where 0B, = {u € X : |lull = pn}. Then, there exists a sequence {u,}n>1 of critical points of ¢ such that
@(up) <0 forallneN

and
@(up) - 0 asn — oo.

Let 9 € C1(0, +00) with 9(¢) > O for all ¢ > 0 and assume that there exists p > 1 such that

.9t

0<c< W

for all t > 0 and for some c1, ¢, > 0. Then, our hypotheses on the map a(-) involved in the definition of the

differential operator are that
H(a) a(y) = ao(lyl)y for all y € RN with aq(¢) > 0 forall t > 0 and
(i) ao € CL(0, +00), t — ao(t)tis strictly increasing on (0, +00), ao(t)t — 0 as t — 0* and
al
im o0t
t—0* aop(t)

<co and citPP<9(t) < (1 + P (2.1)

>—1;

(ii) there exists c3 > O such that [Va(y)| < 63% forally e RN\ {0};
(iii) (Vay)¢, O)py = ZL142 forall y e R \ {0} and all § € RY;
(iv) if Go(t) = jot ap(s)s ds for t > 0, then there exists q € (1, p) such that

lim sup G <¢ and t— Go(tY9) is convex.

t—0*

Remark 2.2. Hypotheses H(a) (i)—(iii) come from the nonlinear regularity theory of Lieberman [13] and the
nonlinear maximum principle of Pucci and Serrin [26]. Hypothesis H(a) (iv) serves the needs of our problem,
but it is a mild condition which is satisfied in all the main cases of interest, as the examples which follow
illustrate.
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From the above hypotheses it is clear that the primitive Go( - ) is strictly convex and strictly increasing. We set
G(y) = Go(ly|) forall y € RY. Then, G(-) is convex, G(0) = 0 and

VG(0)=0 and VG(y) = G(’)(Iyl)l = ao(lyy = a(y) forally e RN\ {0}.

Iyl
So, G(-) is the primitive of a(-). The convexity of G(-), since G(0) = 0, implies that

G() < (a(y),y)gy forally e RV, (2.2)

The next lemma summarizes the main properties of the map a(-). It is a straightforward consequence of
hypotheses H(a) (i)—(iii) and of (2.1).

Lemma 2.3. If hypotheses H(a) (i)—(iii) hold, then

(@) y = a(y) is continuous and strictly monotone, hence, maximal monotone too;
(b) law)| < c4(1 + |ylP~Y) for ally € RN and for some c, > 0;

© (a),y)wv = 3%yl forally € RN

The last lemma and (2.2) lead to the following growth estimates for the primitive G(-).

Corollary 2.4. Ifhypotheses H(a) (i)-(iii) hold, then p(;l—l) lyIP < G(y) < ¢c5(1 + |y|P) forally € RN and for some
cs > 0.

The examples that follow illustrate that our conditions on the map a(-) cover many cases of interest.

Example 2.5. The following maps satisfy the hypotheses H(a).
(i) The map a(y) = [y|P~%2y with 1 < p < oo, which corresponds to the p-Laplacian differential operator de-
fined by
Apu = div(|DulP~?Du) forallu e WP(Q).

(i) Themap a(y) = |y|IP~2y + |y|9~2y with 1 < ¢ < p < oo, which corresponds to the (p, q)-differential opera-
tor defined by
Apu+ADqu  forallu e WhP(Q).

Such operators arise in problems of mathematical physics. We mention the works of Benci, D’Avenia,
Fortunato and Pisani [1] (quantum physics) and Cherfils and Ilyasov [2] (plasma physics). Recently, ex-
istence and multiplicity results for such equations with Dirichlet boundary conditions were proved by
Cingolani and Degiovanni [3], Gasinski and Papageorgiou [9], Mugnai and Papageorgiou [17], Papageor-
giou and Radulescu [19, 21, 23] and Sun, Zhang and Su [27].

(iii) The map a(y) = (1 + |y|2)P~2/2y with 1 < p < oo, which corresponds to the generalized p-mean curva-
ture differential operator defined by

div((1 + [Dul|*)P=2"2Du) forallu € WHP(Q).
(iv) The map a(y) = [y[P~2y(1 + ﬁ) with 1 < p < co, which corresponds to the differential operator

|DulP~2Du

Apu + le( T+ Dup

) forallu e WhP(Q),

which is used in problems of plasticity.

Finally, we impose the hypothesis that

H(B) B e CO%(0Q) with a € (0, 1) and B(z) = O forall z € 0Q

and our hypotheses on the reaction term f(z, x) are that

H(f) f: QxR — R is a Carathéodory function such that, for almost all z € Q, f(z, 0) = 0, f(z, -) is odd on
[-n, n] for some n > 0 with f(z, n) <0 < f(z, -n) and
(i) there exists ay € L*°(Q), such that |f(z, )| < ay(z) for almost all z € Q and all |x| < n;
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(i) ifg € (1, p)isasin H(a) (iv), then we have
lim L&)

x—0 |x]9-2x

=+co uniformly for almost all z € Q.

Remark 2.6. We stress that the above hypotheses do not impose any global growth condition on f(z, - ). In-
stead, we assume that f(z, -) has a kind of oscillatory behavior near zero and that it is symmetric in that
interval. Hypothesis H(f) (ii) implies the presence of a “concave” term near zero. We mention the work of Liu
and Wang [14] who produced infinitely many nodal solutions for a semilinear Schrédinger equation without
assuming the existence of zeros. We should point out that the idea of using cut-off techniques to produce an
infinity of solutions converging to zero goes back to the work of Wang [28] who modified the reaction term
in the interval [-7, ] and applied the result of Clark and Heinz to the modified functional (see Wang [28,
Lemma 2.3]).

Using hypothesis H(f) (ii), we see that, given any & > 0 and recalling that g < p, we can find § = §(¢) € (0, 77)
with 7 = min{1, n} such that
flz,)x 2 &|x|? = &|x|P  for almost all z € Q and all |x| < 8. (2.3)
Then, given r € (p, +00), we can find cg = c¢(r, §) > O such that
flz, x)x 2 &|x|7 — cg|x|” foralmostallz € Q and all x € [-7, 7). (2.4)

From (2.3) we have
F(z,x) > glxlq for almost all z € Q and all |x| < 6. (2.5)
In our analysis of (1.1), in addition to the Sobolev space W1?(Q), we will also use the Banach space
C1(Q). This is an ordered Banach space with positive cone
C,={ueClQ):u(z)=0forall z € Q}.

This cone has a nonempty interior and, if u € C, with u(z) > Oforall z € Q, then u € int C,.. On 9Q, we con-
sider the (N - 1)-dimensional Hausdorff (surface) measure o(-). Using this measure, we can define the
“boundary” Lebesgue spaces L7(0Q), 1 < g < co. From the theory of Sobolev spaces we know that there exists
a unique continuous linear map yo : WH?(Q) — LP(0Q), known as the “trace map”, such that yo(u) = ulyq
forall u e WHP(Q) N C(Q). We have

Imyo = Wl/p’yp(aQ)(% + I% = 1) and Kkeryg = Wé’p(Q)-

Moreover, the trace map y, is compact into L9(9Q) for g € [1, %). Hereafter, for the sake of notational
simplicity, we will drop the use of the trace map y. The restrictions of Sobolev functions on 0Q are understood
in the sense of traces. By || - || we denote the norm of the Sobolev space WP (Q) defined by

llull = [l + ||Du||§]”p forallu € WHP(Q).
For every x € R, let x* = max{+x, 0}. Then, for u € WHP(Q), we set u*(-) = u(-)*. We know that
u=u"-u", |ul=ut+u" and u*,u € WHP(Q).

Also, by | - |y we denote the Lebesgue measure on RN and A : WhP(Q) — WHP(Q)* is the nonlinear map
defined by
(A(u), h) = J(a(Du), Dh)gv dz forallu, h € WHP(Q).
Q
The map A : WHP(Q) — WHP(Q)* is continuous, monotone and of type (S),, that is,

Un > uin WHP(Q) and limsup(A(un), un — u) < 0 implies that u, — u in WP(Q).
n—oo

Here, by (-,-) we denote the duality brackets for the pair (WP(Q)*, W1P(Q)) (see Gasinski and Papa-
georgiou [8]). Finally, for any ¢ ¢ C}(X, R), by K, we denote the critical set of ¢, that is,

Kyp={ueX:¢'(u=0}
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3 Nodal Solutions

Using (2.4), we introduce the truncation
T g™t ifx<-n,
e(z,x) = 1 x|92x —clx|"2x if —n<x<n, (3.1)
Tt —cen™
of the right-hand side of (2.4) and, for all (z, x) € 0Q x R, the truncation

ifn<x

-B@mPt ifx < -n,
b(z,x) = { B)IxPP2x if -n<x<n, (3.2)
BmP™tifn<x

of the boundary term (z)|x|P~2x. Both are Carathéodory functions. We consider the auxiliary nonlinear, non-
homogeneous Robin problem
—diva(Du(z)) = e(z, u(z)) inQ,

ou (3.3)
o, +b(z,u)=0 on 0Q.

Proposition 3.1. Ifhypotheses H(a), H() and H(f) hold, then (3.3) admits a unique positive solution it € int C,
and v = —u € —int C, is its unique negative solution.

Proof. We introduce the Carathéodory function 7 : Q x R — R defined by

-nPt ifx<-n,
T(z,x) = 1 XP2x if —n<x<n, (3.4)
Pt ifp<x

Let

X X X
T(z, x) = Jr(z, s)ds, E(z,x)= Je(z, s)ds and B(z,x)= Jb(z, s)ds,
0 0 0
and consider the C!-functional ¥, : W?(Q) — R defined by

Y, (u) = J G(Du)dz + %llullﬁ + J B(z,u*)do - JE(Z, ut)dz - J T(z,u")dz forallu e WhP(Q).
Q 00 Q Q

From Corollary 2.4 and (3.1), (3.2) and (3.4) it is clear that i, is coercive. Also, using the Sobolev embed-
ding theorem and the trace theorem, we see that i, is sequentially weakly lower semicontinuous. So, by the
Weierstrass theorem, we can find it €¢ WP (Q) such that

Y. (@) = inf {P,(w) : u e WHP(Q)}. (3.5)
Hypothesis H(a) (iv) implies that we can find c¢j > ¢* and 6; € (0, 77) such that

*

Go(t) < %tq forall t € [0, 8,]. (3.6)

Let u € int C, and choose t € (0, 1) small such that
tu(z) <6; and t|Du(z)| <6, forallze Q. 3.7)

Using (3.6), (3.7), (3.1), (3.2) and (3.4), we have (see hypothesis H(f) and the trace theorem)
tr

cs
llully

ep @ g
Yol = —LIDulf + = | B’ do - ulf+

0Q

tract tp=4 tra
< ( Liul? + 2 caur? - S qug? + csuuu:)tq
p p q r
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for some cg > 0. Since 1 < g < p < r, choosing t € (0, 1) even smaller if necessary, we have that 1, (tu) < 0
implies (see (3.5))
Y. (1) <0=1,(0)

and, hence, i # 0. From (3.5) we have that ' () = 0 implies
(A@), hy + J |alP2h dz + j b(z, u")h do = J(e(z, ut) + 1z, ut)hdz forallh e WWP(Q).  (3.8)
Q 20 Q

In (3.8), first we choose h = —-ii~ € W1P(Q) and then we have that (see Lemma 2.3 and (3.1), (3.2) and (3.4))

C1

1 D& |, + lu”llp < 0

implies &t > 0 and & # 0. Also, in (3.8), we choose h = (it — n)* € WP (Q) and then we have (see (3.1), (3.2)
and (3.4) for the equality and (2.4) for the first inequality)

(A@), (- )*) + j (- n)* dz + j B (@ - n)* do

Q 0Q
- j(fnq‘l —cen™ L P Y@ - ) dz
Q
< J(f(z, n+nP @ -n)tdz
Q
< (A, @ —)*) + j WP Na - )t dz+ j BN\ (@ - n)* do
Q 0Q

since A(n7) = 0 and f(z, n) < 0 for almost all z € Q, which implies that

(AG@) - AG, @ —n)*) + j(ap-l _ P Y@ -t dz < 0.

Q
Therefore,
[{e > n}ly = 0O,
that is,
i<n
Thus, we have proved that
tel0,n]={ueW"P(Q):0<u(z) <nforalmostallze Q} and i #0. (3.9)

Then, using (3.1), (3.2), (3.4) and (3.9), we see that (3.8) becomes

(AG@), hy + j B(2)a?'h do = Je(z, ihdz forall h e W'P(Q),
0Q Q

which gives (see Papageorgiou and Radulescu [18])

—diva(Du(z)) = e(z, (z)) foralmostallz € Q,

u _p_l —
on. + B(z)u 0 on oQ,

that is, & is a positive solution of (3.3). From Papageorgiou and Radulescu [24] we have that it € L*(Q) and,
then, the nonlinear regularity result of Lieberman [13, p. 320]) implies that & € C, \ {0}. Because of (3.9) we
have

—diva(Diu(z)) = &u(z)? ! - ceir(z)"t  foralmostall z € Q,
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which gives
diva(Du(z)) < cen" Pit(z)P"t foralmostall z € Q,

that is (see Pucci and Serrin [26, pp. 111, 120]),
neintC, .

Next, we show the uniqueness of this positive solution. To this end, we consider the integral functional
j:LY(Q) - R = RU {+co} defined by

1
G(Du'?)dz + = J B)uPlldo ifu =0, ut/l e WHP(Q),
SN )4
jw) =14 a 20
+ 0o otherwise.

Let uq, u» € domj = {u € L1(Q) : j(u) < +oo} (the effective domain of j). We set
u=((1-tu +tuy)’? forte[0,1].

Using Diaz and Saa [5, Lemma 1], we have

IDu(z)| < [(1 - O)|Duy(2) /9|9 + t|Duy(2)9]*%  for almost all z € Q
and because Go( - ) is increasing and from hypothesis H(a) (iv), for almost all z € Q, we have

Go(IDu())) < Go([(1 - )1Dur ()| + tiDux(2)99]Y9) < (1 - )Go(IDu1(2) 7)) + tGo(1Duz(2) /1)),

which gives

G(Du(z)) < (1 - t)G(Du1(2)Y9) + tG(Du,(z)1/9) for almostall z € Q,

that is, j(-) is convex (recall that g < p and see hypothesis H(8)) By Fatou’s lemma, j( - ) is lower semicontin-
uous.
Let y € WP (Q) be another positive solution of (3.3). As we did for i in the first part of the proof, we can
show that
y € [0,n] nint C,.

Forany h ¢ C? (Q) and for |t| < 1 small, we have
i? +th edomj and y?+th e domj.

Then, we see that the functional j(-) is Gateaux differentiable at 19 and y? in the direction h. Moreover, via
the chain rule and the nonlinear Green’s identity, we have

— div a(Dy)

1 [ -diva(Da
j'(@)(h) = jM S hdz.

1
1 hdz and j (77 h=—J
| T e e S50 - g

Q

Choose h = 9 - y9. Since j( - ) is convex, j'(-) is monotone, and so we have (see (3.1))

—diva(Diu —diva(Dy
05 [(FTmr - STt @ -y dz = [ eslyr 0 - 0@ -0 dz,

Q Q
which gives

u=y
and, then, i € [0, n] nint C, is the unique positive solution of (3.3). Evidently, since x — &|x]972x — cg|x|"2x
is odd, we have that v = -1 € [-1, 0] n (-int C.) is the unique negative solution of (3.3). O
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We introduce the sets

S, ={u e W"P(Q) : u s a positive solution of (1.1) with u € [0, n]},
S_={ve W'P(Q) : v is a negative solution of (1.1) with v € [-n, 0]}.

As before, the nonlinear maximum principle implies that
S, cintC, and S_ c-intC,.
Moreover, as in Filippakis and Papageorgiou [6], we have that
S, is downward directed,
thatis, if u;, u, € S,, then we can find u € S, such that u < min{u,, u,}, and
S_ is upward directed,

that is, if vi, v, € S_, then we can find v € S_ such that v > max{vy, v»} (see also Motreanu, Motreanu and
Papageorgiou [16, p. 421]).
Proposition 3.2. If hypotheses H(a), H() and H(f) hold, then it < u forallu € S, andv <V forallv € S_.

Proof. Letu € S,. We consider the Carathéodory functions k. (z, x), i)+(z, x) and 7.(z, x) defined by

K ifx <0,

ki(z,x)=1 e(z,x) if 0 < x < u(z), (3.10)
| e(z,u(2)) ifu(z) <x,

K ifx <0,

bi(z,x) = 1 B(z)xP~1 if0 < x <u(z), forall (z,x) € 0Q xR, (3.11)
| B@uz)P ! ifu(z) < x,

K ifx <0,

1 if0 < x <u(2), (3.12)

[ uz)P™ ifu(z) < x.

T.(z,x) = { xP~

We set

X X X
K.(z,x) = Jk+(z, s)ds, B.(z,x)= JB+(d, s)ds and T.(z,x)= Iﬁ(z, s) ds.
0 0 0

Consider the C!-functional y, : W?(Q) — R defined by
V() = J G(Du) dz + %Ilullg + j B,(z,u)do - JK+(z, u)dz - J T.(z,u)dz forallu e WHP(Q).
Q 30 Q Q

From Corollary 2.4 and (3.10), (3.11) and (3.12) we see that y, is coercive. Also, it is sequentially weakly
lower semicontinuous. So, we can find iip € W?(Q) such that

y+(ito) = inf {y, (u) : u € WHP(Q)}. (3.13)

As before (see the proof of Proposition 3.1), since 1 < g < p < r, for it € int C, and t € (0, 1) small, we have
(see hypothesis H(a) (iv))
y+(ti) < 0 =y, (0),

which implies (see (3.13))
Y+(to) < 0 =y.(0)
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and, hence, iip # 0. From (3.13) we have that y’. (i1p) = 0 implies
(A(@o), hy +j 2ol 2iioh dz -+ J b.(z, fio)h dz = J(k+(z, fio) +.4(z, o))k dz forallhe W™P(Q). (3.14)
Q 0Q Q

In (3.14), we choose h = —i15. Using Lemma 2.3 and (3.10), (3.11) and (3.12), we obtain that

C

1 - —_
1 IDagl, + gl < 0

implies ilp > 0 and iip # 0. Also, in (3.14), we choose h = (iig — u)* € WHP(Q). Then, we have (see (3.10),
(3.11) and (3.12) for the first equality, see (3.1) and recall that u € [0, 1] for the second one and see (2.4) for
the first inequality)

(Aito), (ito — u)*) + J 2 o - u)* dz + J BP (1o — w)* do
Q 0Q

= J(e(z, w) + P H(ig - u)t dz

(fu™t - cou™t + uP (g - u)t dz

IN

J(f(z, u) + uP (g —u)* dz

Q
Q
Q

(A, (g — u)*)y + I W ip - w)tdz + J B)uP L (up - u)*do
Q 0Q

since u € S,, which implies that

(Alit) - Aw), (g - w)*) + J(ag‘l —uP Y (itp - u)* dz < .
Q

Therefore,
[{tio > utly =0,
that is,
Up < Uu.
Thus, we have proved that
g € [0,u] ={y e WHP(Q) : 0 < y(2) < u(z) foralmost allz € Q} and i # O. (3.15)

Because of (3.10), (3.11), (3.12) and (3.15) we have that (3.14) becomes
(A(ito), hy + J B)E " hdo = Je(z, o)hdz forallh e Wh(Q),
20 Q

which implies that i1 is a positive solution of (3.3) (see Papageorgiou and Radulescu [18]). Then, from Propo-
sition 3.1 we have 1o = 1 and, as aresult, it < uforallu € S,.
In a similar fashion, we show that v < v forallv € S,. O

Next, we produce extremal constant-sign solutions, that is, a smallest positive solution and a biggest negative
solution.

Proposition 3.3. If hypotheses H(a), H(8) and H(f) hold, then (1.1) admits a smallest positive solution
u, € [0,n]nintC;

and a biggest negative solution
v, € [-n,0] N (-int Cy).
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Proof. Evidently, we restrict ourselves to the sets S, and S_. From Hu and Papageorgiou [11, Lemma 3.10]
we know that we can find a decreasing sequence {u,},>1 € S, such that

inf S, = inf u,.
n>1
For all n € IN, we have

(A(up), h) + j Bl hdz = Jf(z, uhdz forall h e WhP(Q). (3.16)
0Q Q

Clearly, {un}n=1 € WHP(Q) is bounded and so we may assume that
Up - u, in WHP(Q) and  u, — u, in LP(Q) and in LP(0Q). (3.17)

In (3.16), we choose h = u, — u, € WHP(Q), we pass to the limit as n — co and we use (3.17). Then, we have
that

lim (A(up), up —u.) =0

n—oo

implies
Up — U, in WHP(Q) (3.18)

since A(-) is of type (S). So, if in (3.16) we pass to the limit as n — oo and use (3.18), then
(Au.), h) + j BWE  hdo = Jf(z, u)hdz forallh e WhP(Q). (3.19)
20 Q

Also (see Proposition 3.2),

U< Uy (3.20)
From (3.19) and (3.20) we infer that
u, €S, cintC, and u, =infS,.
Similarly, we produce
ve €S_ and v, =supS-. O
Using these two extremal constant-sign solutions, we introduce the Carathéodory functions
[z, v (@) + V. (2P 2vi(2)  ifx < v.(2),
u(z, x) = 1 flz, x) + |x|P~2x ifv.(2) < x < u.(2), (3.21)
fz, u.(2)) + U, (z)P71 ifu.(z) <x,
BV (2)P2v.(2z) ifx <v.(2),
b(z,x) = {1 B2)|x|P~2x ifv.(z) < x < u.(2), (3.22)
B(2)u.(z)P~! if u.(2) < x.

We set
X X
M(z, x) = Jy(z, s)ds and B(z,x) = J b(z, s)ds,
0 0
and we consider the C!-functional ¢ : W'P(Q) — R defined by

o(u) = J G(Du) dz + %llullg + J B(z,u)do - JM(Z, u)dz forallu e WHP(Q).
Q 00 Q
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Proposition 3.4. If hypotheses H(a), H(S) and H(f) hold, then { satisfies the PS-condition, it is even, bounded
from below, p(0) = 0 and Ky < [v., u.].

Proof. From (3.21) and (3.22) it is clear that ¢ is coercive. So, it is bounded from below and satisfies the
PS-condition (see Papageorgiou and Winkert [25]). Hypotheses H(f) imply that @ is even (recall that u, € S,
and v, € S_) and @(0) = 0. Finally, let u € K. Then, ¢'(u) = 0 implies that

(Au), ) + J ulP~2uh dz + j b(z, u)h do = Jy(z, whdz forall h e WhP(Q). (3.23)
Q 0Q Q

In (3.23), we first choose h = (u — u,)* € WHP(Q). Then, we have (see (3.21) and (3.22) for the first equality
and recall that u, € S, for the second one)

(A), (u-u)t) + j wWlu-u)tdz + j Bl (u-u,)" do

Q Yo}
= J(f(Z, w,) +ul Hu -t dz
)
= (A, (u-u)") + J i - u)* dz + j By (u - u.)* do,
Q 20

which implies that
(Au) - A(u.), (U —u)*y + J(u""1 ~ ! Hu-u)tdz=o.
Q
Therefore,
l{u > u.}ly =0,
that is,

U< Uy.
Similarly, if in (3.23) we choose h = (v, — u)* € W?(Q), then we obtain that v, < u implies
Kgp € [ve, u.]. O
The extremality of v, € —int C, and of u. € int C, implies the following property.

Corollary 3.5. Ifhypotheses H(a), H(B) and H(f) hold, then the elements of Ky \ {0, v, u..} are nodal solutions
of (1.1).

Now, we are ready to produce a whole sequence of distinct nodal solutions for (1.1).

Theorem 3.6. Assume that hypotheses H(a), H(B) and H(f) hold. Then, (1.1) has a whole sequence {un}n>1 S
C1(Q) of distinct nodal solutions.

Proof. Let fj = min{ming u., - maxg v.} (recall that u, € intC, and v. € —int C,). Hypothesis H(a) (iv) im-
plies that we can find 6y € (0, 7] such that

G(y) < colyl? forall y € RN with |y| < 6o and for some cg > 0. (3.24)

Also, from (2.5) we have

F(z,x) 2 glxlq for almost all z € Q and for all |x| < § with & > 0. (3.25)

Let n € N and let Y,, ¢ WP (Q) be an n-dimensional subspace. Then, all norms are equivalent on Y. So, we
can find p, > O such that u € Y, and |u|| < p, imply

lu(z)] < 6 foralmostall z € Q. (3.26)
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Using (3.24), (3.25) and (3.26) together with (3.21) and (3.22), for all u € Y, with |u| < p,, we have

pw) < colDul + ’_1’@!2 B()ul? do - g

lulld < (c10 - &c1)llul? (3.27)

with ¢19, 11 > 0 independent of £ > 0 (use the trace theorem and recall that all norms are equivalent on Yy,).
Recall that ¢ > 0 is arbitrary (see (2.3)). So, we choose & > E—i’ and we have that

o) <0 forallu e Y, with Ju| = py.
Because of Proposition 3.4 we can apply Theorem 2.1 to find {uy}ns1 € WHP(Q) \ {0} such that
up € Ky \ {0} forallneN

and
@(up) > 0 asn — oo.

Since Ky ¢ C 1(Q) (nonlinear regularity theory), we have
U, € C1(Q)\ {0} foralln e N.

Finally, Corollary 3.5 implies that {un}ns1 € C1(Q) is a sequence of distinct nodal solutions for (1.1). O
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