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1 Introduction

Let Q ¢ RY be a bounded domain with a C2-boundary 0Q. In this papet, we study the following parametric
Robin problem:
-Au(z) + §2)u(2) = f(z, u(2)) - Au(2)|7’u(z) inQ,
ou (P /1)
n +B(2)u(z) =0 on 0Q.

In this problem, the potential function & € L5(Q) (s > N) is indefinite (that is, sign changing). In the
reaction (right-hand side), the function f(z, x) is Carathéodory (that is, for all x € R the function z — f(z, x)
is measurable and for almost all z € Q the function x +— f(z, x) is continuous) and f(z, -) has linear growth
near +oo. However, the asymptotic behavior of f(z, -) as x — +co is asymmetric. More precisely, we assume
that the quotient ’@ as x — +oo stays above the principal eigenvalue A; of the differential operator
u — —Au + &(z)u with Robin boundary condition, while as x — —co the quotient ’@ stays below Ay with
possible interaction (resonance) with respect to A1 from the left. So, f(z, -) is a crossing (jumping) nonlinear-
ity. In the term —A|u|9~2u, we suppose that A > 0 is a parameter and 1 < ¢ < 2. Hence this term is a concave
nonlinearity. Therefore, in the reaction we have the competing effects of resonant and concave terms. How-
ever, note that in our problem the concave nonlinearity enters with a negative sign. Such problems were
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considered by Perera [12], de Paiva and Massa [3] and de Paiva and Presoto [4] for Dirichlet problems with
zero potential (that is, & = 0). Of the aforementioned works, only de Paiva and Presoto [4] have an asymmet-
ric reaction of special form, which is superlinear in the positive direction and linear and nonresonant in the
negative direction. Recently, problems with asymmetric reaction have been studied by D’Agui, Marano and
Papageorgiou [2] (Robin problems), Papageorgiou and Radulescu [8, 11] (Neumann and Robin problems)
and Recova and Rumbos [14] (Dirichlet problems).

We prove two multiplicity results in which we show that for all small A > O the problem has four and
five nontrivial smooth solutions, respectively. Our approach uses variational tools based on the critical point
theory, together with suitable truncation, perturbation and comparison techniques and Morse theory (critical

groups).

2 Mathematical Background and Hypotheses

Let X be a Banach space. We denote by X* the topological dual of X and by (-, - ) the duality brackets for the

pair (X*, X). Given ¢ € C'(X, R), we say that ¢ satisfies the “Cerami condition” (the “C-condition” for short)

if the following property holds:

. Every sequence {up}n>1 € X such that {¢@(un)}ns1 € Risbounded and (1 + |lun|)¢’(uy) — O in X* as
n — oo, admits a strongly convergent subsequence.

This compactness-type condition on ¢(-) is crucial in deriving the minimax theory of the critical values
of . One of the main results in that theory is the so-called “mountain pass theorem”, which we recall below.

Theorem 2.1. Assume that ¢ € CL(X, R) satisfies the C-condition, ug, u; € X, |uy — uoll > 1,
max{p(uo), p(u1)} < inf{o) : lu —uoll =r} =m,
and
c =inf max @(y(t)) with T ={y e C([0, 1], X) : y(0) = uo, y(1) = uz}.
yeT 0<t<1
Then ¢ > m, and c is a critical value of ¢ (that is, there exists u € X such that p(u) = c and @' (u) = 0).
Recall that a Banach space X has the “Kadec—Klee property” if the following holds:

w . .
Up »uinX, |uyll —» Jul = u,—>uinX.

It is an easy consequence of the parallelogram law that every Hilbert space has the Kadec—Klee property
(see [5]).
In the study of problem (P;), we will use the following three spaces:

HY(Q), C'(Q), L'(0Q) (1<7<00).
The Sobolev space H'(Q) is a Hilbert space with inner product given by

(u, h) = I(Du,Dh)RN dz + j uhdz forallu, h € HY(Q).
Q Q

We denote by | - || the corresponding norm on H!(Q). So, we have
lull = [Iul? + 1Dul3]*?  forallu e H'(Q).
The space C 1(Q) is an ordered Banach space with positive (order) cone
C,={ueClQ):u(z)=0forall z € Q}.
This cone has a nonempty interior. Note that
D, ={uecC,:u(z)>0forallzeQ} cintC,.

In fact, D, is the interior of C, when the latter is furnished with the relative C(Q)-norm topology.
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On 0Q we consider the (N — 1)-dimensional Hausdorff (surface) measure o( - ). Using this measure on 0Q,
we can define in the usual way the “boundary” Lebesgue spaces L"(dQ) (for 1 < r < 0o). From the theory of
Sobolev spaces we know that there exists a unique continuous linear map yo : H1(Q) — L?(0Q) known as
the “trace map” such that

You) = ulsq forallu € HY(Q) n C(Q).

So, the trace map assigns “boundary values” to every Sobolev function. The trace map is compact into L? (0Q)

foralll1 <p< &_’1) if N > 3, and into L?(0Q) forall 1 < p < 0o if N = 1, 2. Also, we have
N—2

imyo = H2(0Q) and kery, = H)(Q).

In what follows, for the sake of notational simplicity, we drop the use of the trace map yo. All restrictions
of Sobolev functions on 0Q are understood in the sense of traces.
Next, we consider the following linear eigenvalue problem:

—Au(z) + &(z)u(z) = Au(z) inQ,
ou (2.1)
n +B(z)(u) =0 on 0Q.

This problem was studied by D’Agui, Marano and Papageorgiou [2]. We impose the following conditions on
the potential function &(-) and on the boundary coefficient (- ):

H(é): & e L5(Q)withs > N.

H(B): B e WH®(0Q)and B(z) = 0 forall z € 0Q.

Remark. The potential function ¢ is both unbounded and sign-changing.
Remark. If 8 = 0, then we recover the Neumann problem.
Lety : H(Q) — R be the C?>-functional defined by
y(u) = |Dull3 + J Ez2)u? dz + J B(z)u?do forallu € H'(Q).
Q 20

Problem (2.1) admits a smallest eigenvalue A; € R given by

Ay = inf{Lug cue H(Q), u # 0}. (2.2)
llully
Moreover, there exists u > 0 such that
y) + ullull3 = collul® for some co > 0 and for all u € HY(Q). (2.3)

Using (2.3) and the special theorem for compact self-adjoint operators on Hilbert spaces, we produce
the full spectrum of (2.2). This consists of a sequence {ﬁk}keN of distinct eigenvalues such that /ik — +00.
Let E(Ax) denote the eigenspace corresponding to the eigenvalue Ag. By the regularity theory of Wang [15],
we have

E(Ax) < CY(Q) forall k € N.

Each eigenspace has the “Unique Continuation Property” (UCP for short). This means that if u € E(Ay)
vanishes on a set of positive Lebesgue measure, then u = 0.
Let

m -_—
Hn=PEA) and Hn=H,= P E).
k=1 k=m+1

We have
HY(Q)=H, ® Hy,.
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Moreover, for every m > 2, we have variational characterizations for the eigenvalues Am analogue to that
for A1 (see (2.2)):
y(u)

Am = inf{—2 cueHy 1, u# O} = sup{
llull5

yw

Z:ueﬁm,uqﬁo}, m> 2. (2.4)
lualy

In (2.2) the infimum is realized on E (;11), while in (2.4) both the infimum and the supremum are realized
on E(A,,). We know that dim E(A;) = 1 (that is, the first eigenvalue Ay is simple). Hence the elements of E (A1)
have constant sign. We denote by ii; € C, \ {0} the positive L?-normalized eigenfunction (that is, ||ii1 ], = 1)
corresponding to Ai. By the strong maximum principle, we have ii1(z) > O for all z € Q and if " € L°(Q)
(that is, the potential function is bounded above), by the Hopf boundary point theorem we have ii; € D, (see
[13, p.120]).

Using (2.2), (2.4) and the above properties, we get the following useful inequalities.

Proposition 2.2. (i) If9 € L*°(Q), 9(2) < Am foralmostallz € Q, 9 # Am, m € N, then there exists ¢, > O such
that
crllull? < y(u) - J Iz)u’dz forallu € Hy 1.
Q

(ii) If9 € L®(Q), 9(z) = flm foralmostallz € Q, 9 # }lm, m € N, then there exists ¢, > 0 such that

y(u) j 9 dz < —colull® forallu € Hp.
Q

Note that if £ = 0 and 8 = 0, then A; = 0, while if £ > 0 and either & # 0 or  # 0, then A; > 0. Also, the ele-
ments of E(Ay) for k > 2 are nodal (that is, sign-changing).

In addition to the eigenvalue problem (2.1), we can consider its weighted version. So, let m € L*°(Q),
m(z) = 0 for almost all z € Q, m # 0, and consider the following linear eigenvalue problem:

—Au(2) + &(2)u(z) = Am(2)u(z) inQ,
ou 5 (2.5)
> +B(z)u=0 on o0Q.

This eigenvalue problem exhibits the same properties as (2.1). So, the spectrum consists of a sequence
{Ak(m)}ren of distinct eigenvalues such that Ax(m) — +oo as k — +co. As for (2.1), the first eigenvalue Ay (m)
is simple and the elements of E(A;(m)) ¢ C1(Q) have fixed sign, while the elements of E(Ax(m)) < C1(Q) (for
all k > 2) are nodal. We have variational characterizations for all the eigenvalues as in (2.2) and (2.4) except
that now the Rayleigh quotient is

y(u)
Jo m(z)u? dz’

Moreover, the eigenspaces have the UCP property. These properties yield the following monotonicity property
for the map m — Ax(m), k € N.

Proposition 2.3. If my, my € L°(Q), 0 < my(z) < my(2) for almost all z € Q, m; # 0, my # my, then
A(ms) < Ax(my) forall k € N.
Let fo : Q x R — R be a Carathéodory function such that
[fo(z,x) < ao(z)[1 +|x|""!]| foralmostall x € R,

with ag € L*°(Q) and
2N
—— ifN=3,
1<r<2*={N-2

+00 ifN=1,2

(the critical Sobolev exponent). Let Fyo(z, x) = jg fo(z, s) ds and consider the C!-functional @o : HY(Q) —» R



DE GRUYTER N. S. Papageorgiou, V. D. Radulescu and D. D. Repov3, Asymmetric Robin Problems = 73

defined by
Po(u) = %y(u) - JF()(Z, u)dz forallu e HY(Q).
Q
As in [10, Proposition 8], using the regularity theory of Wang [15], we obtain the following result.
Proposition 2.4. Assume that uy € H'(Q) is a local C*(Q)-minimizer of @o( - ), that is, there exists p; > 0 such
that
Po(uo) < Pouo +h) forallh € C'(Q), Il g, < p1-

Thenug € C14(Q) with0 < a < 1, and uo is also a local H!(Q)-minimizer of po, that s, there exists p, > O such
that
@o(uo) < @o(ug +h) forallh e C'(Q), |h] < p.

Next, we recall some definitions and facts from Morse theory (critical groups). So, let X be a Banach space,
let p € C1(X, R) and let ¢ € R. We introduce the following sets:
e ={ueX:p)<cl
Kyp={ueX:¢'(u=0},
Ky ={ueKy:ou)=c}
Given a topological pair (Y7, Y>) such that Y, ¢ Y; € X, for every k € Ny we denote by Hx(Y1, Y>) the

k-th-relative singular homology group for the pair (Y1, Y3) with integer coefficients. Suppose that u € K, is
isolated. The critical groups of ¢ at u are defined by

Cr(p,u) = Hi(p°nU, o n U\ {u}) forall k € No,

with U being a neighborhood of u such that K, N ¢ n U = {u}. The excision property of singular homology
implies that the above definition of critical groups is independent of the choice of the neighborhood U. If u
is a local minimizer of ¢, then

Ci(p,u) = 6x02 forall k € No.

Here, 6k,m denotes the Kronecker symbol defined by

1 ifk=m,
6k,m= .
0 ifk+m.

Next, let us fix our notation. If x € R, we set x* = max{+x, 0}. For u ¢ WHP(Q) we define u*(-) = u(-)*.
We know that
wtrewt?(Q), u=ut-u, |ul=u*+u.

Given a measurable function g : Q x R — R (for example, a Carathéodory function), we denote by Ng(-)
the Nemitsky (superposition) map defined by

Ng(u)(-) =g(-,u(-)) forallu e WhP(Q).
Also, A € Z(HY(Q), H1(Q)*) is defined by

(A(u), h) = J(Du,Dh)]RN dz forallu, h e H(Q).
Q

The hypotheses on the nonlinearity f(z, x) are the following:
H(f): f: QxR — Risa Carathéodory function such that f(z, 0) = 0 for almost all z € Q and
(i)  Foreveryp > 0, there exists a, € L*°(Q) such that

If(z, x)| < ap(z) foralmostall z € Q and for all [x| < p.



74 =— N.S.Papageorgiou, V.D. Radulescu and D. D. Repovs, Asymmetric Robin Problems

DE GRUYTER

(ii) There exist functions n, i € L>°(Q) and m € N, m > 2, such that
A1 <n(2) € 7(2) € Am foralmostall z € Q, n # A1, 7 # A,
7(z) < liminf M < lim sup M < 17(z) uniformly for almostall z € Q,
X—+00 X X—+00 X

and there exists 7 > 0 such that

-1 < liminf f_(z); X)

X——00

< lim sup
X—>—00

(i) IfF(z,x) = [} f(z,5)ds, then

flz, x)x — 2F(z, x) - +00
flz, x)x = 2F(z,x) 2 0

i

2

ﬂzm<M

" uniformly for almost all z € Q.

uniformly for almost all z € Q as x — —oo0,

for almost all z € Q and for all x > Mg > O,

for almost all z € Q and for all x € R.

F(z,x) < Zx
(2,0 < 3

(iv) There exist functions 9, 9 € L°(Q) and [ € N, [ > m, such that

A <9(z) < 8(2) < A

ﬂzmgr
X

for almostallz € Q, 9 # /11, 9+ 7(1+1,

1m sup ]M
x—0

9(z) < lim i(l)’lf < 9(2) uniformly for almost all z € Q.

X—
Remark. Hypothesis H(f) (i) implies that f(z, - ) has asymmetric behavior as x — +co (jumping nonlinearity).
Moreover, as x — —co we can have resonance with respect to the principal eigenvalue A . Hypothesis H(f) (iii)
implies that this resonance is from the left of 1; in the sense that

;\1x2 - 2F(z,x) — +oo uniformly for almost all z € Q as x — —co.
Note that hypotheses H(f) (i), (ii) and (iv) imply that

|f(z, x)| < c3|x] for almost all z € Q for all x € R and for some c3 > 0. (2.6)

For every A > 0, let ¢, : H'(Q) — R be the energy functional for problem (P,) defined by

pa(u) = %y(u) + gllullg - JF(Z, u)dz forallu e H'(Q).

Evidently, ¢, € CL(H'(Q), R).

Let u > 0 be as in (2.3). We introduce the following truncations-perturbations of the reaction in prob-
lem (Py):
ifx <0,

0
ki(z,x) =
flz,x) = Ax9 1 + ux  ifx >0,
2.7)

k(2,0 - flz,x) = Ax|92x + ux  ifx <0,
0 ifx > 0.

Both are Carathéodory functions. We set

Ki(z,x) = | ki(z,s)ds

J

and consider the C*-functionals ¢; : H*(Q) — R defined by

A+

()

1
Ey(u) + §||u||§ - jK}[(z, u)dz forallu e HY(Q).
Q
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3 Compactness Conditions for the Functionals

We consider the functionals (i);f and ¢, and we show that they satisfy the compactness-type condition.

Proposition 3.1. If hypotheses H(¢), H(S) and H(f) hold, then for every A > O the functional fl/’{ satisfies the
C-condition.

Proof. We consider a sequence {un}n>1 € HY(Q) such that

|@7 (un)l < My for some My > 0 and foralln € N,

1+ ||un||)(¢:{)'(un) -0 inHYQ)*asn — +oo. (3.1)
From (3.1) we have
l(A(un), h) + J[{(z) + uunhdz + J B(z)unhdo - J k}(z, un)h dz| < 1€:||||Z|| ” 3.2)
Q 20 Q "
for all h € HY(Q), with €, — 0*.In (3.2) we choose h = —u; € H'(Q). Then
y(uy,) + yllu;ll% <€, foralln e N (see(2.7)),
= colluyl® < en forall n € N (see (2.3)),
= u, -0 in H'(Q) as n — oo. (3.3)
From (3.2) and (3.3) we have
|<A(u;), hy + j HDuthdz+ j B(z)uthdo - J[f(z, ) - A dz] < €l (3.4)
Q 20 Q
for all h € HY(Q), with €], — 0" (see (2.7)).
We show that {u};}ns1 € H 1(Q) is bounded. Arguing by contradiction, suppose that
luill > co asn — oo. (3.5)
Let
Yn = u_; nelN
gl ‘
Then |ly,]l = 1 and y,, = 0 for all n € IN. So, we may assume that
Yn—y inHYQ) and yy,—y inL%*Q)andinL%(dQ), y > 0. (3.6)
Using (3.4), we obtain
_ Ne(ut
A+ [ §@yahdz+ | pyahdo + A [vitnaz- | G iz
lunll—4 lluzl
Q 20 Q Q
!
< ¢ ”Il" foralln € IN. 3.7)
luzll
From (2.6) we see that
N +
{ f(’j")} c L?(Q) isbounded. (3.8)
lunll ) n=1

So, by passing to a subsequence if necessary and using hypothesis H(f) (ii), we have (see [1, Proof of Propo-
sition 16])

N +
|{(fﬁ‘) », v(z)y inL*(Q), n(z) < v(2) < fi(2) for almost all z € Q. (3.9)
Up
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Ifin (3.7) we choose h = y,, —y € H'(Q), passing to the limit as n — co and using (3.5), (3.6), (3.8) and
the fact that g < 2, we obtain

Jim (A(yn), yn -y) =0,
= [IDyall2 — Dyl2,
= y,—y inHYQ) (by the Kadec—Klee property), and hence |y| = 1. (3.10)

In (3.7) we pass to the limit as n — co and use (3.9). We obtain

(A(y), h) + J &(z)yhdz + I B(z)yhdo = Jv(z)yh dz forallh e HY(Q),
Q Yo Q

which implies
-Ay(2) + &(2)y(z) = v(2)y(z) foralmostall z € Q,
% +B(2)y =0 on 0Q (see [9]). (3.11)
From (3.9) and Proposition 2.3 we have
Av) < A(Ay) = 1. (3.12)

Then (3.11), (3.12) and the fact that ||y| = 1 (see (3.10)) imply that y(-) must be nodal. But this contradicts
(3.6). Therefore,

{ufIns1 € HY(Q) is bounded,
= {uplns1 € HY(Q) is bounded (see (3.3)).

We may assume that
Uy —»u inHY(Q) and  u, »u inL?(Q)andinL?(0Q). (3.13)
In (3.2) we choose h = u, — u € H'(Q), pass to the limit as n — co and use (3.13) and (2.6). Then
Aim (A(un), un - u) =0,

— uy, —»u in HY(Q) (again by the Kadec-Klee property),

=  ; satisfies the C-condition.
The proof is now complete. O
Proposition 3.2. If hypotheses H(¢), H(B) and H(f) hold, then for every A > O the functional {; is coercive.
Proof. According to hypothesis H(f) (iii), given any p > 0, we can find M, = M, (p) > 0 such that
p < f(z,x)x = 2F(z,x) foralmost all z € Q and for all x < —M>. (3.14)

We have

d /F(z,x)\ fl(z,x)x? -2xF(z,Xx)
E( x2 ) - x4

_ flz, x)x - 2F(z, X)

- |x|2x

for almost all z € Q and all x < —-M> (see (3.14)),

Ixx
which implies

Fizv) Fzy _p
v2 y: T2

()% - V_lz) for almostall z € Q and forall v < y < -M,. (3.15)
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From hypothesis H(f) (ii) we have

-1 < liminf

X—>-00 X X——00 x?

2F(z, x) < lim sup 2£(z, %) <Ay uniformly for almost all z € Q. (3.16)

Ifin (3.15) we let v — —oo and use (3.16), then

ﬁlyz -2F(z,y)=p for almost all z € Q and forall y < —-M>,

= ;\1y2 —2F(z,y) — +oo uniformly for almostallz € Qasy — —oo. (3.17)

Suppose to the contrary that /1; is not coercive. This means that we can find {u,}n>1 € H'(Q) such that

lunll - co asn — co and @y (un) < M3 for some M3 > 0 and forall n € N. (3.18)
Let u
Vp=——, nenN.
lunll

Then |vy|l = 1 for all n € IN, and so we may assume that
Vi—v inHY(Q) and v,—v inL%(Q)andinL%(0Q). (3.19)
From (3.18) we have

%y(un)+gllunllz Ki(z,up)dz<M;  forallneN,

I
JK 1(z, un) M3
Q

= %y(vn) + gllvnll2 THE " e forall n € N. (3.20)
From (2.6) we obtain
|F(z, x)| < %xz for almost all z € Q and forall x € R,
{%}@1 c L'(Q) is uniformly integrable (see (2.7) and (3.19)).

Hence, by the Dunford—Pettis theorem and hypothesis H(f) (ii) we have

KyCoun() w

llunl? [e(z)+y](v 2 inLY(Q)asn — oo (3.21)

with -7) < é(z) < A, for almost all z € Q (see [1]).
We return to (3.20) and pass to the limitas n — oo in (3.18), (3.19) and (3.21). Since y( -) is sequentially
weakly lower semicontinuous on H'(Q), we obtain (see (2.3))

S+ Bivig < 5 [le) + o2 az
Q

= y(v)< Jé(Z)(V‘)2 dz. (3.22)
Q

First, we assume that & # A; (see (3.21)). Then by (3.22) and Proposition 2.2 we have c1|lv_||? < 0, which
implies
v 2 0. (3.23)

Then on account of (3.19) and (3.23) we have

v; 50 inH'(Q) and v, >0 inL%Q)andinL%(0Q). (3.24)
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In (3.20) we pass to the limit as n — co and use (3.24), (3.22) and the sequential weak lower semicontinuity
of y(-). We obtain

yvh) +ulvtis <o,
= colv'I*<0 (see (2.3)),
— y=0 (see (3.23)).
From (3.20) we obtain |Dvy|> — 0, which implies v,, — 0 in H}(Q) (see (3.19)), which contradicts the fact
that ||vy|| = 1 forall n € N.
Next, we assume that &(z) = A; foralmostall z € Q. From (3.22) and (2.2) we have y(v) = Aillv II%, which
implies
v_ =T1i; forsomert > 0. (3.25)

If T = 0, then v > 0 and, arguing as above (see the part of the proof after (3.23)), we obtain v = 0, contradicting
the fact that ||v,| = 1 foralln € N. If T > 0, then from (3.25) we have

v(z) <0 forallz € Q.

This means that

Up(z) > -0 for almostall z € Qasn — oo,
= )Allu;(z)2 - 2F(z, uy(2)) — +00 for almostall z € Q asn — oo (see (3.17)),
= J[il(u;)z - 2F(z,uy)] dz — +0co asn — oo (by Fatou’s lemma, see (3.17)),

Q

=  y(u,) -2 jF(z, -u,)dz — +00 asn — oo (see (2.2)),

Q
= 2¢;(uy) — +co asn — oo (see (2.7)).
But this contradicts (3.18). We conclude that ¢; is coercive. O

This proposition leads to the following corollary (see [6, Proposition 2.2]).

Corollary 3.3. If hypotheses H(), H(B) and H(f) hold, then for every A > 0 the functional ¢, satisfies the
C-condition.

Next, we turn our attention to the energy functional ¢;, A > 0.

Proposition 3.4. If hypotheses H(¢), H(8) and H(f) hold, then for every A > O the functional @, satisfies the
C-condition.

Proof. We consider a sequence {un}n>1 € H1(Q) such that

|pa(un)l < M, forsome M, > O and forall n € N, (3.26)
(1+ ||un||)(p;1(u,,) -0 inHY(Q)*asn — oo. (3.27)

From (3.27) we have

|(A(un), h) + J &2)uphdz + J B(z)uyhdo + A Jlunlq‘zunhda - Jf(z, un)h dz|
Q 00 Q Q
enlhl

< forall h € HY(Q), with e, — O*. (3.28)
1+ [lugl

In (3.28) we choose h = u, € H(Q). Then

—y(uy) - /\Ilunllg + Jf(z, Up)updz < €, foralln e N. (3.29)
Q
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On the other hand, from (3.26) we have

y(uy) + 27q/1||u,,||g - J 2F(z, up)dz < 2M, foralln e N. (3.30)

We add (3.29) and (3.30). Recalling that g < 2, we obtain
J[f(z, Wn - 2F(z, u)] dz < Ms foralln € N.
Q
Using hypothesis H(f) (iii), we see that
J[f(z, —uy)(-uy,) - 2F(z, —u,)] dz < Ms foralln e N. (3.31)
Q

We use (3.31) to show that {uy;}ns1 € H 1(Q) is bounded. Arguing by contradiction, we may assume that

lup,l > c0 asn— co. (3.32)
Let
Uy
Yn=—", nNnelN
lluz

Then |y, = 1 and y, > 0 for all n € N. We may assume that
Yn—y inHYQ) and yn,—y inL%(Q)andinL?(3Q), y>O0. (3.33)

In (3.28) we choose h = —u;, € H(Q). Then

y(up) + Alluyld - Jf(Z, —uy)(~uy,)dz < en foralln e N,
Q
A Ne(—u;,
= Y+ _—zllanIZ—J EUn),y, dz < — forallneN. (3.34)
lunll2-4 o lual llunll

From (2.6) we see that

{Nf(—u;)
lluz |l

So, by passing to a subsequence if necessary and using hypothesis H(f) (ii), we have

} c L?(Q) is bounded.
n=1

Ne(-uy) »

- é(z)y inL*(Q)asn — oo (3.35)
lluznll

with -7 < é(2) < A, for almost all z € Q.
Returning to (3.34), passing to the limit as n — oo and using (3.32) (recall that q < 2), (3.33), (3.35) and
the sequential weak lower semicontinuity of y(-), we obtain

Y(¥) < J e(z)y? dz. (3.36)
Q

First, we assume that & # A; (see (3.35)). Then from (3.36) and Proposition 2.2 we get ¢4 || y|? < 0, which
implies y = 0. From this and (3.34) we infer that |Dy,|l, — 0, which implies y, — 0in H(Q), which contra-
dicts the fact that |ly,|| = 1 foralln € N.

We now assume that &(z) = A, for almost all z € Q. Then from (3.36) and (2.2) we have

y=Ttu; witht>0.
If T = 0, then y = 0 and, as above, we have

Yo — 0 in HY(Q),



80 —— N.S.Papageorgiou, V.D. Ridulescu and D. D. Repov3, Asymmetric Robin Problems DE GRUYTER

a contradiction since |ly,|| = 1 foralln € N.If T > 0, then y(z) > O for all z € Q, and so
U,(z) — +oo for almost all z € Q,
= flz, —uy(2))(-uy)(z) — 2F(z, —u,(z)) — +oo for almost all z € Q (see hypothesis H(f) (iii)),

= J[f(z, —uy)(-uy) - 2F(z, -uy)] dz — +oo  (by Fatou’s lemma).
0

This contradicts (3.31). Therefore,
{uptns1 € HY(Q) is bounded. (3.37)

Next, we show that {u};}n>1 € H(Q) is bounded. From (3.28) and (3.37) we have
|<A(u;), hy + I futhdz + j B2t hdo + A J(u;)q-lh dz - If(z, uHh dz| < Ms
Q 20 0 Q
for some Mg > 0 and all n € IN. Using this bound and a contradiction argument as in the proof of Proposi-
tion 3.1, we show that
{uttn=1 € HY(Q) is bounded,
= {uplns1 € HY(Q) is bounded (see (3.37)).

From this, as before (see the proof of Proposition 3.1), via the Kadec—Klee property, we conclude that ¢,
satisfies the C-condition. O

4 Multiplicity Theorems

In this section, using variational methods, truncation and perturbation techniques and Morse theory, we
prove two multiplicity theorems for problem (P;) when A > 0 is small. In the first result, we produce four
nontrivial smooth solutions, while in the second theorem, under stronger conditions on f(z, - ), we establish
the existence of five nontrivial smooth solutions.

We start with a result which allows us to satisfy the mountain pass geometry (see Theorem 2.1) and also
to distinguish the solutions we produce from the trivial one.

Proposition 4.1. If hypotheses H(¢), H(S) and H(f) hold, then u = 0 is a local minimizer of ¢, and of (2)/1{ for
every A > 0.

Proof. We give the proof for the functional ¢,. The proofs for the @f are similar.
Recall that c
|F(z, x)| < 73|x|2 for almost all z € Q and for all x € R (see (2.6)). (4.1)

Then for u € C1(Q) \ {0} we have
Pr(w) > gnunz =[S+ I¢leo Il (see (4.1) and hypotheses H(&), H(B)).
> %uunz -l Ml (with ey = [ S+ 1€l > 0)
- (2 - caludZ .

So, if

A )flq’

u < u el <(—
Ileo < sy < (o
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then @, (u) > 0 = p,(0). Hence,

u=0isalocal Cl(ﬁ)-minimizer of pa(+),
— u=0isalocal H'(Q)-minimizer of ¢,(-) (see Proposition 2.4).
The proofs for the functionals 3 are similar. O

With the next proposition we guarantee that for small A > 0 the functional @} (-) satisfies the mountain pass
geometry (see Theorem 2.1).

Proposition 4.2. If hypotheses H(¢), H() and H(f) hold, then we can find A* > 0 such that for all A € (0, 1*)
thereis tyg = to(A) > O for which we have (i)j{(toﬁl) < 0.

Proof. Letr > 2. From hypothesis H(f) (iv) and (4.1), we see that given € > O we can find ¢5 = c¢5(€, r) > Osuch
that

F(z,x) > %[3(2) —€]x? —csx”  foralmostall z € Q and for all x > 0. (4.2)
Then for all t > 0 we have
FUIN t2 A g .
@;(tiy) = S y(@n) + 7"”1”5] - JF(z, tuy) dz (see (2.7))
Q

2 q
< %[y(lh) - I 9 dz+ e + %ualng +estlanlll (see (4.2) and recall that s [, = 1)
Q

tz 3 ~2 At? ~ 14 ITETY
- 3[ J(/\l _ 922 dz + e] + Sl + cstlml]. (4.3)

Q

Note that
ki = J(S(z) - fll)ﬂ% dz >0 (see hypothesis H(f) (iv)).
Q
Choosing € € (0, k), we see from (4.3) that

2

Pr(tay) < —cot® + Acytd + cgt” = [—c6 + Ac7t?7% + cgt'*]¢*>  for some ce, ¢7, cg > 0. (4.4)

Consider the function
Ja(t) = Ac7t972 + cgt’™% forallt > 0.

Evidently, J, € C'(0, +c0), and since 1 < q < 2 < r, we see that
Ja(t) - +c0 ast — 0t andast — +oo.
So, we can find tg € (0, +00) such that

Ja(to) = min{g(t) : 0 < t < +oo},

= J)(to) =0,
=  Ac;(2- q)tg_3 =cg(r- 2)t6‘3,
Ac7(2-q)1+%
- to=f0(/1)= [%_zq))]
Then . .
Ia(to) = Acy Leslr = 2)] zqq +Csg [Aca(2 - q)];q .
[Ac2(2 - )] [ce(r—2)] 7

Since 3:—3 < 1, we see that

da(to) - 0" asA—0".
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So, we can find A* > 0 such that
Ia(to) < cg forall A e (0,A%).

Then it follows from (4.4) that
@y (tolt1) <0 forallA e (0,A").

This completes the proof of Proposition 4.2.

Remark. In fact, a careful reading of the above proof reveals that

@, (=tot;) <0 forallA € (0,1%).

(4.5)

Proposition 4.3. If hypotheses H(¢), H(B) and H(f) hold and A € (0, A*), then there exists ug € Cc1(Q) with

Uop(z) <O forall z € Q and
@5 (uo) = inf{@;(w) : u € H(Q)} < 0.

Proof. From Proposition 3.2 we know that ¢; is coercive. Also, the Sobolev embedding theorem and the
compactness of the trace map imply that ¢; is sequentially weakly lower semicontinuous. Hence, by the

Weierstrass—-Tonelli theorem, we can find ug € H*(Q) such that
@5 (uo) = inf{@; () : u € WHP(Q)}.

From (4.5) we see that ¢, (uo) <0 = fl;(O), which implies ug # O.
From (4.6) we have ((,b;)’(uo) = 0, which implies

(A(up), h) + J[g’(z) + uuohdz + I B(z)upghdo = J k;(z,uo)hdz forallh e HY(Q).
Q 20 Q

In (4.7) we choose h = uj € H'(Q). Then

yud) + pllugl3 =0 (see (2.7)),
= colufl* <0 (see (2.3)),

= Up<0, ug+0O.
From (4.7) and (2.7) it follows that

(A(uo), hy + J 2)uoh dz + J B(z)uohdo = J[f(z, uo) - Aluol2uolh dz forall h € H(Q),
Q 0Q Q

which implies

—Aup(z) + é&(z2)uo(z) = flz, up(2)) - Auo(2)|9 %ug(z) foralmostall z € Q,

9uo B(2)uo = 0 on 0Q (see [9]).
on

Let

_ 1Az, uo(2))

Az, %) = fz, x) —Ax|972x and ki(z) = 22222 forA > 0.
1+ [uo(2)]
Hypotheses H(f) (i) and (ii) imply that
|TAlz, X)| < co[1 + |x]] for almost all z € Q and all x € R, with cg = c9(A) > 0,
e |f</1(z)| = M <cy9 foralmostallz € Q,
1+ [uo(2)]

=  kyeL®(Q).
From (4.8) we have

~Auo(2) = [£(z) - ka(2)|uo(2) + ka(z) for almostall z € Q,

% + B(z)uo =0 on 0Q

(4.6)

(4.7)

(4.8)
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(recall that ug < 0). Since (¢ - k() € LS(Q) (for s > N), we deduce by [15, Lemma 5.1] that
Ug € L*(Q).
Then the Calderon-Zygmund estimates (see [15, Lemma 5.2]) imply that
uo € (=€) \ {0}
Moreover, the Harnack inequality (see [13, p. 163, Theorem 7.2.1]) implies that
Ug(z) <0 forallz € Q.

This completes the proof. O

Remark. The negative sign of the concave term does not allow us to conclude that ug € —-D, when é* € L*°(Q)
(by Hopf’s boundary point theorem, see [13, p. 120]).

Now we can state and prove our first multiplicity theorem.

Theorem 4.4. Assume that hypotheses H(¢), H(B) and H(f) hold. Then there exists A > O such that for all
Ae(0,A) problem (P,) has at least four nontrivial solutions

ug, it € (-Cy) \ {0}, up(z),u(z) <0 forallz e Q,
vo € C, \ {0}, vo(z) >0 forallz € Q,
Yo € C1(Q) \ {0}.
Proof. From Proposition 4.3 and its proof (see (4.8)) we already have one solution
ug € (-C;) \ {0}, Uup(z) <0 forallz € Q, whenA € (0,A%).
This solution is a global minimizer of the functional ¢
Claim. The solution uy is a local minimizer of the energy functional ¢,.

We first show that ug is a local C*(Q)-minimizer of @,. Arguing by contradiction, suppose that we could find
a sequence {Unp}lnp>1 < C'(Q) such that

U, — Up in C*(Q) as n — oo and @ (uy) < @a(uo) foralln € N. (4.9)
Then for all n € N, we have
0 > @a(un) - pa(uo)

= @a(un) - 3 (uo) (since pal-c,) = P;l-c,), see(2.7))
= @a(un) — @5 (upn) (recall that ug is a global minimizer of (Z)X)

1 A 1 A _
= ¥+l - jF(z, un) dz — 5 y(un) - B3 - g+ jF(z, ) dz (see (2.7))
Q

A
= Zhtf - S - [ Fe,up az
Q

A U+ C3
> il = (552 )il (see (4.1)

A 2
> il - crolhalia s lag

A 2
= [ — crolales i, (4.10)

where i
C10 = K 3 > 0.
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From (4.9) we have
u: — 0 in CY(Q) (recall that ug|q < 0).

Therefore, we can find ng € IN such that
A +112-4
P > crollupllco forall n = no,

= 0> @i(un) - p(up) >0 foralln = ng (see (4.10)),

a contradiction. Hence we have that
Up is a local C*(Q)-minimizer of ¢;,
=  upisalocal H'(Q)-minimizer of ¢, (see Proposition 2.4).

This proves the claim.
Using (2.7) and the regularity theory of Wang [15], we can see that

K;‘Z c€(-Cy) and Kpr < Cy forall A > 0. (4.11)

On account of (4.11), we see that we may assume that both critical sets K¢X and Kq,; are finite or, otherwise,
we already have an infinity of nontrivial smooth solutions of constant sign and so we are done.

From Proposition 4.1 we know that u = 0 is a local minimizer of g‘o; for all A > 0. Since K¢; is finite, we
can find p € (0, |lug|l) small such that (see [1, Proof of Proposition 29])

@3 (uo) < 0 = @;(0) < inf{p; (w) : llull = p} = . (4.12)

From Corollary 3.3 we know that
@, satisfies the C-condition. (4.13)

Then (4.12) and (4.13) permit the use of Theorem 2.1 (the mountain pass theorem). So, we can find it € H(Q)
such that
uce Ky, < (-Cy) (see(4.11)) and #;(uo) < 0= 0;(0) <, < Py (0).

It follows that
e (-C.)\ {0, up} isasolution of (Py) (see (2.7)).

As before, Harnack’s inequality implies that
u(z) <0 forallz e Q.
Now we use once more Proposition 4.1 to find pg € (0, ty) small enough such that
0 = @;(0) < inf{@}(u) : llull = po} = iy, A>0. (4.14)
Proposition 4.2 implies that we can find A* > 0 such that
@;(tolt1) <0 forall A € (0,A") with tg = to(A) > 0. (4.15)
Moreover, Proposition 2.5 implies that
@, satisfies the C-condition for all A > 0. (4.16)

Then, on account of (4.14)—(4.16), we can apply Theorem 2.1 (the mountain pass theorem) and produce
Vo € HY(Q) such that

Vo € Kpr € Cy (see (4.11)) and 0 = ¢;(0) <y < P;(vo),
= vg € C,\ {0} isasolutionof (Py), A € (0,A1%) (see (2.7)).
Once again, Harnack’s inequality guarantees that

vo(z) >0 forallz e Q.
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Let I € N be as in hypothesis H(f) (iv) and set
! -
H =@EA), B =H =@ Ed).
k=1 k=l+1

We have
HY'(Q)=H;®H, and dimH; < +oo.

Consider u € H;. We have

1 A
PAG0) = 3y + £l - jF(z, u) dz
Q

<

[y(u) - j I dz + e||u||2] T enn [Alull? + ul']
Q

N =

1
<5[-ca+e] lul? + caa [Alul? + ul'],
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(4.17)

(4.18)

where (4.17) holds for some c1;, > 0 and follows from (4.2) and the fact that all norms on H; are equivalent,

and (4.18) follows from Proposition 2.2. Choosing € € (0, c;), we have

) < [-c12 + At ull™? + coq lul?]llull®>  for some c1; > 0.

Reasoning as in the proof of Proposition 4.3, we can find A € (0, A*] such that for all A € (0, A] there exists

pa > 0 for which we have
pA(u) <0 forallu e Hy, ul = p;.

For u € H; we have
Am

1 A .
oA(u) > zy(u) + allullg - 7"“"% (see hypothesis H(f) (iii))

> %[y(u) — Allul3] + %llullg (sincel = m)
> 0.
Finally, consider the half-space
H,={tiy +@t:t>0, it € H}.

Exploiting the orthogonality of H; and H, for every u € H, we have

1 . 5 A . - .
[£y(i) + y(@)] - Tm[tzllulllﬁ + @3] (see hypothesis H(f) (iii))

QA(u) =

O N

> (since @t € Hy, 1 > m).

Then (4.19)—(4.21) permit the use of [12, Theorem 3.1]. So, we can find yg € H'(Q) such that
YoeKy, cC Q) (by the regularity theory of Wang [15]),
PA(0) <0 =(0) and Cay1(pa,y0) #0 (di = dim H).
From (4.22) it is clear that yo # 0. Recall that
0 < @aA(@), a(vo) (since px = @ylc,) = @;lc,)-

Therefore, it follows from (4.22) that
Yo e {ﬂs Vo, 0}-

Also, by the claim we have that ug is a local minimizer of ¢,. Hence,

Ck((pA, Upg) = 6](,01 for all k € INp.

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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Note that d; > 2 (since [ > m > 2). Therefore,
d121
and so from (4.22) and (4.23) we infer that
Yo # Ug.
So, we conclude that yy € C? Q)\ {0} is a fourth nontrivial solution of (P,) (forall A € (0, ;\)) distinct from uo,

u and vg. O

If we strengthen the hypotheses on f(z, - ), we can improve the above multiplicity theorem and produce a fifth

nontrivial smooth solution.

The new conditions on the nonlinearity f(z, x) are the following:

H)': f: QxR — R is a measurable function such that for almost all z € Q, f(z,0) =0, f(z,-) € CL(R),
hypotheses H(f)' (i), (ii) and (iii) are the same as the corresponding hypotheses H(f) (i), (ii) and (iii),
and, furthermore,

(iv) there exist I € IN, [ > m such that

f(z X)

fx(z 0) = hm uniformly for almost all z € Q,

fx(z, 0) € [)ll, )l1+1] for almost all z € Q,
f;(’o)iﬁla f;(':o)i/ihl'

Theorem 4.5. If hypotheses H(&), H(B) and H(f)' hold, then there exists A > 0 such that for all A € (0, fl) prob-
lem (Py) has at least five nontrivial solutions

Uo, it € (-C,), Uo(z) <0 forallz € Q,
Vo € Cy, vo(z) >0 forallz € Q,
Yo, € C1(Q) \ {0}

Proof. Now we have ¢, € C2(HY(Q) \ {0}, R). Similarly, 3 € C*(H'(Q) \ {0}, R).
The solutions uy, i, vo, yo are a consequence of Theorem 4.4, From Proposition 4.1 and (4.23) we have

Cr(@a, uo) = Cr(@z,0) = 8x,0Z forallk € Ny, A € (0, A). (4.24)

Also, from the proof of Theorem 4.4 we know that i is a critical point of ¢; of mountain pass type, and vy is
a critical point of ¢ of mountain pass type.
Invoking [7, Corollary 6.102], we have

Cr(py, ) = Ci(@},vo) = 6k1Z  forall k € No. (4.25)

The continuity in the C!-norm of the critical groups (see [5, p. 836, Theorem 5.126]) implies that

Ck(¢;, 1) = Ck(pr, )  forall k € No, (4.26)
Cx(P}>vo) = Cr(@a, vo) forall k € No. (4.27)

From (4.25)-(4.27) it follows that
Cr(@pa, ) = Ck(pa, vo) = 6x17Z forall k € Np. (4.28)

The fourth nontrivial solution yo € C1(Q) was produced by using [12, Theorem 3.1]. According to that
theorem, we can also find another function y € H'(Q), y # yo, such that

V €Ky, cCHQ) and Cqlpp,7)#0 (di>2). (4.29)
From (4.24)—(4.29) we conclude that
¥ € CH(@)\ {uo, &, vo, yo, 0}
is the fifth nontrivial solution of problem (P,) for all A € (0, A). O
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