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Abstract: In this paper, we study the following nonlinear magnetic Kirchhoff equation:

—(ae® + be[uly )Daseu + VOu = flul)u  in R,

ue HY(R?, C),
where € > 0, a, b > 0 are constants, V: R*> - Rand A : R?> — R> are continuous potentials, and A4 u is the
magnetic Laplace operator. Under a local assumption on the potential V, by combining variational methods,
a penalization technique and the Ljusternik—-Schnirelmann theory, we prove multiplicity properties of solu-

tions and concentration phenomena for € small. In this problem, the function f is only continuous, which
allows to consider larger classes of nonlinearities in the reaction.
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1 Introduction and Main Results

This paper is devoted to the qualitative analysis of solutions for the nonlinear magnetic Kirchhoff equation
in IR>. We are concerned with the existence and multiplicity of solutions, as well as with concentration prop-
erties of solutions for small values of the positive parameter. A feature of this paper is that the reaction has
weak regularity, which allows to consider larger classes of nonlinearities. The main result is described in the
final part of this section.

In this paper, we study the following nonlinear magnetic Kirchhoff equation:

—(ae® + be[uly )Daseu + VOOu = f(lul*)u  in R,

1.1
u e HY(R3?, ©), (L)

where € >0, a, b > 0 are constants, V : R> — R is a continuous function, the magnetic potential A : R> — R3
is Holder continuous with exponent a € (0, 1], and —A u is the magnetic Laplace operator of the follow-
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ing form:
1 2 2 1
—Apu = <7V —A(x)) u=-Au- TA(X) -Vu + |A(x)|2u - Tu div(A(x)).

The definition of [u]% /e Will be given in Section 2.

For problem (1.1), there is a vast literature concerning the existence and multiplicity of bound state solu-
tions for the case A = O and a = b = 0. The first result in this direction was given by Floer and Weinstein in [8],
where thecase N = 1and f = iR is considered. Later on, several authors generalized this result to larger values
of N, using different methods. For instance, He and Zou [10] considered the following fractional Schrédinger
equation:

€ (-A)u+ VxX)u = fu) + u>~1, xeRN,

where V is a positive continuous function and satisfies the local assumption inf,cp V(x) < minycy, V(x), and
f € Cis a function having subcritical and superlinear growth. By using the Nehari manifold method and the
Ljusternik—-Schnirelmann category theory, they obtained the multiplicity of positive solutions. We note that f
is only continuous, and the Nehari manifold is only a topological manifold. He and Zou [10] applied the
method that Szulkin and Weth developed in [20]. He and Zou [11] also studied multiplicity of concentrating
solutions for a class of fractional Kirchhoff equations when the potential satisfies a local assumption and the
nonlinear term f is only continuous. We also note that Ji, Fang and Zhang [12] considered a multiplicity result
for asymptotically linear Kirchhoff equations. For further results about Kirchhoff equations, see [9, 19, 22, 23]
and the references therein.

On the other hand, when a = b = 0, the magnetic nonlinear Schrédinger equation (1.1) has been exten-
sively investigated by many authors applying suitable variational and topological methods (see [1, 3, 4, 7,
15, 16, 18, 24, 25] and the references therein). It is well known that the first result involving the magnetic
field was obtained by Esteban and Lions [7]. They used the concentration-compactness principle and mini-
mization arguments to obtain solutions for € > 0 fixed and N = 2, 3. In particular, due to our scope, we want
to mention [1] where Alves, Figueiredo and Furtado used the method of the Nehari manifold, the penalization
method and Ljusternik-Schnirelmann category theory for subcritical nonlinearity f € C'. We point out that
if f is only continuous, then the arguments developed in [1] fail. In [13, 14], Ji and Radulescu used the method
of the Nehari manifold, the penalization method and Ljusternik-Schnirelmann category theory to study the
multiplicity and concentration results for a magnetic Schrédinger equation in which the nonlinearity f is only
continuous and subcritical and critical nonlinear terms, respectively. We also note the recent contribution [2]
where Ambrosio studied multiplicity and concentration of solutions for a fractional Kirchhoff equation with
magnetic field and critical growth.

Motivated by [11, 13], in the present paper, our main goal is to study multiplicity and concentration of
nontrivial solutions for problem (1.1) only when f is continuous. Comparing with the result in [13], due to
the presence of the nonlocal term, it is not clear to show the weak convergence of a bounded (PS) sequence
of problem (1.1) is a solution of problem (1.1). Moreover, as we will see later, due to the presence of the
magnetic field A(x), problem (1.1) cannot be changed into a pure real-valued problem, and hence we should
deal with a complex-valued problem directly, which causes several new difficulties in employing the methods
in dealing with our problem. Our problem is more complicated than the pattern without magnetic field and
we need additional technical estimates.

Throughout the paper, we make the following assumptions on the potential V:

(V1) There exists Vy > 0 such that V(x) > V, for all x € R3.
(V2) There exists a bounded open set A ¢ R3 such that

Vo = min V(x) < min V(x).
xel X€0A

Observe that
M:={xeA:V(x)=Vo}+0.

Moreover, let the nonlinearity f € C(RR, R) be a function satisfying the following conditions:
(f1) f(¢)=0ift <0, and lim;_o- L2 = 0.

(f2) There exists g € (4, 6) such that
lim o =

t—+00 t%z

0.
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(f3) There is a positive constant 6 > 4 such that
9 t
0< EF(t) < tf(t) forall t > 0, where F(t) = Jf(s) ds.
0

(f4) f(Tt) is strictly increasing in (0, co).

The main result of this paper is the following theorem.
Theorem 1.1. Assume that V satisfies (V1), (V2) and f satisfies (f1)—(f4). Then, for any § > O such that
Ms := {x e R? : dist(x, M) < 8} c A,

there exists €5 > 0 such that, for any O < € < €5, problem (1.1) has at least caty; (M) nontrivial solutions. More-
over, for every sequence {en} such that e, — 0% as n — +co, if we denote by u., one of these solutions of
problem (1.1) for € = e, and if ¢, € R3 is the global maximum point of lue,|, then

lim V(ne,) = Vo.
€,—0"

The paper is organized as follows. In Section 2, we introduce the functional setting and give some prelimi-
naries. In Section 3, we study the modified problem and prove the Palais-Smale condition for the modified
functional, and provide some tools which are useful to establish a multiplicity result. In Section 4, we study
the autonomous problem associated. It allows us to show that the modified problem has multiple solutions.
Finally, in Section 5, we give the proof of Theorem 1.1.

Notation. - C, Cq, C5, ... denote positive constants whose exact values are inessential and can change
from line to line.

«  Bgr(y) denotes the open ball centered at y € R? with radius R > 0, and BICe (y) denotes the complement of
Bgr(y) in R3.

e -1, 1-llgand || - Iz (q) denote the usual norms of the spaces H LR3, R), LY(R?, R) and L>°(Q, R), respec-
tively, where Q ¢ R3.

2 Abstract Setting

In this section, we introduce the function spaces and some useful preliminary remarks, which will be useful
for our arguments.
Foru : R3 — C, we set

\Y
Vau := (7 —A)u.
Consider the function spaces
DL (R?,C) :={u € L%(R?, C) : |[Vau| € L*(R*, R)}

and
HA(R?,C) := {u e D}(R?,C) : u € L*(R?, C)}.

The space H}X(IR3, Q) is a Hilbert space endowed with the scalar product

(u,v) := Re J(VAuVAv +uv)dx foranyu,ve Hy(R’, C),
R3
where Re and the bar denote the real part of a complex number and the complex conjugation, respectively.

We denote by |[u]4 the norm induced by this inner product, and [u]} := [,,|Vaul® dx.
On H}x (R3, C) we will frequently use the following diamagnetic inequality (see, e.g., [17, Theorem 7.21]):

IVau(l > [Viux)|| forallu € Hy(R?, C). (2.1)
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Moreover, making a simple change of variables, since

1
Ag, = €*Agje and [uly = —ulj.,

we can see that problem (1.1) is equivalent to
—(a+b[ulj )Aau+ Ve(u = f(lu)u inR, (2.2)

where A¢(x) = A(ex) and V¢ (x) = V(ex).
Let H, be the Hilbert space obtained as the closure of C2°(RN, C) with respect to the scalar product

{(u, v)e := Re J(VAeuVAev + Ve(x)uv) dx

R3

and let | - | denote the norm induced by this inner product.

The diamagnetic inequality (2.1) implies that, if u € H}le (R3, €), then |u| € HY(R3, R) and |ju| < Cllullc.
Therefore, the embedding He. — L'"(IR?, C) is continuous for 2 < r < 6 and the embedding H, — L{OC(]R3, QC)
is compact for1 <r < 6.

3 The Modified Problem

Asin [6], to study problem (1.1), or equivalently (2.2), we modify suitably the nonlinearity f so that, for € > 0
small enough, the solutions of such modified problem are also solutions of the original one. More precisely,
we choose K > 2. By (f4), there exists a unique number a > 0 verifying Kf(ao) = Vo, where Vj is given in (V1).
Hence we consider the function

. f(t)) t< aop,
f(6) =1 v,
7, t>agp.

Now we introduce the penalized nonlinearity g : R> x R — R:

g(x, £) := xaCOf(6) + (1 = xa GO (B),

where yp is the characteristic function on A. Set G(x, t) := jot g(x, s) ds.
In view of (f1)—(f4), we have that g is a Carathéodory function satisfying the following properties:

(g1) g(x,t)=0foreacht<O.

(g2) tli%1+ @ = 0 uniformly in x € R3, and there exists q € (4, 6) such that

. 8 t)
lim =

=0 uniformlyin x € R3.
t—+00 tz

(g3) gx,t) < f(t)forall t > 0 and uniformly in x € R3.
(g4) 0<0G(x,t)<2g(x,t)tforeachx € A, t > 0.
(g5) 0< Gx,t) <gx, t)t < Vot/K foreach x € A, t > 0.

(g6) For each x € A, the function ¢ — w is strictly increasing in t € (0, +00), and for each x € A€ the

function t — M is strictly increasing in (0, ao).

Next, we consider the modified problem
— (@ + bluly )Apu+ Ve(X)u = glex, lul*)u  inR°. (3.1)
Note that, if u is a solution of problem (3.1) with
[u(X)* <ap forallx € AS, Ae := {x € R? : ex € A},

then u is a solution of problem (2.2).
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The functional associated to (3.1) is

a 1 b 1
Jew i= S}, + 5 [ Veborp dxs it - 5 [ Glex. i) dx
R3 R3

defined in He. It is standard to prove that J. € C1(H¢, R) and its critical points are the weak solutions of the
modified problem (3.1).
We denote by N, the Nehari manifold of J, that is,

Ne = {u € He \ {0} : Je(w)[u] = 0},
and define the number c, by
Ce = Llienﬁiile(u)-
Let H{ be the open subset H, given by
HY ={u € H : |supp(u) N A¢| > 0},

and S{ = S, n HY, where S is the unit sphere of H,. Note that S} is a non-complete C*-!-manifold of codi-
mension 1, modeled on H. and contained in H{. Therefore, H, = T,,S{ @ Ru for each u € TS}, where
TSt ={veHe:{(u,v)e=0}

Now we show that the functional J, satisfies the mountain pass geometry.

Lemma 3.1. For any fixed € > 0, the functional ] satisfies the following properties:
(i) There exist B, r > O such that J¢(u) = B if |ulle = 1.
(ii) There exists e € H with | e|l¢ > r such that J¢(e) < O.

Proof. (i) By (g2), (g4) and (g5), for any { > 0 small, there exists C; > 0 such that
G(ex, ul®) < {ul* + Clul?  forallx e R3.

By the Sobolev embedding theorem, it follows that
1 b ¢ C¢
i, +5 j VeOlul® dx + 2 [uly - > J|u|4 dx - = j|u|q dx
R3 R3 R3

1
= zllunllﬁ - C1llunllg = C2Cllunlié.

a
Je(u) 2 3

Hence we can choose some f, r > 0 such that J(u) > B if |u|l¢ = r since g > 4.
(ii) For each u € H} and t > 0, by the definition of g and (f3), one has
t? bt* 1
Je(tw < S Jul? + 2l - 5 [ Glex, Plul) dx
Ae

t2 o bt* 0 0
< Sl + 7, - Crt j|u| dx + Colsupp(u) N Aq.
Ae

Since 0 > 4, we can get the conclusion. O

Since f is only continuous, the next results are very important because they allow us to overcome the non-
differentiability of N and the incompleteness of S.

Lemma 3.2. Assume that (V1)—(V2) and (f1)-(f4) are satisfied. Then the following properties hold:

(A1) Forany u € Hf, let g, : R* — R be given by g,(t) = J¢(tu). Then there exists a unique t, > O such that
g, (t) >0in (0, t,) and g, (t) < 0 in (t,, co).

(A2) Thereissome 1 > 0 independent of u such that t, > 7 for allu € S. Moreover, for each compact W c S}
there is a constant Cy such that t, < Cy forallu € 'W.
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(A3) The map m.: Hf — Ne given by me(u) = tyu is continuous, and me = Mg+ is a homeomorphism
between St and N. Moreover, m;(u) = ﬁ
(A4) Ifthereis asequence {uy} c St such that dist(up, 0S¥) — 0, then |[me(un)lle — oo and Je(me(up)) — oo.

Proof. (A1) As in the proof of Lemma 3.1, we have g,,(0) = 0, g,(t) > 0 for t > 0 small, and g, (t) < O for ¢t > 0
large. Therefore, maxso gy (t) is achieved at a global maximum point ¢ = t, verifying g} (t,) = O and t,u € N,.
Now, we show that t, is unique. Arguing by contradiction, suppose that there exist t; > t, > 0 such that
g1 (t1) = g (t) = 0. Then, fori =1, 2,

tialuly +1t; J Ve(Olul* dx + £} blul; = Jg(ex, £ [ul?)t;lul? dx.

R3 R3
Hence,
alulj, + [ VeOolul* dx . g(ex, ul?)|ul?
: R e
t: J t;
which implies that
1 1
(5 - =)(atut, + [ veconr ax)
1 2 R’
ex, t2|u|? ex, t2|ul?
:Rg( - 1ul®)  g( i 5 I))|u|4dx
t1lul? t5lul?

(g(ex, tlul®)  glex, ul)

>
t3]ul? t3]ul?

)|u|" dx
ASn{B3|ul2<ao<t?|ul?}
. J’ (g(ex, tlul®)  glex, Blul?)
t3]ul? t3|ul?

)Iul4 dx
Aén{ao<ti|ul?}

y J (Vo 1 filuP)

>

1,01 1
- - u*dx + =(= - = J Volul|? dx.
K 2u)2  6ul? ) K(z% t§)

ASn{B|ul2<ao<t?|ul?} ASn{ao<t3|ul?}

Since t; > t, > 0, we have

(atu, + | vecor? ax)

]R3
t2t2 Vo 1 2|ul? 1
= 21 22 J (_Oz__w)lull'dﬁ_ J Volul* dx
2-t Kt Glu? K
ASn{t2|ul2<ao<t?|ul?} ASnfao<t?|ul?}

1

<= | Volul?d

KJ olul” dx
AS

1 2
<
< Zlul?,

which is a contradiction. Therefore, max;s¢ g, (t) is achieved at a unique t = t, so that g/,(t) = O and t, u € Ne.
(A2) For any u € Sf, we have

b+ Eblully = Jg(ex, E21ul?) tulul? dx.
R3

From (g2), Sobolev embeddings and since g > 4, we get

ty < (8 j|u|4 dx + Cotd™ J|u|q dx < C1{6 + C2Cotd ™",

R3 R3
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which implies that ¢, > 7 for some 7 > 0. Suppose by contradiction that thereis {u,} ¢ Wwith ¢, :=t,, — co.
Since W is compact, there exists u € W such that u, — u in H.. Moreover, using the proof of Lemma 3.1 (ii),
we have that J.(t,u,) — —co.

On the other hand, let v, := t,uy, € Ne. From the definition of g and by (g4), (g5) and 6 > 4, it follows
that

Jevi) = Jevn) = L) val

1 1 1 1 1 1
z(i—awmﬁ+(z—§ﬁwu;+J{Emmnwﬁnmﬁ—iawmwu%%u
Ag

> (5= 5)(val - ¢ [ Veenival? ax)

R3
> (5 5)(1- %)l

Thus, substituting v, := t,u, and |v,|¢ = t,, we obtain

1 1 1\ Je(vn)
0<(§'§)(1'T<)S tg <0

as n — oo, which yields a contradiction. This proves (A2).

(A3) First of all, we note that 711, me and m;! are well defined. Indeed, by (A2), for each u € H{, there is
a unique M¢(u) € Ne. On the other hand, if u € N, then u € H{. Otherwise, we have [supp(u) N A¢| = 0 and
by (g5), we have

a[u]ie + J Ve()|ul? dx + b[u]ge = J g(ex, ul®)|ul* dx
R R
- [ stex, ur ax
Ag
1 J V(ex)|u|? dx
- K

R3

1
< gl

which is impossible since K > 2 and u # 0. Therefore, m;1(u) = -4 € S¢ is well defined and continuous.

llulle
From
tyu

-1 =m:! TR
me! (me(w) = me! (taw) = e

=u forallueSg,

we conclude that m¢ is a bijection.
Now we prove that m. : Hf — N, is continuous. Let {u,} ¢ Hf and u € H} such that u, — u in He.
By (A2), there exists o > 0 such that ¢, := t,, — to. Using t,un € Ng, that is,

tralunly +ty J Ve(Olun|® dx + tablunly = Jg(ex, talun®)tiluq|* dx foralln e N,

R3 R3

and passing to the limit as n — oo in the last inequality, we obtain

Bafu)?_+ 6 J Ve lul? dx + t4b{ul}, = Ig(ex, 21u)2jul? dx,
R3 R3
which implies that tou € N¢ and t,, = to. This proves that m.(u,) — m¢(u) in H.. Thus, m. and m, are con-
tinuous functions and (A3) is proved.
(A4) Let {un} c S be a subsequence such that dist(u,, 0S£) — 0. Then, for each v € 0S} and n € N, we
have |uy| = |u, — v| a.e. in A¢. Therefore, by (V1), (V2) and the Sobolev embedding theorem, there exists
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a constant C, > O such that

lunllzraey < inf fluy = vilzra
n (Ae) VE()SZ n (Ae)

1
< C,( inf J(IVAeun VR 4 Ve)lun - vI2) dx)z
veoaSy

AE

< C, dist(uy, 0S})

foralln e Nandr € [2, 6]. By (g2), (g3) and (g5), for each t > 0, we have

2
I G(ex, t*|un|?) dx < JF(tzlunlz)dx + % J V(ex)|un|? dx
RN Ae AS

tZ
< Cyt* J|u,,|4 dx + Cyt1 I|u,,|‘1 dx + K||u,,||§
Ae Ae

2

< C3t* dist(un, 0S5)* + C4t9 dist(u,, 0SH)7 + ;—(

Therefore,
2

lim sup J G(ex, t*|up|?) dx < §—< forall t > 0.
n
R3

On the other hand, from the definition of m, and the last inequality, for all £ > 0, one has

limninfje(me(un)) > limninfle(tu,,)

i .ft2 , t
> limin ?Ilunlle—E
K-2,

2K

This implies that

1 K-2
hmnmlelme(un)llzz 7 t2 forallt> 0.

From the arbitrariness of t > 0, it is easy to see that |[m¢(uy)|le — co and Je(me(u,)) — co as n — oo. This
completes the proof of Lemma 3.2. O

Now we define the function

Y.:H - R

by We(u) = Je(fie(w) and set W := (¥e)ls;.
From Lemma 3.2, we have the following result.

Lemma 3.3. Assume that (V1)-(V2) and (f1)—(f4) are satisfied. Then the following assertions hold:
(B1) Y. e CYH!,R)and

Yl (uyv = M}é(fﬁe(u))[v] forallu ¢ Hf and all v € H,.

llulle
(B2) Y. e CYS!, R)and
Yew)v = [me()lleJe(e(w))[v] forallv e T,St.

(B3) If{uy}is a (PS). sequence of ¥, then {m¢(uy,)} is a (PS). sequence of J¢. If {un} ¢ N is a bounded (PS),
sequence of ], then {mz1(un)} is a (PS). sequence of ¥e.
(B4) u s a critical point of ¥, if and only if m¢(u) is a critical point of J¢. Moreover, the corresponding critical
values coincide and
i?;f Y, = 131\[1€f Je.
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As in [21], we have the following variational characterization of the infimum of /. over Ne:

ce = inf Je(u) = inf supJe(tu) = inf sup Je(tu).
ueN, ueH} >0 ueS{ >0

Lemma 3.4. Let ¢ > 0 and let {u,} be a (PS). sequence for J.. Then {u,} is bounded in He.

Proof. Assume that {u,} c H is a (PS). sequence for J, that is, J¢(u,) — ¢ and J.(u,) — 0. By using (g4),
(g5) and 6 > 4, we have

¢ + 0n(1) + 0n(Wllutnlle > Je(ur) - gfg(un)[un]

1 1 1 1 1 1
= (3 - g )uall + (5 = 5 )plunts, + [ (g8texlunlual? - 5 6(ex. unl®)) dx

2 0
R3
1 1 2 1 2 2 1 2
> (3 - g Muall + [ (Getex. hual)lul = S6tex, lual?)) dx
Ag
1 1 , 1 5
> (5 - g )t = 5 | Gtex, lul) dx
Ag
1 1 , 1 5
> (5 - g uall = 5 [ VieoluaP dx
R3
1 1 1 5
> (5 -5~ 3 lunl-
Since K > 2, from the above inequalities we obtain that {u,} is bounded in He. O

The following result is important to prove the (PS)., condition for the functional J.
Lemma 3.5. The functional ], satisfies the (PS). condition at any level c > 0.
Proof. Let (u,) c He be a (PS). sequence for J.. By Lemma 3.4, (u,) is bounded in H,. Thus, up to a subse-
quence, u, — uin He and u, — uin L] (R%, C) forall 1 < r < 6 as n — +co. Moreover, J;(u) = 0 and
alul + J Ve(Olul® dx + blul = Jg(ex, [ul?)|ul? dx.
R3 R3

For the fixed € > 0, let R > 0 be such that A c Bg/»(0). We show that for any given ¢ > 0, for R large
enough,

lim sup J (IVa, unl® + Ve(x)lunl?) dx < ¢. (3.2)
n
B3(0)
Let g € C®°(RR3, R) be a cut-off function such that
C
¢r =0forx € Bgj2(0), ¢r=1forx e Bx(0), 0<¢pr<1, [Vogl< ?

where C > 0 is a constant independent of R. Since the sequence (¢ru,) is bounded in H,, we have

]é(un)[(ﬁRun] =0p(1),

that is
aRe | Vaun Vs @rin) dx+ [ VeCOlunr dx+ blunl}, Re [ VaunVa (Grn) dx
R3 R3 R3
- j g(ex, [un®)lun2pr dx + 0n(1).
IR3
Since

Va (UnPr) = iUy VPr + prVa un,
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using (g5), we have

j(ameunﬁ + Ve)lun?) g dx
IR3
< j g(ex, [un|?)|un|?pr dx — (a + b[u,,]je) Re J iUV 4, Uun Vg dx + 0n(1)
R3 R3
< % J Ve(Olunl? pr dx + ClRe J fnV A Un VPR dx| + on(1).
R3 R3

By the definition of ¢, the Holder inequality and the boundedness of (u,) in H, we obtain

1 C C

(1-%) j(awAeunP + Ve(Olunl)pr dx < ZlunllaIVa inlla +0n(1) < = + 0n(1),
K R R

R3

and so (3.2) holds.
Now, we prove that for any R > O the following limit holds:

lim sup J (IVaunl? + Ve(x)|unl?) dx = j (IVa.ul® + Ve(O)lul?) dx. (3.3)
n
Br(0) Br(0)

Let ¢ € C®(R3, R) be a cut-off function such that

¢, =1forx e B,(0), ¢,=0forxe ng(O), 0<¢pp<1, [Vo,l< ;E)’
where C > 0 is a constant independent of p. Let
Pp(x) = M(un)|Va, un - Va,ul* + Ve(X)lun - ul?,
where
M(up)=a+b J |V, un|? dx.
R3
For the fixed R > 0, choosing p > R > 0, we have
j Pa(x) dx < j Pa(0p(x) dx
Br R3
= Mun) [ Vacun - Vaul gy dx+ [ VeGolun - ul’y(x) dx
R3 R3
ZJ%,p_]ip-"]rgl,p"']ﬁ,p) (34)

where

Thp = M) [ Vacunl? 800 doc+ [ Vel ey dx — [ gex,lunlunl’ ¢y dx,

R3 R3 R3
Jnp = M(uy)Re J Va UnVa ug,(x) dx + Re J Ve(X)untihp(x) dx — Re J g(ex, |un|® unuey(x) dx,
R3 R3 R3
J5p = —M(un) Re I(VAeun ~ Va4 u)Va upp(x)dx + Re I Ve(x)(un - wug,(x) dx,
R3 R3
jﬁ,p = Re J g(ex, [unl?)un(un — u)p, (x) dx.
IR3

It is easy to see that
Jnp = Je(un)(@pun] — M(up)Re J UnVa unVepp dx
R3
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and
12, = T (un) [ hput] - M(up) Re J IV A, unVeb, dx.
]R3
Then
Jim limsupl/}, | =0, lim lim suplJ, | = 0.
On the other hand, since the sequence (u,) is bounded in H,, we assume that

JIVAeu,,I2 dx — 2.

]R3
Then
Jp=-(a+bl*)Re J(VAeun ~ V4, u)Va, (udp(x)) dx - Re I Ve(x)(un — w)(ug,(x)) dx
R3 R3
+(a+blP)Re J-(VAeun ~ Va,u)iu Ve, dx + 0n(1)
IR3
= —(a+b1*){un - u, u,(x)) + (a + bl*>)Re J(VAeu,, — Va4 Wiu Ve, dx + o,(1),
]R3
and thus

. . 3 _
pangollﬂnﬁs;}pl]n’pl =0.
Now we prove that
lim lim sup|J% | = 0.
p—00 n—»oopl]n’pl
It is easy to see that

Jnp < J g (ex, lunl® ) un(un — w)| dx + I |g(€x, [unl®)un(un — w)| dx.

(R3\A¢)NB3, (0) AeNBay(0)

Using the Sobolev compact embedding He < L] c(IR3, C)for1 <r<6,(g5), (f1) and (f2) imply that

lg(ex, [un|®)un(un — u)ldx - 0 asn — oo
(R3\A¢)NB,y (0)
and
lg(ex, [unl®)un(un —u)ldx - 0 asn — oo.
AeNBay(0)
Thus, (3.5) holds. Moreover, by (3.4), it follows that

0 < limsup j Pp(x) dx < limsup(IJy | + 5 ol + s o1 + T3 ) = O.
n n
Bg

Then
lim sup J P,(x)dx =0.
n 5y
Thus, (3.3) holds. Finally, from (3.2) and (3.3), we have

lulle < lim inffun|2
< lim sup|lu|2
n
<timsup{ | (@Vaunl + VelunP dx+ | (@Vaunl + Ve(lunl?) dx}
n
Br(0) B (0)

< J (alVaul® + Ve(x)lul®) dx + ¢.
Bgr(0)

(3.5)



512 = C.Jiand V.D. Radulescu, Kirchhoff Equations with Magnetic Field DE GRUYTER

Passing to the limit as { — 0, we have R — oo, which implies that

2 e 2 _ 1 2 2
flule < 11mn1nf||un||e < hmnsupllunlle < flull2.

Then u,, — u in H, and we complete the proof of this theorem. O

Since f is only assumed to be continuous, the following result is required for the multiplicity result in the next
section.

Corollary 3.6. The functional ¥ satisfies the (PS). condition on S at any level ¢ > 0.

Proof. Let{uy} c Sf bea (PS). sequence for ¥¢. Then ¥¢(u,) — cand [¥.(u,)l. — O, where||- || is the norm
in the dual space (T, S¥)*. By Lemma 3.3 (B3), we know that {m(u,)} is a (PS). sequence for J. in He. From
Lemma 3.5, we know that there exists a u € S§ such that, up to a subsequence, m¢(u,) — m¢(u) in He. By
Lemma 3.2 (A3), we obtain

up - u inS},

and the proof is complete. O

Proposition 3.7. Assume that (V1)-(V2) and (f1)-(f4) hold. Then problem (3.1) has a ground state solution for
any € > 0.

Proof. From Lemma 3.1 and Lemma 3.5, we can obtain the existence of a ground state u € H. for prob-
lem (3.1). O

4 Multiple Solutions for the Modified Problem

4.1 The Autonomous Problem

For our scope, we also need to study the following limit problem:
—(a+bul»)Au+ Vou = f(ulP)u, u:R> >R, (4.1)

whose associated C!-functional, defined on H1(R3, R), is

2
To(u) = % J(aqulz + Vou?) dx + %( JIVuIz dx) _ % J FQ2) dx.
]R3 ]R3 IR3
Let
No := {u e HY(R*, R) \ {0} : Ij(w)[u] = 0}

and

cy, := inf Iy(u).
Vo ueNoo()

Let So be the unit sphere of Hy := H1(R3, R) and let it be a complete and smooth manifold of codimension
1. Therefore, Hy = T,So P Ru for each u € T, So, where T,So = {v € Hp : (u, v)o = O}.

Lemma 4.1. Let Vg be givenin (V1) and suppose that (f1)—(f4) are satisfied. Then the following properties hold:

(a1) Foranyu € Hy \ {0}, let g, : R" — R be given by g,(t) = Ip(tu). Then there exists a unique t,, > O such
that g/, (t) > 0in (0, t,) and g, (t) < O in (t,, co).

(a2) ThereisaT > Oindependent of u such thatt, > T forallu € So. Moreover, for each compact'W c Sy there
exists a t, such that t, < Cw forallu € 'W.

(@3) The map m : Hy \ {0} — Ny given by m(u) = t,u is continuous, and mg = Mols, is a homeomorphism
between Sy and No. Moreover, m™1(u) = m

(a4) Ifthereis a sequence {u,} c So such that dist(uy,, 0Sg) — 0, then |m(uy,)|lo — oo and Iy(m(u)) — oo as
n — oo.
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Lemma 4.2. Let V be givenin (V1) and suppose that (f1)-(f4) are satisfied. Then the following assertions hold:
(b1) ¥, e C1(Ho \ {0}, R) and

Pou)yv = ||fﬁ(u)uoI(’)(ﬁz(u))[v] forallu € Hy \ {0} and all v € Hy.

lullo

(bZ) ‘Ijo € Cl(S(), ]R) and
W)V = [m)lloly(mu)[v] forallv e TySo.

(b3) If{uy,}is a (PS). sequence of ¥, then {m(uy)} is a (PS). sequence of Iy. If {u,} ¢ Ny is a bounded (PS).
sequence of Io, then {m~(up)} is a (PS). sequence of ¥.
(b4) We have that u is a critical point of ¥y if and only if m(u) is a critical point of Iy. Moreover, the corre-
sponding critical values coincide and
il’lf‘Fo = inflo.
So No

Similarly to the previous argument, we have the following variational characterization of the infimum of I,
over No:
cy, = inf Ip(u) = inf suplo(tu) = inf sup Io(tu).
Yo ueNo o) ueHo\{0} t>(I)J o) ueSo t>(1)j oltu)
The next result is useful in later arguments.
Lemma 4.3. Let {un} c Hy be a (PS). sequence for Iy such that u, — 0. Then one of the following alternatives
occurs:
(i) up, — 0inHyasn — +oo.
(ii) There are a sequence {y,} c R? and constants R, B > 0 such that
limninf J [un|? dx > B.
Br(yn)
Proof. Assume that (ii) does not hold. Then, for every R > 0, we have
lim sup J lunl? dx = 0.
yeR3

Br(y)

Since {u,} is bounded in Hy, by the Lions lemma it follows that
U, >0 inL"(R3),2<r<6.

From the subcritical growth of f, we have

J F(u2)dx = op(1) = Jf(u%)ufl dx.

R3 R3

Moreover, from I(')(un)[u,,] — 0, it follows that

2
J(aqunl2 + Vou2) dx + b( JIVu,,I2 dx) = Jf(uf,)uf, dx + 0,(1) = 0,(1).
R R R

Thus (i) holds. O
Remark 4.4. From Lemma 4.3 we see that if u is the weak limit of a (PS)% sequence {uy} of the functional Iy,

then we have u # 0. Otherwise, we have that u, — 0 and if u,, + 0, from Lemma 4.3 it follows that there are
a sequence {y,} c R3 and constants R, 8 > 0 such that

lirnninf I lunl? dx = B>0.
Br(yn)

Then set vp(X) = un(x + z»). It is easy to see that {vn} is also a (PS)., sequence for the functional Iy, it is
bounded, and there exists v € Hy such that v, — vin Ho with v # 0.
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Lemma 4.5. Assume that Vo > 0 and f satisfies (f1)-(f4). Then problem (4.1) has a positive ground state
solution.

Proof. Firstofall, itis easy to show that cy, > 0. Moreover, if ug € Ny satisfies Ip(uo) = cv,, then m~Y(ug) € So
is a minimizer of Wy, so that ug is a critical point of Iy by Lemma 4.2. Now, we show that there exists a mini-
mizer u € No of Ip|x,. Sinceinfs, Wo = infy, Ip = cy, and Spisa C! manifold, by Ekeland’s variational princi-
ple, there exists a sequence w, ¢ So with Wo(w,) — cy, and ‘P{)(w,,) — 0asn — oo.Putu, = m(w,) € Ny for
n € N. Then Io(un) — cy, and Ij(u,) — 0 as n — co by Lemma 4.2 (b3). Similar to the proof of Lemma 3.4,
it is easy to know that {u,} is bounded in Hy. Thus, we have u, — uin Ho, u, — uin L’ (R?),1 <r < 6 and

loc
U, — ua.e.in R3, and thus Ié(u) = 0. From Remark 4.4, we know that u # 0. Moreover,

1
cvy < Io(u) = Io(u) - (;I{)(u)[u]

3 B [ G
R3 R}
< limninf{<% - %)Hunllé + (% - %)b( JIVunI2 dx)2 + J(%f(un)uﬁ - %F(uf,)) dx}
R3 R3
= lin%inf{lo(un) - %Ié)(un)[un]}
=Cv,,

Thus, u is a ground state solution. From the assumption on f, we have u > 0, and thus u(x) > 0 forall x € RV,
The proof is complete. O

Arguing as in [5, Proposition 4], there exists a positive radial ground state solution of problem (4.1), which
implies that this solution decays exponentially at infinity with its gradient; moreover, this ground state solu-
tion is of class C2(IR3, R) N L®(R3, R).

Lemma 4.6. Let (u,) ¢ Ny be such that Io(un) — cv,. Then (uy) has a convergent subsequence in H.

Proof. Since (un) ¢ No, from Lemma 4.1 (a3), Lemma 4.2 (b4) and the definition of cy,, we have

Vo =m Yuy) = €Sy forallneN,

Un
lunllo
and

Wo(vn) = Io(un) — cv, = inf ¥o(u).
ueSy

Since Sy is a complete C! manifold, by the Ekeland’s variational principle, there exists a sequence {,} ¢ So
such that {vn} is a (PS).,, sequence for ¥o on Sp and

Vi = vallo = 0n(1).

Similar to Lemma 4.5, we may obtain the conclusion of this lemma. O

4.2 The Technical Results

In this subsection, we prove a multiplicity result for the modified problem (3.1) using the Ljusternik—
Schnirelmann category theory. In order to get it, we first provide some useful preliminaries.

Let § > 0 be such that Ms c A, let w € H'(R3, R) be a positive ground state solution of the limit problem
(4.1), and let n € C*°(R*, [0, 1]) be a nonincreasing cut-off function defined in [0, +c0) such that n(t) = 1 if
0<t<Zandn(t)=0ift>6.

For any y € M, let us introduce the function

Wey(x) = rl(|ex—y|)a)(€xe— )/) exp(iTy(€X;Y)),
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where

3
Ty(X) := Y Ai(y)xi.

i=1
Let te > 0 be the unique positive number such that
n;lg)xje(t\lle,y) = ]e(te\lje,y)-

Note that teWe,y € Ne.

Let us define @, : M — N, by

Dc(y) =t We,y.
By construction, ®.(y) has compact support for any y € M. Moreover, the energy of the above functions has
the following behavior as € — 0*.
Lemma 4.7. The limit
Jim Je(@e(y)) = v,
holds uniformly iny € M.
Proof. Assume by contradiction that the statement is false. Then there exist 6o > O, (y,) ¢ M and €, — 0*
satisfying
e, (@e,(Vn)) — vyl = 0o.

For simplicity, we write @, ¥, and t, for ®¢,(yn), ¥e,,y, and t,, respectively.
By the Lebesgue dominated convergence theorem, we have that

I¥al2, — J(IVwIZ + Vow?)dx asn — +oo, (4.2)
R3
[‘Pn]js - [w]* asn — +oo. (4.3)

Since ]Qn(tn‘{’n)(tn‘}’n) = 0, by the change of variables z = (enX — ¥n)/€n, Observe that, if z € Bs/¢,(0), then
€nZ +Yn € Bs(yn) c Ms c A. We have

I¥nllZ, + 2 [¥als, = Jg(enzwn, tan(lenz)w?(2)n*(lenzl)w? (2) dz
e
= Jf(tinz(IenZI)w2(Z))nz(lenZI)wz(Z) dz
e
> J f(taw?(2))w*(z) dz
Bsj(2e)(0)
> j fR0(2)) 0 (2) dz
Bs/2(0)
> f(£2y?) J w*(z) dz
Biya(0)

for all n large enough and where y = min{w(2) : |z| < é}. Moreover, we have

t2
E21%al2, + bI¥,TS _f(t;yz)yz [ v

Bs/2(0)
If t, — +00, by (f4) we derive a contradiction.

Therefore, up to a subsequence, we may assume that t, — to > 0. If t;, — 0, using the fact that f is
increasing and using the Lebesgue dominated convergence theorem, we obtain that

I¥alZ, + t2b[¥all Jf(t 2(lenzDw? @) (lenzl)w?(z)dz — 0 asn — +oo,

R3
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which contradicts (4.2). Thus, from (4.2) and (4.3), we have ty > 0 and

J(IV{UI2 + Vow?) dx + tiblw]* = Jf(towz)a)2 dx,
R3 R3
so that fow € Ny,. Since w € Ny,, we obtain that ¢, = 1 and so, using the Lebesgue dominated convergence
theorem, we get
lim J F(ltaWol?) dx = j F(w?) dx.

R3 R3
Hence
lim Je, (®e, (yn)) = Io(w) = cv,,
which is a contradiction and the proof is complete. O

Now we define the barycenter map.
Let p > 0 be such that Ms ¢ B, and consider Y : R> — R> defined by setting

b if |x| < p,

Y =
CV=1PX s 0.

Ix|
The barycenter map f¢ : Ne — R3 is defined by

Be(u) := % J Y(ex)|u(x)|* dx.
llully S

We have the following lemma.

Lemma 4.8. The limit
lim Be(@e(y)) =y

holds uniformly iny € M.
Proof. Assume by contradiction that there exist x > 0, (y,) ¢ M and €,, — 0 such that

Be,(Pe, (Yn)) = ynl = k. (4.4)
Using the change of variable z = (e,x — y,)/€n, We can see that

LRa (Y(enz +yn) = y)n*(lenzl)w*(2) dz
I]R3 n*(lepzl)w*(2) dz ’

Taking into account (y,) ¢ M ¢ Ms ¢ B, and the Lebesgue dominated convergence theorem, we can obtain
that

Ben(q)e,, (Yn)) =yn+

|ﬁe,l (D¢, (Yn)) = ynl = 0n(1),
which contradicts (4.4). O

Now, we prove the following useful compactness result.

Proposition 4.9. Let €, — 0" and (u,) ¢ Ne, be such that J.,(un) — cv,. Then there exists (yn) ¢ R? such
that the sequence (|vy|) ¢ HY(R?, R), where vn(X) := un(X + ¥»), has a convergent subsequence in H'(R3, R).
Moreover, up to a subsequence, y, := €y — y € Masn — +co.

Proof. Since] én (up)[un] = 0andJ¢,(uy) — cy,,arguing as in Lemma 3.4, we can prove that there exists C > 0
such that [uylle, < Cforalln € N.

Arguing as in the proof of Lemma 3.2 and recalling that cy, > O, we have that there exist a sequence
{7} ¢ R3 and constants R, 8 > 0 such that

lim inf J lun|? dx = p. (4.5)
BR()—/n)
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Now, let us consider the sequence {|vy|} ¢ HY(R3, R), where v,(X) := uy(x + y,). By the diamagnetic
inequality (2.1), we get that {|v,|} is bounded in H'(R3, R). Using (4.5), we may assume that |v,| — v in
HY(R3, R) for some v # 0.

Let t, > 0 be such that 7, := ty|vn| € Ny,, and set y, := €xyn.

By the diamagnetic inequality (2.1), we have

cy, < Io(vp) < T%X]en(tun) =Je,(Uun) = cy, + 0n(1),

which yields Ip(7,) — cy, asn — +oo.

Since the sequences {|v,|} and {¥",} are bounded in H*(R3, R) and |v,| + 0in H}(R3, R), we have that (¢,,)
is also bounded and so, up to a subsequence, we may assume that t, — to > O.

We claim that ¢y > 0. Indeed, if ¢ = 0, then, since (|vy|) is bounded, we have 7, — 0 in H}(R3, R), that
is, In(7) — 0, which contradicts cy, > 0.

Thus, up to a subsequence, we may assume that 7, — 7 := tov # 0in H*(R?, R), and, by Lemma 4.6, we
can deduce that 7, — 7 in H}(R3, R), which gives |v,| — vin H (R3, R).

Now we show the final part, namely that {y,} has a subsequence such that y,, — y € M. Assume by con-
tradiction that {y,} is not bounded and so, up to a subsequence, |y,| — +0c0 as n — +oo. Choose R > 0 such
that A c Br(0). Then, for n large enough, we have |y,| > 2R, and, for any x € Bg/c, (0),

lenx + ynl 2 [ynl — €nlx| > R.
Since up € Ne,, using (V1) and the diamagnetic inequality (2.1), we get that

j(awwnnz + Volval?) dx < j gEnx + Vs [val)lVal? dx
R3 R3
< j Fval?)val? dx + j Fval?)val? dx. (4.6)

Bryey (0) B, (0)

Since |vp| — vin HY(IR?, R) and f(t) < Vo/K, we can see that (4.6) yields

. 1
min{1, Vo(1 - )} [ @VIvall? + Volval?) dx = o(1),

R3

that s, |vy| — 0in H}(R?, R), which contradicts to v # 0.

Therefore, we may assume that y, — yo € R3. Assume by contradiction that yq ¢ A. Then there exists
r > 0 such that for every n large enough we have that |y, — yo| < r and B,(yo) C NS Then, if x € By, (0), we
have that [e;x + yn — Yol < 2rsothat epx + y, € A and so, arguing as before, we reach a contradiction. Thus,
Yo € K

To prove that V(yo) = Vo, we suppose by contradiction that V(yo) > V. Using Fatou’s lemma, the change
of variable z = x + ¥, and maxso J¢, (tun) = Je,(un), we obtain

1 3 3 b . 2 1 .
cvy = o < 5 J(aww2 + V(yo)l72) dx + Z< Iwwz dx) -3 J F(92) dx
R3 R3 R3
o] -2 -2 b o)1 5 2
< hmnmf(z j(aIanl + V(enx + y)|val?) dx + Z( J|an| dx) -3 JF(|Vn| )dx)
R3 R3 R3
.t 2 2 tnb 2 21 2
- hmnmf(? J(alVIunll + V(en2)|unl?) dx + T( jIVu,,I dx) -3 jF(ltnunl )dx)
R3 R3 R3

< lim infJe, (txun)

< linlnil'lf]e,l (Un) = Cvys

which is impossible and the proof is complete. O
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Let now
Ne = {u € Ne : Je(u) < cy, + h(e)},

where h : Rt — R*, h(e¢) - 0Oase — 0*.

For fixed y € M, since, by Lemma 4.7, |Jo(®c(y)) - cy,| — 0 as € — 0", we get that Ne # 0 forany € > 0
small enough.

We have the following relation between N, and the barycenter map.

Lemma 4.10. We have
lim sup dist(B¢(u), Ms) = 0.

+ ~
€—0 ueN,

Proof. Let e, — 0" as n — +oo. For any n € IN, there exists u, € f\fen such that

sup inf |Be,(w) —yl = inf |Be, (un) — y| + 0n(1).
ueN,, yeMs yeMs

Therefore, it is enough to prove that there exists (y,,) ¢ Ms such that
lip|ﬁen(un) —ynl=0.

By the diamagnetic inequality (2.1), we can see that Io(t|us|) < J¢,(tuy) for any t > 0. Therefore, recalling that
{un} ¢ Ne, ¢ N,, we can deduce that

cv, < maxIp(tluyl) < maxJe, (tun) = Je,(Un) < cy, + h(en),
t>0 t>0

which implies that J¢, (un) — cy, as n — +co. Then Proposition 4.9 implies that there exists {y,} c R3 such
that y, = €,9n € Ms for n large enough.

Thus, making the change of variable z = x - y,,, we get
Jgs (Y(€nz + yn) = yn)lun(z + yn)|* dz

.[]R3 [un(z + yn)l* dz

Be,(Un) = yn +

Since, up to a subsequence, |uy|(- + y,) converges strongly in H'(R3, R) and e,z + y, — y € Mforanyz € R3,
we conclude the proof. O

4.3 Multiplicity of Solutions for Problem (3.1)

Finally, we present a relation between the topology of M and the number of solutions of the modified prob-
lem (3.1).

Theorem 4.11. Forany 6 > O such that Ms C A, there exists €s > O such that, for any € € (0, €s), problem (3.1)
has at least caty, (M) nontrivial solutions.

Proof. For any € > 0, we define the function 7. : M — S{ by
me(y) = mg' (®e(y)) forally € M.
By Lemma 4.7 and Lemma 3.3 (B4), we obtain
li_I}g) We(me(y)) = li_I%]e(CDe(Y)) =cy, uniformlyiny e M.

Hence, there is a number & > 0 such that the set S} := {u € St : Wc(u) < cy, + h(e)} is nonempty for all
€ € (0, &) since me(M) c S¢. Here h is given in the definition of N.

Given § > 0, by Lemma 4.7, Lemma 3.2 (A3), Lemma 4.8, and Lemma 4.10, we can find &s > 0 such that
for any € € (0, &5) the diagram

@, mg! me Be
M — ® (M) — me(M) — ®(M) — Ms
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is well defined and continuous. From Lemma 4.8, we can choose a function ©(e, z) with |0(e, z)| < g uni-
formly in z € M for all € € (0, €) such that 8.(DP(z)) = z + O(€, z) for all z € M. Define

H(t,z)=z+ (1 -1t)0(e, 2).

Then H : [0, 1] x M — M; is continuous. Clearly, H(0, z) = B¢(®¢(2)) and H(1, z) = z for all z € M. That is,
H(t, z) is ahomotopy between ¢ o @ = (B¢ o m¢) o e and the embedding ¢ : M — Ms. Thus, this fact implies
that

caty, m (me(M)) = caty, (M). (4.7)

By Corollary 3.6 and the abstract category theorem [21], ¥, has at least caty, ) (71¢(M)) critical points on S¢.
Therefore, from Lemma 3.3 (B4) and (4.7), we have that ] has at least caty;, (M) critical points in N, which
implies that problem (3.1) has at least caty, (M) solutions. O

5 Proof of Theorem 1.1

In this section, we prove our main result. The idea is to show that the solutions u. obtained in Theorem 4.11
satisfy
lue(* < aop forx € AS

for € > 0 small. Arguing as in [26], the following uniform result holds.

Lemma 5.1. Lete, — O and let u, € Nen be a solution of problem (3.1) for € = €,,. Then J¢,(un) — cy,. More-
over, there exists {7} ¢ R3 such that, if vp(x) := un(x + ¥n), we have that {|v,|} is bounded in L (R3, R) and

lim |vy(x)] =0 wuniformlyinn € N.
|x|—>+0c0

Now, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let § > 0 be such that Ms ¢ A. We want to show that there exists €5 > 0 such that for
any € € (0, €s) and any solution u, € N, of problem (3.1), it holds

ltelfo (e < @o- (5.1)

We argue by contradiction and assume that there is a sequence €, — 0 such that for every n there exists
up € Ne, which satisfies J|, (u,) = 0 and
”u"”im(Agn) > aop. (52)

Asin Lemma 5.1, we have that J., (un) — cv,, and therefore we can use Proposition 4.9 to obtain a sequence
(#n) € R3 such that y, := €,7n — yo for some yo € M. Then we can find r > 0 such that B,(y,) c A, and so
Byje, (¥n) € Ag, for all n large enough.

By using Lemma 5.1, there exists R > 0 such that |v,|?> < ag in B%(0) and n large enough, where
Vi = Un(- + ¥n). Hence |uy|? < agp in B§(7n) and n large enough. Moreover, if n is so large that r/e, > R,
then

AS, € BS, (7n) < Bg(Tn),
which gives |up|? < ag for any x € A¢, . This contradicts (5.2) and proves the claim.

Let now €5 := min{és, €5}, where €s > O is given by Theorem 4.11. Then we have caty, (M) nontrivial
solutions to problem (3.1). If u. € N, is one of these solutions, then, by (5.1) and the definition of g, we
conclude that u, is also a solution to problem (2.2).

Finally, we study the behavior of the maximum points of |it¢|, where @i (x) := ue(’—e‘) is a solution to prob-
lem (1.1) as € — O™.

Take €, — 0" and the sequence (u,) where each u, is a solution of (3.1) for € = €,. From the definition
of g, there exists y € (0, a) such that

Vo

g(ex, )t < ?tz forall x e RY, |t < y.
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Arguing as above, we can take R > 0 such that, for n large enough,

lunllLoo B 7)) < V- (5.3)
Up to a subsequence, we may also assume that, for n large enough,

lunllLeo B, = V- (5.4)

Indeed, if (5.4) does not hold, up to a subsequence, if necessary, we have ||uy |« < y. Thus, since J. én (ue,) =0,
using (g5) and the diamagnetic inequality (2.1), we obtain

K

R3 R3 R’ R3

2 V
[ @i¥iua? + Volun?y dx-+ b [ (VIual?ydx) < [ gtewx, lunlunl? dx < 32 [ lunl? .

Since K > 2, we obtain |Ju,|| = 0, which is a contradiction.

Taking into account (5.3) and (5.4), we can infer that the global maximum points p, of |uc,| belong
to Br(¥n), that is, pn = qn + ¥n for some g, € Bg. Recalling that the associated solution of problem (1.1) is
Un(x) = un(x/en), we can see that a maximum point ¢, of |iiy|iS e, = €nyn + €Engn. Since gn € Br, €nyin — Yo
and V(yo) = Vo, the continuity of V allows to conclude that

lirrln V(ne,) = Vo.

The proof is now complete. O
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