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Abstract: In this paper, we study the following nonlinear magnetic Kirchhoff equation:

{
{
{

−(aϵ2 + bϵ[u]2A/ϵ)∆A/ϵu + V(x)u = f(|u|2)u inℝ3,

u ∈ H1(ℝ3,ℂ),

where ϵ > 0, a, b > 0 are constants, V : ℝ3 → ℝ and A : ℝ3 → ℝ3 are continuous potentials, and ∆Au is the
magnetic Laplace operator. Under a local assumption on the potential V, by combining variational methods,
a penalization technique and the Ljusternik–Schnirelmann theory, we prove multiplicity properties of solu-
tions and concentration phenomena for ϵ small. In this problem, the function f is only continuous, which
allows to consider larger classes of nonlinearities in the reaction.
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1 Introduction and Main Results
This paper is devoted to the qualitative analysis of solutions for the nonlinear magnetic Kirchhoff equation
inℝ3. We are concerned with the existence and multiplicity of solutions, as well as with concentration prop-
erties of solutions for small values of the positive parameter. A feature of this paper is that the reaction has
weak regularity, which allows to consider larger classes of nonlinearities. The main result is described in the
final part of this section.

In this paper, we study the following nonlinear magnetic Kirchhoff equation:

{
{
{

−(aϵ2 + bϵ[u]2A/ϵ)∆A/ϵu + V(x)u = f(|u|2)u inℝ3,

u ∈ H1(ℝ3,ℂ),
(1.1)

where ϵ > 0, a, b > 0 are constants, V : ℝ3→ℝ is a continuous function, the magnetic potential A : ℝ3→ℝ3

is Hölder continuous with exponent α ∈ (0, 1], and −∆Au is the magnetic Laplace operator of the follow-
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ing form:
−∆Au := (1i ∇ − A(x))

2
u = −∆u − 2

i
A(x) ⋅ ∇u + |A(x)|2u − 1

i
u div(A(x)).

The definition of [u]2A/ϵ will be given in Section 2.
For problem (1.1), there is a vast literature concerning the existence andmultiplicity of bound state solu-

tions for the case A ≡ 0 and a = b = 0. The first result in this directionwas given by Floer andWeinstein in [8],
where the caseN = 1and f = iℝ is considered. Later on, several authors generalized this result to larger values
of N, using different methods. For instance, He and Zou [10] considered the following fractional Schrödinger
equation:

ϵ2s(−∆)su + V(x)u = f(u) + u2∗s −1, x ∈ ℝN ,
where V is a positive continuous function and satisfies the local assumption infx∈Λ V(x) < minx∈∂Λ V(x), and
f ∈ C is a function having subcritical and superlinear growth. By using the Nehari manifold method and the
Ljusternik–Schnirelmann category theory, they obtained the multiplicity of positive solutions. We note that f
is only continuous, and the Nehari manifold is only a topological manifold. He and Zou [10] applied the
method that Szulkin and Weth developed in [20]. He and Zou [11] also studied multiplicity of concentrating
solutions for a class of fractional Kirchhoff equations when the potential satisfies a local assumption and the
nonlinear term f is only continuous.We also note that Ji, Fang and Zhang [12] considered amultiplicity result
for asymptotically linear Kirchhoff equations. For further results about Kirchhoff equations, see [9, 19, 22, 23]
and the references therein.

On the other hand, when a = b = 0, the magnetic nonlinear Schrödinger equation (1.1) has been exten-
sively investigated by many authors applying suitable variational and topological methods (see [1, 3, 4, 7,
15, 16, 18, 24, 25] and the references therein). It is well known that the first result involving the magnetic
field was obtained by Esteban and Lions [7]. They used the concentration-compactness principle and mini-
mization arguments to obtain solutions for ϵ > 0 fixed and N = 2, 3. In particular, due to our scope, we want
tomention [1] where Alves, Figueiredo and Furtado used themethod of theNeharimanifold, the penalization
method and Ljusternik–Schnirelmann category theory for subcritical nonlinearity f ∈ C1. We point out that
if f is only continuous, then the arguments developed in [1] fail. In [13, 14], Ji andRădulescu used themethod
of the Nehari manifold, the penalization method and Ljusternik–Schnirelmann category theory to study the
multiplicity and concentration results for amagnetic Schrödinger equation inwhich the nonlinearity f is only
continuous and subcritical and critical nonlinear terms, respectively. We also note the recent contribution [2]
where Ambrosio studied multiplicity and concentration of solutions for a fractional Kirchhoff equation with
magnetic field and critical growth.

Motivated by [11, 13], in the present paper, our main goal is to study multiplicity and concentration of
nontrivial solutions for problem (1.1) only when f is continuous. Comparing with the result in [13], due to
the presence of the nonlocal term, it is not clear to show the weak convergence of a bounded (PS) sequence
of problem (1.1) is a solution of problem (1.1). Moreover, as we will see later, due to the presence of the
magnetic field A(x), problem (1.1) cannot be changed into a pure real-valued problem, and hence we should
deal with a complex-valued problemdirectly, which causes several newdifficulties in employing themethods
in dealing with our problem. Our problem is more complicated than the pattern without magnetic field and
we need additional technical estimates.

Throughout the paper, we make the following assumptions on the potential V:
(V1) There exists V0 > 0 such that V(x) ≥ V0 for all x ∈ ℝ3.
(V2) There exists a bounded open set Λ ⊂ ℝ3 such that

V0 = min
x∈Λ V(x) < min

x∈∂Λ V(x).
Observe that

M := {x ∈ Λ : V(x) = V0} ̸= 0.
Moreover, let the nonlinearity f ∈ C(ℝ,ℝ) be a function satisfying the following conditions:
(f1) f(t) = 0 if t ≤ 0, and limt→0+ f(t)

t = 0.
(f2) There exists q ∈ (4, 6) such that

lim
t→+∞ f(t)

t
q−2
2
= 0.
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(f3) There is a positive constant θ > 4 such that

0 < θ2F(t) ≤ tf(t) for all t > 0, where F(t) =
t

∫
0

f(s) ds.

(f4) f(t)
t is strictly increasing in (0,∞).

The main result of this paper is the following theorem.

Theorem 1.1. Assume that V satisfies (V1), (V2) and f satisfies (f1)–(f4). Then, for any δ > 0 such that

Mδ := {x ∈ ℝ3 : dist(x,M) < δ} ⊂ Λ,

there exists ϵδ > 0 such that, for any 0 < ϵ < ϵδ, problem (1.1) has at least catMδ (M) nontrivial solutions. More-
over, for every sequence {ϵn} such that ϵn → 0+ as n → +∞, if we denote by uϵn one of these solutions of
problem (1.1) for ϵ = ϵn and if ηϵn ∈ ℝ3 is the global maximum point of |uϵn |, then

lim
ϵn→0+ V(ηϵn ) = V0.

The paper is organized as follows. In Section 2, we introduce the functional setting and give some prelimi-
naries. In Section 3, we study the modified problem and prove the Palais–Smale condition for the modified
functional, and provide some tools which are useful to establish a multiplicity result. In Section 4, we study
the autonomous problem associated. It allows us to show that the modified problem has multiple solutions.
Finally, in Section 5, we give the proof of Theorem 1.1.

Notation. ∙ C, C1, C2, . . . denote positive constants whose exact values are inessential and can change
from line to line.

∙ BR(y) denotes the open ball centered at y ∈ ℝ3 with radius R > 0, and Bc
R(y) denotes the complement of

BR(y) inℝ3.
∙ ‖ ⋅ ‖, ‖ ⋅ ‖q and ‖ ⋅ ‖L∞(Ω) denote the usual norms of the spaces H1(ℝ3,ℝ), Lq(ℝ3,ℝ) and L∞(Ω,ℝ), respec-

tively, where Ω ⊂ ℝ3.

2 Abstract Setting
In this section, we introduce the function spaces and some useful preliminary remarks, which will be useful
for our arguments.

For u : ℝ3 → ℂ, we set
∇Au := (∇i − A)u.

Consider the function spaces

D1
A(ℝ

3,ℂ) := {u ∈ L6(ℝ3,ℂ) : |∇Au| ∈ L2(ℝ3,ℝ)}

and
H1
A(ℝ

3,ℂ) := {u ∈ D1
A(ℝ

3,ℂ) : u ∈ L2(ℝ3,ℂ)}.

The space H1
A(ℝ

3,ℂ) is a Hilbert space endowed with the scalar product

⟨u, v⟩ := Re ∫ℝ3 (∇Au∇Av + uv) dx for any u, v ∈ H1
A(ℝ

3,ℂ),

where Re and the bar denote the real part of a complex number and the complex conjugation, respectively.
We denote by ‖u‖A the norm induced by this inner product, and [u]2A := ∫ℝ3 |∇Au|2 dx.

OnH1
A(ℝ

3,ℂ)wewill frequently use the following diamagnetic inequality (see, e.g., [17, Theorem7.21]):

|∇Au(x)| ≥ |∇|u(x)|| for all u ∈ H1
A(ℝ

3,ℂ). (2.1)
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Moreover, making a simple change of variables, since

∆Aϵ = ϵ2∆A/ϵ and [u]2Aϵ
=
1
ϵ
[u]2A/ϵ ,

we can see that problem (1.1) is equivalent to

− (a + b[u]2Aϵ
)∆Aϵu + Vϵ(x)u = f(|u|2)u inℝ3, (2.2)

where Aϵ(x) = A(ϵx) and Vϵ(x) = V(ϵx).
Let Hϵ be the Hilbert space obtained as the closure of C∞c (ℝN ,ℂ) with respect to the scalar product

⟨u, v⟩ϵ := Re ∫ℝ3 (∇Aϵu∇Aϵ v + Vϵ(x)uv) dx

and let ‖ ⋅ ‖ϵ denote the norm induced by this inner product.
The diamagnetic inequality (2.1) implies that, if u ∈ H1

Aϵ
(ℝ3,ℂ), then |u| ∈ H1(ℝ3,ℝ) and ‖u‖ ≤ C‖u‖ϵ.

Therefore, the embedding Hϵ 󳨅→ Lr(ℝ3,ℂ) is continuous for 2 ≤ r ≤ 6 and the embedding Hϵ 󳨅→ Lrloc(ℝ
3,ℂ)

is compact for 1 ≤ r < 6.

3 The Modified Problem
As in [6], to study problem (1.1), or equivalently (2.2), wemodify suitably the nonlinearity f so that, for ϵ > 0
small enough, the solutions of such modified problem are also solutions of the original one. More precisely,
we choose K > 2. By (f4), there exists a unique number a > 0 verifying Kf(a0) = V0, where V0 is given in (V1).
Hence we consider the function

̃f (t) :=
{{
{{
{

f(t), t ≤ a0,
V0
K
, t > a0.

Now we introduce the penalized nonlinearity g : ℝ3 × ℝ → ℝ:

g(x, t) := χΛ(x)f(t) + (1 − χΛ(x)) ̃f (t),

where χΛ is the characteristic function on Λ. Set G(x, t) := ∫t0 g(x, s) ds.
In view of (f1)–(f4), we have that g is a Carathéodory function satisfying the following properties:

(g1) g(x, t) = 0 for each t ≤ 0.
(g2) lim

t→0+ g(x,t)t = 0 uniformly in x ∈ ℝ3, and there exists q ∈ (4, 6) such that

lim
t→+∞ g(x, t)

t
q−2
2
= 0 uniformly in x ∈ ℝ3.

(g3) g(x, t) ≤ f(t) for all t ≥ 0 and uniformly in x ∈ ℝ3.
(g4) 0 < θG(x, t) ≤ 2g(x, t)t for each x ∈ Λ, t > 0.
(g5) 0 < G(x, t) ≤ g(x, t)t ≤ V0t/K for each x ∈ Λc, t > 0.
(g6) For each x ∈ Λ, the function t 󳨃→ g(x,t)

t is strictly increasing in t ∈ (0, +∞), and for each x ∈ Λc the
function t 󳨃→ g(x,t)

t is strictly increasing in (0, a0).
Next, we consider themodified problem

− (a + b[u]2Aϵ
)∆Aϵu + Vϵ(x)u = g(ϵx, |u|2)u inℝ3. (3.1)

Note that, if u is a solution of problem (3.1) with

|u(x)|2 ≤ a0 for all x ∈ Λc
ϵ , Λϵ := {x ∈ ℝ3 : ϵx ∈ Λ},

then u is a solution of problem (2.2).
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The functional associated to (3.1) is

Jϵ(u) :=
a
2 [u]

2
Aϵ
+
1
2 ∫ℝ3 Vϵ(x)|u|2 dx +

b
4 [u]

4
Aϵ
−
1
2 ∫ℝ3 G(ϵx, |u|2) dx

defined in Hϵ. It is standard to prove that Jϵ ∈ C1(Hϵ ,ℝ) and its critical points are the weak solutions of the
modified problem (3.1).

We denote byNϵ the Nehari manifold of Jϵ, that is,

Nϵ := {u ∈ Hϵ \ {0} : J󸀠ϵ(u)[u] = 0},
and define the number cϵ by

cϵ = inf
u∈Nϵ

Jϵ(u).

Let H+ϵ be the open subset Hϵ given by

H+ϵ = {u ∈ Hϵ : |supp(u) ∩ Λϵ| > 0},

and S+ϵ = Sϵ ∩ H+ϵ , where Sϵ is the unit sphere of Hϵ. Note that S+ϵ is a non-complete C1,1-manifold of codi-
mension 1, modeled on Hϵ and contained in H+ϵ . Therefore, Hϵ = TuS+ϵ⨁ℝu for each u ∈ TuS+ϵ , where
TuS+ϵ = {v ∈ Hϵ : ⟨u, v⟩ϵ = 0}.

Now we show that the functional Jϵ satisfies the mountain pass geometry.

Lemma 3.1. For any fixed ϵ > 0, the functional Jϵ satisfies the following properties:
(i) There exist β, r > 0 such that Jϵ(u) ≥ β if ‖u‖ϵ = r.
(ii) There exists e ∈ Hϵ with ‖e‖ϵ > r such that Jϵ(e) < 0.

Proof. (i) By (g2), (g4) and (g5), for any ζ > 0 small, there exists Cζ > 0 such that

G(ϵx, |u|2) ≤ ζ|u|4 + Cζ |u|q for all x ∈ ℝ3.

By the Sobolev embedding theorem, it follows that

Jϵ(u) ≥
a
2 [u]

2
Aϵ
+
1
2 ∫ℝ3 Vϵ(x)|u|2 dx +

b
4 [u]

4
Aϵ
−
ζ
2 ∫ℝ3 |u|4 dx − Cζ2 ∫ℝ3 |u|q dx

≥
1
2 ‖un‖

2
ϵ − C1ζ‖un‖4ϵ − C2Cζ ‖un‖

q
ϵ .

Hence we can choose some β, r > 0 such that Jϵ(u) ≥ β if ‖u‖ϵ = r since q > 4.
(ii) For each u ∈ H+ϵ and t > 0, by the definition of g and (f3), one has

Jϵ(tu) ≤
t2

2 ‖u‖
2
ϵ +

bt4

4 [u]
4
Aϵ
−
1
2 ∫
Λϵ

G(ϵx, t2|u|2) dx

≤
t2

2 ‖u‖
2
ϵ +

bt4

4 [u]
4
Aϵ
− C1tθ ∫

Λϵ

|u|θ dx + C2|supp(u) ∩ Λϵ|.

Since θ > 4, we can get the conclusion.

Since f is only continuous, the next results are very important because they allow us to overcome the non-
differentiability ofNϵ and the incompleteness of S+ϵ .
Lemma 3.2. Assume that (V1)–(V2) and (f1)–(f4) are satisfied. Then the following properties hold:
(A1) For any u ∈ H+ϵ , let gu : ℝ+ → ℝ be given by gu(t) = Jϵ(tu). Then there exists a unique tu > 0 such that

g󸀠u(t) > 0 in (0, tu) and g󸀠u(t) < 0 in (tu ,∞).
(A2) There is some τ > 0 independent of u such that tu ≥ τ for all u ∈ S+ϵ . Moreover, for each compactW ⊂ S+ϵ

there is a constant CW such that tu ≤ CW for all u ∈W.
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(A3) The map m̂ϵ : H+ϵ → Nϵ given by m̂ϵ(u) = tuu is continuous, and mϵ = m̂ϵ|S+ϵ is a homeomorphism
between S+ϵ andNϵ. Moreover, m−1ϵ (u) = u‖u‖ϵ .

(A4) If there is a sequence {un} ⊂ S+ϵ such that dist(un , ∂S+ϵ ) → 0, then ‖mϵ(un)‖ϵ →∞ and Jϵ(mϵ(un)) → ∞.

Proof. (A1) As in the proof of Lemma 3.1, we have gu(0) = 0, gu(t) > 0 for t > 0 small, and gu(t) < 0 for t > 0
large. Therefore, maxt≥0 gu(t) is achieved at a globalmaximumpoint t = tu verifying g󸀠u(tu) = 0 and tuu ∈ Nϵ.
Now, we show that tu is unique. Arguing by contradiction, suppose that there exist t1 > t2 > 0 such that
g󸀠u(t1) = g󸀠u(t2) = 0. Then, for i = 1, 2,

tia[u]2Aϵ
+ ti ∫ℝ3 Vϵ(x)|u|2 dx + t3i b[u]

4
Aϵ
= ∫ℝ3 g(ϵx, t2i |u|2)ti|u|2 dx.

Hence,
a[u]2Aϵ
+ ∫ℝ3 Vϵ(x)|u|2 dx

t2i
+ b[u]4Aϵ

= ∫ℝ3 g(ϵx, t2i |u|
2)|u|2

t2i
dx,

which implies that

(
1
t21
−
1
t22
)(a[u]2Aϵ

+ ∫ℝ3 Vϵ(x)|u|2 dx)

= ∫ℝ3 ( g(ϵx, t
2
1|u|2)

t21|u|2
−
g(ϵx, t22|u|2)

t22|u|2
)|u|4 dx

≥ ∫
Λc
ϵ∩{t22|u|2≤a0≤t21|u|2}(

g(ϵx, t21|u|2)
t21|u|2

−
g(ϵx, t22|u|2)

t22|u|2
)|u|4 dx

+ ∫
Λc
ϵ∩{a0≤t22|u|2}(

g(ϵx, t21|u|2)
t21|u|2

−
g(ϵx, t22|u|2)

t22|u|2
)|u|4 dx

≥ ∫
Λc
ϵ∩{t22|u|2≤a0≤t21|u|2}(

V0
K

1
t21|u|2
−
f(t22|u|2)
t22|u|2
)|u|4 dx + 1K (

1
t21
−
1
t22
) ∫
Λc
ϵ∩{a0≤t22|u|2} V0|u|2 dx.

Since t1 > t2 > 0, we have

(a[u]2Aϵ
+ ∫ℝ3 Vϵ(x)|u|2 dx)

≤
t21t

2
2

t22 − t
2
1

∫
Λc
ϵ∩{t22|u|2≤a0≤t21|u|2}(

V0
K

1
t21|u|2
−
f(t22|u|2)
t22|u|2
)|u|4 dx + 1K ∫

Λc
ϵ∩{a0≤t22|u|2} V0|u|2 dx

≤
1
K ∫

Λc
ϵ

V0|u|2 dx

≤
1
K
‖u‖2ϵ ,

which is a contradiction. Therefore, maxt≥0 gu(t) is achieved at a unique t = tu so that g󸀠u(t) = 0 and tuu ∈ Nϵ.
(A2) For any u ∈ S+ϵ , we have

tu + t3ub[u]4Aϵ
= ∫ℝ3 g(ϵx, t2u|u|2)tu|u|2 dx.

From (g2), Sobolev embeddings and since q > 4, we get

tu ≤ ζt3u ∫ℝ3 |u|4 dx + Cζ tq−1u ∫ℝ3 |u|q dx ≤ C1ζt3u + C2Cζ tq−1u ,
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which implies that tu ≥ τ for some τ > 0. Suppose by contradiction that there is {un} ⊂Wwith tn := tun →∞.
SinceW is compact, there exists u ∈W such that un → u in Hϵ. Moreover, using the proof of Lemma 3.1 (ii),
we have that Jϵ(tnun) → −∞.

On the other hand, let vn := tnun ∈ Nϵ. From the definition of g and by (g4), (g5) and θ > 4, it follows
that

Jϵ(vn) = Jϵ(vn) −
1
θ
J󸀠ϵ(vn)[vn]

≥ (
1
2 −

1
θ )
‖vn‖2ϵ + (

1
4 −

1
θ )

b[vn]4Aϵ
+ ∫
Λc
ϵ

(
1
θ
g(ϵx, |vn|2)|vn|2 −

1
2G(ϵx, |vn|

2)) dx

≥ (
1
2 −

1
θ )(
‖vn‖2ϵ −

1
K ∫ℝ3 V(ϵx)|vn|2 dx)

≥ (
1
2 −

1
θ )(

1 − 1
K )
‖vn‖2ϵ .

Thus, substituting vn := tnun and ‖vn‖ϵ = tn, we obtain

0 < (12 −
1
θ )(

1 − 1
K )
≤
Jϵ(vn)
t2n
≤ 0

as n →∞, which yields a contradiction. This proves (A2).
(A3) First of all, we note that m̂ϵ, mϵ and m−1ϵ are well defined. Indeed, by (A2), for each u ∈ H+ϵ , there is

a unique m̂ϵ(u) ∈ Nϵ. On the other hand, if u ∈ Nϵ, then u ∈ H+ϵ . Otherwise, we have |supp(u) ∩ Λϵ| = 0 and
by (g5), we have

a[u]2Aϵ
+ ∫ℝ3 Vϵ(x)|u|2 dx + b[u]4Aϵ

= ∫ℝ3 g(ϵx, |u|2)|u|2 dx
= ∫
Λc
ϵ

g(ϵx, |u|2)|u|2 dx

≤
1
K ∫ℝ3 V(ϵx)|u|2 dx
≤
1
K
‖u‖2ϵ ,

which is impossible since K > 2 and u ̸= 0. Therefore, m−1ϵ (u) = u‖u‖ϵ ∈ S+ϵ is well defined and continuous.
From

m−1ϵ (mϵ(u)) = m−1ϵ (tuu) = tuu
tu‖u‖ϵ
= u for all u ∈ S+ϵ ,

we conclude that mϵ is a bijection.
Now we prove that m̂ϵ : H+ϵ → Nϵ is continuous. Let {un} ⊂ H+ϵ and u ∈ H+ϵ such that un → u in Hϵ.

By (A2), there exists t0 > 0 such that tn := tun → t0. Using tnun ∈ Nϵ, that is,

t2na[un]2Aϵ
+ t2n ∫ℝ3 Vϵ(x)|un|2 dx + t4nb[un]4Aϵ

= ∫ℝ3 g(ϵx, t2n|un|2)t2n|un|2 dx for all n ∈ N,

and passing to the limit as n →∞ in the last inequality, we obtain

t20a[u]
2
Aϵ
+ t20 ∫ℝ3 Vϵ(x)|u|2 dx + t40b[u]

4
Aϵ
= ∫ℝ3 g(ϵx, t20|u|2)t20|u|2 dx,

which implies that t0u ∈ Nϵ and tu = t0. This proves that m̂ϵ(un) → m̂ϵ(u) in H+ϵ . Thus, m̂ϵ and mϵ are con-
tinuous functions and (A3) is proved.

(A4) Let {un} ⊂ S+ϵ be a subsequence such that dist(un , ∂S+ϵ ) → 0. Then, for each v ∈ ∂S+ϵ and n ∈ N, we
have |un| = |un − v| a.e. in Λϵ. Therefore, by (V1), (V2) and the Sobolev embedding theorem, there exists
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a constant Cr > 0 such that

‖un‖Lr(Λϵ) ≤ inf
v∈∂S+ϵ ‖un − v‖Lr(Λϵ)
≤ Cr( inf

v∈∂S+ϵ ∫
Λϵ

(|∇Aϵun − v|2 + Vϵ(x)|un − v|2) dx)
1
2

≤ Cr dist(un , ∂S+ϵ )
for all n ∈ N and r ∈ [2, 6]. By (g2), (g3) and (g5), for each t > 0, we have

∫ℝN G(ϵx, t2|un|2) dx ≤ ∫Λϵ

F(t2|un|2) dx +
t2

K ∫
Λc
ϵ

V(ϵx)|un|2 dx

≤ C1t4 ∫
Λϵ

|un|4 dx + C2tq ∫
Λϵ

|un|q dx +
t2

K
‖un‖2ϵ

≤ C3t4 dist(un , ∂S+ϵ )4 + C4tq dist(un , ∂S+ϵ )q + t2K .

Therefore,

lim sup
n
∫ℝ3 G(ϵx, t2|un|2) dx ≤ t

2

K
for all t > 0.

On the other hand, from the definition of mϵ and the last inequality, for all t > 0, one has

lim inf
n

Jϵ(mϵ(un)) ≥ lim inf
n

Jϵ(tun)

≥ lim inf
n

t2

2 ‖un‖
2
ϵ −

t2

K

=
K − 2
2K t2.

This implies that
lim inf

n
1
2 ‖mϵ(un)‖2ϵ ≥

K − 2
2K t2 for all t > 0.

From the arbitrariness of t > 0, it is easy to see that ‖mϵ(un)‖ϵ →∞ and Jϵ(mϵ(un)) → ∞ as n →∞. This
completes the proof of Lemma 3.2.

Now we define the function
Ψ̂ϵ : H+ϵ → ℝ

by Ψ̂ϵ(u) = Jϵ(m̂ϵ(u)) and set Ψϵ := (Ψ̂ϵ)|S+ϵ .
From Lemma 3.2, we have the following result.

Lemma 3.3. Assume that (V1)–(V2) and (f1)–(f4) are satisfied. Then the following assertions hold:
(B1) Ψ̂ϵ ∈ C1(H+ϵ ,ℝ) and

Ψ̂󸀠ϵ(u)v = ‖m̂ϵ(u)‖ϵ
‖u‖ϵ

J󸀠ϵ(m̂ϵ(u))[v] for all u ∈ H+ϵ and all v ∈ Hϵ .

(B2) Ψϵ ∈ C1(S+ϵ ,ℝ) and
Ψ󸀠ϵ(u)v = ‖mϵ(u)‖ϵJ󸀠ϵ(m̂ϵ(u))[v] for all v ∈ TuS+ϵ .

(B3) If {un} is a (PS)c sequence of Ψϵ, then {mϵ(un)} is a (PS)c sequence of Jϵ. If {un} ⊂ Nϵ is a bounded (PS)c
sequence of Jϵ, then {m−1ϵ (un)} is a (PS)c sequence of Ψϵ.

(B4) u is a critical point of Ψϵ if and only if mϵ(u) is a critical point of Jϵ. Moreover, the corresponding critical
values coincide and

inf
S+ϵ Ψϵ = inf

Nϵ
Jϵ .
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As in [21], we have the following variational characterization of the infimum of Jϵ overNϵ:

cϵ = inf
u∈Nϵ

Jϵ(u) = inf
u∈H+

ϵ

sup
t>0 Jϵ(tu) = inf

u∈S+ϵ supt>0 Jϵ(tu).

Lemma 3.4. Let c > 0 and let {un} be a (PS)c sequence for Jϵ. Then {un} is bounded in Hϵ.

Proof. Assume that {un} ⊂ Hϵ is a (PS)c sequence for Jϵ, that is, Jϵ(un) → c and J󸀠ϵ(un) → 0. By using (g4),
(g5) and θ > 4, we have

c + on(1) + on(1)‖un‖ϵ ≥ Jϵ(un) −
1
θ
J󸀠ϵ(un)[un]

= (
1
2 −

1
θ )
‖un‖2ϵ + (

1
4 −

1
θ )

b[un]4Aϵ
+ ∫ℝ3 (1θ g(ϵx, |un|2)|un|2 − 12G(ϵx, |un|2)) dx

≥ (
1
2 −

1
θ )
‖un‖2ϵ + ∫

Λc
ϵ

(
1
θ
g(ϵx, |un|2)|un|2 −

1
2G(ϵx, |un|

2)) dx

≥ (
1
2 −

1
θ )
‖un‖2ϵ −

1
2 ∫
Λc
ϵ

G(ϵx, |un|2) dx

≥ (
1
2 −

1
θ )
‖un‖2ϵ −

1
2K ∫ℝ3 V(ϵx)|un|2 dx

≥ (
1
2 −

1
θ
−

1
2K )‖un‖

2
ϵ .

Since K > 2, from the above inequalities we obtain that {un} is bounded in Hϵ.

The following result is important to prove the (PS)cϵ condition for the functional Jϵ.

Lemma 3.5. The functional Jϵ satisfies the (PS)c condition at any level c > 0.

Proof. Let (un) ⊂ Hϵ be a (PS)c sequence for Jϵ. By Lemma 3.4, (un) is bounded in Hϵ. Thus, up to a subse-
quence, un ⇀ u in Hϵ and un → u in Lrloc(ℝ

3,ℂ) for all 1 ≤ r < 6 as n → +∞. Moreover, J󸀠ϵ(u) = 0 and
a[u]2Aϵ
+ ∫ℝ3 Vϵ(x)|u|2 dx + b[u]4Aϵ

= ∫ℝ3 g(ϵx, |u|2)|u|2 dx.
For the fixed ϵ > 0, let R > 0 be such that Λϵ ⊂ BR/2(0). We show that for any given ζ > 0, for R large

enough,
lim sup

n
∫

Bc
R(0)(|∇Aϵun|2 + Vϵ(x)|un|2) dx ≤ ζ. (3.2)

Let ϕR ∈ C∞(ℝ3,ℝ) be a cut-off function such that
ϕR = 0 for x ∈ BR/2(0), ϕR = 1 for x ∈ Bc

R(0), 0 ≤ ϕR ≤ 1, |∇ϕR| ≤
C
R
,

where C > 0 is a constant independent of R. Since the sequence (ϕRun) is bounded in Hϵ, we have

J󸀠ϵ(un)[ϕRun] = on(1),

that is

a Re ∫ℝ3 ∇Aϵun∇Aϵ (ϕRun) dx + ∫ℝ3 Vϵ(x)|un|2ϕR dx + b[un]2Aϵ
Re ∫ℝ3 ∇Aϵun∇Aϵ (ϕRun) dx

= ∫ℝ3 g(ϵx, |un|2)|un|2ϕR dx + on(1).

Since
∇Aϵ (unϕR) = iun∇ϕR + ϕR∇Aϵun ,
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using (g5), we have

∫ℝ3 (a|∇Aϵun|2 + Vϵ(x)|un|2)ϕR dx

≤ ∫ℝ3 g(ϵx, |un|2)|un|2ϕR dx − (a + b[un]2Aϵ
)Re ∫ℝ3 iun∇Aϵun∇ϕR dx + on(1)

≤
1
K ∫ℝ3 Vϵ(x)|un|2ϕR dx + C

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Re ∫ℝ3 iun∇Aϵun∇ϕR dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ on(1).

By the definition of ϕR, the Hölder inequality and the boundedness of (un) in Hϵ, we obtain

(1 − 1K ) ∫ℝ3 (a|∇Aϵun|2 + Vϵ(x)|un|2)ϕR dx ≤
C
R
‖un‖2‖∇Aϵun‖2 + on(1) ≤

C1
R
+ on(1),

and so (3.2) holds.
Now, we prove that for any R > 0 the following limit holds:

lim sup
n
∫

BR(0)(|∇Aϵun|2 + Vϵ(x)|un|2) dx = ∫
BR(0)(|∇Aϵu|2 + Vϵ(x)|u|2) dx. (3.3)

Let ϕρ ∈ C∞(ℝ3,ℝ) be a cut-off function such that
ϕρ = 1 for x ∈ Bρ(0), ϕρ = 0 for x ∈ Bc

2ρ(0), 0 ≤ ϕρ ≤ 1, |∇ϕρ| ≤
C
ρ
,

where C > 0 is a constant independent of ρ. Let

Pn(x) = M(un)|∇Aϵun − ∇Aϵu|2 + Vϵ(x)|un − u|2,

where
M(un) = a + b ∫ℝ3 |∇Aϵun|2 dx.

For the fixed R > 0, choosing ρ > R > 0, we have

∫
BR

Pn(x) dx ≤ ∫ℝ3 Pn(x)ϕρ(x) dx

= M(un) ∫ℝ3 |∇Aϵun − ∇Aϵu|2ϕρ(x) dx + ∫ℝ3 Vϵ(x)|un − u|2ϕρ(x) dx

= J1n,ρ − J2n,ρ + J3n,ρ + J4n,ρ , (3.4)

where

J1n,ρ = M(un) ∫ℝ3 |∇Aϵun|2ϕρ(x) dx + ∫ℝ3 Vϵ(x)|un|2ϕρ(x) dx − ∫ℝ3 g(ϵx, |un|2)|un|2ϕρ dx,

J2n,ρ = M(un)Re ∫ℝ3 ∇Aϵun∇Aϵuϕρ(x) dx + Re ∫ℝ3 Vϵ(x)unuϕρ(x) dx − Re ∫ℝ3 g(ϵx, |un|2)unuϕρ(x) dx,

J3n,ρ = −M(un)Re ∫ℝ3 (∇Aϵun − ∇Aϵu)∇Aϵuϕρ(x) dx + Re ∫ℝ3 Vϵ(x)(un − u)uϕρ(x) dx,

J4n,ρ = Re ∫ℝ3 g(ϵx, |un|2)un(un − u)ϕρ(x) dx.

It is easy to see that
J1n,ρ = J󸀠ϵ(un)[ϕρun] −M(un)Re ∫ℝ3 iun∇Aϵun∇ϕρ dx
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and
J2n,ρ = J󸀠ϵ(un)[ϕρu] −M(un)Re ∫ℝ3 iu ∇Aϵun∇ϕρ dx.

Then
lim
ρ→∞lim sup

n→∞ |J1n,ρ| = 0, lim
ρ→∞lim sup

n→∞ |J2n,ρ| = 0.
On the other hand, since the sequence (un) is bounded in Hϵ, we assume that

∫ℝ3 |∇Aϵun|2 dx → l2.

Then

J3n,ρ = −(a + bl2)Re ∫ℝ3 (∇Aϵun − ∇Aϵu)∇Aϵ (uϕρ(x)) dx − Re ∫ℝ3 Vϵ(x)(un − u)(uϕρ(x)) dx

+ (a + bl2)Re ∫ℝ3 (∇Aϵun − ∇Aϵu)iu ∇ϕρ dx + on(1)

= −(a + bl2)⟨un − u, uϕρ(x)⟩ + (a + bl2)Re ∫ℝ3 (∇Aϵun − ∇Aϵu)iu ∇ϕρ dx + on(1),

and thus
lim
ρ→∞lim sup

n→∞ |J3n,ρ| = 0.
Now we prove that

lim
ρ→∞lim sup

n→∞ |J4n,ρ| = 0. (3.5)

It is easy to see that

J4n,ρ ≤ ∫(ℝ3\Λϵ)∩B2ρ(0) |g(ϵx, |un|2)un(un − u)| dx + ∫Λϵ∩B2ρ(0) |g(ϵx, |un|2)un(un − u)| dx.
Using the Sobolev compact embedding Hϵ 󳨅→ Lrloc(ℝ

3,ℂ) for 1 ≤ r < 6, (g5), (f1) and (f2) imply that

∫(ℝ3\Λϵ)∩B2ρ(0) |g(ϵx, |un|2)un(un − u)| dx → 0 as n →∞

and
∫

Λϵ∩B2ρ(0) |g(ϵx, |un|2)un(un − u)| dx → 0 as n →∞.

Thus, (3.5) holds. Moreover, by (3.4), it follows that

0 ≤ lim sup
n
∫
BR

Pn(x) dx ≤ lim sup
n
(|J1n,ρ| + |J2n,ρ| + |J3n,ρ| + |J4n,ρ|) = 0.

Then
lim sup

n
∫
BR

Pn(x) dx = 0.

Thus, (3.3) holds. Finally, from (3.2) and (3.3), we have

‖u‖2ϵ ≤ lim inf
n
‖un‖2ϵ

≤ lim sup
n
‖un‖2ϵ

≤ lim sup
n
{ ∫
BR(0)(a|∇Aϵun|2 + Vϵ(x)|un|2) dx + ∫

Bc
R(0)(a|∇Aϵun|2 + Vϵ(x)|un|2) dx}

≤ ∫
BR(0)(a|∇Aϵu|2 + Vϵ(x)|u|2) dx + ζ.
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Passing to the limit as ζ → 0, we have R →∞, which implies that

‖u‖2ϵ ≤ lim inf
n
‖un‖2ϵ ≤ lim sup

n
‖un‖2ϵ ≤ ‖u‖2ϵ .

Then un → u in Hϵ, and we complete the proof of this theorem.

Since f is only assumed to be continuous, the following result is required for themultiplicity result in the next
section.

Corollary 3.6. The functional Ψϵ satisfies the (PS)c condition on S+ϵ at any level c > 0.
Proof. Let {un} ⊂ S+ϵ be a (PS)c sequence for Ψϵ. Then Ψϵ(un) → c and ‖Ψ󸀠ϵ(un)‖∗ → 0,where ‖ ⋅ ‖∗ is the norm
in the dual space (TunS+ϵ )∗. By Lemma 3.3 (B3), we know that {mϵ(un)} is a (PS)c sequence for Jϵ in Hϵ. From
Lemma 3.5, we know that there exists a u ∈ S+ϵ such that, up to a subsequence, mϵ(un) → mϵ(u) in Hϵ. By
Lemma 3.2 (A3), we obtain

un → u in S+ϵ ,
and the proof is complete.

Proposition 3.7. Assume that (V1)–(V2) and (f1)–(f4) hold. Then problem (3.1) has a ground state solution for
any ϵ > 0.

Proof. From Lemma 3.1 and Lemma 3.5, we can obtain the existence of a ground state u ∈ Hϵ for prob-
lem (3.1).

4 Multiple Solutions for the Modified Problem

4.1 The Autonomous Problem

For our scope, we also need to study the following limit problem:

− (a + b[u]2)∆u + V0u = f(|u|2)u, u : ℝ3 → ℝ, (4.1)

whose associated C1-functional, defined on H1(ℝ3,ℝ), is

I0(u) :=
1
2 ∫ℝ3 (a|∇u|2 + V0u2) dx +

b
4( ∫ℝ3 |∇u|2 dx)

2
−
1
2 ∫ℝ3 F(u2) dx.

Let
N0 := {u ∈ H1(ℝ3,ℝ) \ {0} : I󸀠0(u)[u] = 0}

and
cV0 := inf

u∈N0
I0(u).

Let S0 be the unit sphere ofH0 := H1(ℝ3,ℝ) and let it be a complete and smoothmanifold of codimension
1. Therefore, H0 = TuS0⨁ℝu for each u ∈ TuS0, where TuS0 = {v ∈ H0 : ⟨u, v⟩0 = 0}.

Lemma 4.1. Let V0 be given in (V1) and suppose that (f1)–(f4) are satisfied. Then the following properties hold:
(a1) For any u ∈ H0 \ {0}, let gu : ℝ+ → ℝ be given by gu(t) = I0(tu). Then there exists a unique tu > 0 such

that g󸀠u(t) > 0 in (0, tu) and g󸀠u(t) < 0 in (tu ,∞).
(a2) There is a τ > 0 independent of u such that tu > τ for all u ∈ S0. Moreover, for each compactW ⊂ S0 there

exists a tu such that tu ≤ CW for all u ∈W.
(a3) The map m̂ : H0 \ {0} → N0 given by m̂(u) = tuu is continuous, and m0 = m̂0|S0 is a homeomorphism

between S0 andN0. Moreover, m−1(u) = u‖u‖0 .
(a4) If there is a sequence {un} ⊂ S0 such that dist(un , ∂S0) → 0, then ‖m(un)‖0 →∞ and I0(m(u)) → ∞ as

n →∞.
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Lemma 4.2. Let V0 be given in (V1) and suppose that (f1)–(f4) are satisfied. Then the following assertions hold:
(b1) Ψ̂0 ∈ C1(H0 \ {0},ℝ) and

Ψ̂󸀠0(u)v = ‖m̂(u)‖0‖u‖0
I󸀠0(m̂(u))[v] for all u ∈ H0 \ {0} and all v ∈ H0.

(b2) Ψ0 ∈ C1(S0,ℝ) and
Ψ󸀠0(u)v = ‖m(u)‖0I󸀠0(m̂(u))[v] for all v ∈ TuS0.

(b3) If {un} is a (PS)c sequence of Ψ0, then {m(un)} is a (PS)c sequence of I0. If {un} ⊂ N0 is a bounded (PS)c
sequence of I0, then {m−1(un)} is a (PS)c sequence of Ψ0.

(b4) We have that u is a critical point of Ψ0 if and only if m(u) is a critical point of I0. Moreover, the corre-
sponding critical values coincide and

inf
S0

Ψ0 = inf
N0

I0.

Similarly to the previous argument, we have the following variational characterization of the infimum of I0
overN0:

cV0 = inf
u∈N0

I0(u) = inf
u∈H0\{0} supt>0 I0(tu) = inf

u∈S0 supt>0 I0(tu).

The next result is useful in later arguments.

Lemma 4.3. Let {un} ⊂ H0 be a (PS)c sequence for I0 such that un ⇀ 0. Then one of the following alternatives
occurs:
(i) un → 0 in H0 as n → +∞.
(ii) There are a sequence {yn} ⊂ ℝ3 and constants R, β > 0 such that

lim inf
n
∫

BR(yn) |un|2 dx ≥ β.
Proof. Assume that (ii) does not hold. Then, for every R > 0, we have

lim
n

sup
y∈ℝ3 ∫

BR(y) |un|2 dx = 0.
Since {un} is bounded in H0, by the Lions lemma it follows that

un → 0 in Lr(ℝ3), 2 < r < 6.

From the subcritical growth of f , we have

∫ℝ3 F(u2n) dx = on(1) = ∫ℝ3 f(u2n)u2n dx.
Moreover, from I󸀠0(un)[un] → 0, it follows that

∫ℝ3 (a|∇un|2 + V0u2n) dx + b( ∫ℝ3 |∇un|2 dx)
2
= ∫ℝ3 f(u2n)u2n dx + on(1) = on(1).

Thus (i) holds.

Remark 4.4. From Lemma 4.3we see that if u is the weak limit of a (PS)cV0 sequence {un} of the functional I0,
then we have u ̸= 0. Otherwise, we have that un ⇀ 0 and if un ↛ 0, from Lemma 4.3 it follows that there are
a sequence {yn} ⊂ ℝ3 and constants R, β > 0 such that

lim inf
n
∫

BR(yn) |un|2 dx ≥ β > 0.
Then set vn(x) = un(x + zn). It is easy to see that {vn} is also a (PS)cV0 sequence for the functional I0, it is
bounded, and there exists v ∈ H0 such that vn ⇀ v in H0 with v ̸= 0.
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Lemma 4.5. Assume that V0 > 0 and f satisfies (f1)–(f4). Then problem (4.1) has a positive ground state
solution.

Proof. First of all, it is easy to show that cV0 > 0.Moreover, if u0 ∈ N0 satisfies I0(u0) = cV0 , thenm−1(u0) ∈ S0
is a minimizer of Ψ0, so that u0 is a critical point of I0 by Lemma 4.2. Now, we show that there exists a mini-
mizer u ∈ N0 of I0|N0 . Since infS0 Ψ0 = infN0 I0 = cV0 and S0 is a C1manifold, by Ekeland’s variational princi-
ple, there exists a sequenceωn ⊂ S0 with Ψ0(ωn) → cV0 and Ψ󸀠0(ωn) → 0 as n →∞. Put un = m(ωn) ∈ N0 for
n ∈ N. Then I0(un) → cV0 and I󸀠0(un) → 0 as n →∞ by Lemma 4.2 (b3). Similar to the proof of Lemma 3.4,
it is easy to know that {un} is bounded in H0. Thus, we have un ⇀ u in H0, un → u in Lrloc(ℝ

3), 1 ≤ r < 6 and
un → u a.e. inℝ3, and thus I󸀠0(u) = 0. From Remark 4.4, we know that u ̸= 0. Moreover,

cV0 ≤ I0(u) = I0(u) −
1
θ
I󸀠0(u)[u]

= (
1
2 −

1
θ )
‖u‖20 + (

1
4 −

1
θ )

b( ∫ℝ3 |∇u|2 dx)
2
+ ∫ℝ3 (1θ f(u2)u2 − 12F(u2)) dx

≤ lim inf
n
{(

1
2 −

1
θ )
‖un‖20 + (

1
4 −

1
θ )

b( ∫ℝ3 |∇un|2 dx)
2
+ ∫ℝ3 (1θ f(un)u2n − 12F(u2n)) dx}

= lim inf
n
{I0(un) −

1
θ
I󸀠0(un)[un]}

= cV0 ,

Thus, u is a ground state solution. From the assumption on f , we have u ≥ 0, and thus u(x) > 0 for all x ∈ ℝN .
The proof is complete.

Arguing as in [5, Proposition 4], there exists a positive radial ground state solution of problem (4.1), which
implies that this solution decays exponentially at infinity with its gradient; moreover, this ground state solu-
tion is of class C2(ℝ3,ℝ) ∩ L∞(ℝ3,ℝ).
Lemma 4.6. Let (un) ⊂ N0 be such that I0(un) → cV0 . Then (un) has a convergent subsequence in H0.

Proof. Since (un) ⊂ N0, from Lemma 4.1 (a3), Lemma 4.2 (b4) and the definition of cV0 , we have

vn = m−1(un) = un
‖un‖0
∈ S0 for all n ∈ N,

and
Ψ0(vn) = I0(un) → cV0 = infu∈S0 Ψ0(u).

Since S0 is a complete C1 manifold, by the Ekeland’s variational principle, there exists a sequence {ṽn} ⊂ S0
such that {ṽn} is a (PS)cV0 sequence for Ψ0 on S0 and

‖ṽn − vn‖0 = on(1).

Similar to Lemma 4.5, we may obtain the conclusion of this lemma.

4.2 The Technical Results

In this subsection, we prove a multiplicity result for the modified problem (3.1) using the Ljusternik–
Schnirelmann category theory. In order to get it, we first provide some useful preliminaries.

Let δ > 0 be such thatMδ ⊂ Λ, let ω ∈ H1(ℝ3,ℝ) be a positive ground state solution of the limit problem
(4.1), and let η ∈ C∞(ℝ+, [0, 1]) be a nonincreasing cut-off function defined in [0, +∞) such that η(t) = 1 if
0 ≤ t ≤ δ

2 and η(t) = 0 if t ≥ δ.
For any y ∈ M, let us introduce the function

Ψϵ,y(x) := η(|ϵx − y|)ω(
ϵx − y
ϵ )

exp(iτy(
ϵx − y
ϵ ))

,
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where

τy(x) :=
3
∑
i=1 Ai(y)xi .

Let tϵ > 0 be the unique positive number such that

max
t≥0 Jϵ(tΨϵ,y) = Jϵ(tϵΨϵ,y).

Note that tϵΨϵ,y ∈ Nϵ.
Let us define Φϵ : M → Nϵ by

Φϵ(y) := tϵΨϵ,y .

By construction, Φϵ(y) has compact support for any y ∈ M. Moreover, the energy of the above functions has
the following behavior as ϵ → 0+.
Lemma 4.7. The limit

lim
ϵ→0+ Jϵ(Φϵ(y)) = cV0

holds uniformly in y ∈ M.

Proof. Assume by contradiction that the statement is false. Then there exist δ0 > 0, (yn) ⊂ M and ϵn → 0+
satisfying

|Jϵn (Φϵn (yn)) − cV0 | ≥ δ0.

For simplicity, we write Φn, Ψn and tn for Φϵn (yn), Ψϵn ,yn and tϵn , respectively.
By the Lebesgue dominated convergence theorem, we have that

‖Ψn‖2ϵn → ∫ℝ3 (|∇ω|2 + V0ω2) dx as n → +∞, (4.2)

[Ψn]4Aϵn
→ [ω]4 as n → +∞. (4.3)

Since J󸀠ϵn (tnΨn)(tnΨn) = 0, by the change of variables z = (ϵnx − yn)/ϵn, observe that, if z ∈ Bδ/ϵn (0), then
ϵnz + yn ∈ Bδ(yn) ⊂ Mδ ⊂ Λ. We have

‖Ψn‖2ϵn + t
2
nb[Ψn]4Aϵn

= ∫ℝ3 g(ϵnz + yn , t2nη2(|ϵnz|)ω2(z))η2(|ϵnz|)ω2(z) dz

= ∫ℝ3 f(t2nη2(|ϵnz|)ω2(z))η2(|ϵnz|)ω2(z) dz

≥ ∫
Bδ/(2ϵn )(0) f(t2nω2(z))ω2(z) dz

≥ ∫
Bδ/2(0) f(t2nω2(z))ω2(z) dz

≥ f(t2nγ2) ∫
Bδ/2(0) ω4(z) dz

for all n large enough and where γ = min{ω(z) : |z| ≤ δ
2 }. Moreover, we have

t−2n ‖Ψn‖2ϵn + b[Ψn]4Aϵn
≥
f(t2nγ2)
t2nγ2

γ2 ∫
Bδ/2(0) ω4(z) dz.

If tn → +∞, by (f4) we derive a contradiction.
Therefore, up to a subsequence, we may assume that tn → t0 ≥ 0. If tn → 0, using the fact that f is

increasing and using the Lebesgue dominated convergence theorem, we obtain that

‖Ψn‖2ϵn + t
2
nb[Ψn]4Aϵn

= ∫ℝ3 f(t2nη2(|ϵnz|)ω2(z))η2(|ϵnz|)ω2(z) dz → 0 as n → +∞,
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which contradicts (4.2). Thus, from (4.2) and (4.3), we have t0 > 0 and

∫ℝ3 (|∇ω|2 + V0ω2) dx + t20b[ω]
4 = ∫ℝ3 f(t0ω2)ω2 dx,

so that t0ω ∈ NV0 . Since ω ∈ NV0 , we obtain that t0 = 1 and so, using the Lebesgue dominated convergence
theorem, we get

lim
n
∫ℝ3 F(|tnΨn|2) dx = ∫ℝ3 F(ω2) dx.

Hence
lim
n
Jϵn (Φϵn (yn)) = I0(ω) = cV0 ,

which is a contradiction and the proof is complete.

Now we define the barycenter map.
Let ρ > 0 be such that Mδ ⊂ Bρ and consider Υ : ℝ3 → ℝ3 defined by setting

Υ(x) :=
{{
{{
{

x if |x| < ρ,
ρx
|x|

if |x| ≥ ρ.

The barycenter map βϵ : Nϵ → ℝ3 is defined by

βϵ(u) :=
1
‖u‖44
∫ℝ3 Υ(ϵx)|u(x)|4 dx.

We have the following lemma.

Lemma 4.8. The limit
lim
ϵ→0+ βϵ(Φϵ(y)) = y

holds uniformly in y ∈ M.

Proof. Assume by contradiction that there exist κ > 0, (yn) ⊂ M and ϵn → 0 such that

|βϵn (Φϵn (yn)) − yn| ≥ κ. (4.4)

Using the change of variable z = (ϵnx − yn)/ϵn, we can see that

βϵn (Φϵn (yn)) = yn +
∫ℝ3 (Υ(ϵnz + yn) − yn)η4(|ϵnz|)ω4(z) dz

∫ℝ3 η4(|ϵnz|)ω4(z) dz
.

Taking into account (yn) ⊂ M ⊂ Mδ ⊂ Bρ and the Lebesgue dominated convergence theorem, we can obtain
that

|βϵn (Φϵn (yn)) − yn| = on(1),

which contradicts (4.4).

Now, we prove the following useful compactness result.

Proposition 4.9. Let ϵn → 0+ and (un) ⊂ Nϵn be such that Jϵn (un) → cV0 . Then there exists (ỹn) ⊂ ℝ3 such
that the sequence (|vn|) ⊂ H1(ℝ3,ℝ), where vn(x) := un(x + ỹn), has a convergent subsequence in H1(ℝ3,ℝ).
Moreover, up to a subsequence, yn := ϵn ỹn → y ∈ M as n → +∞.

Proof. Since J󸀠ϵn (un)[un] = 0 and Jϵn (un) → cV0 , arguing as in Lemma3.4,we can prove that there exists C > 0
such that ‖un‖ϵn ≤ C for all n ∈ ℕ.

Arguing as in the proof of Lemma 3.2 and recalling that cV0 > 0, we have that there exist a sequence
{ỹn} ⊂ ℝ3 and constants R, β > 0 such that

lim inf
n
∫

BR(ỹn) |un|2 dx ≥ β. (4.5)
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Now, let us consider the sequence {|vn|} ⊂ H1(ℝ3,ℝ), where vn(x) := un(x + ỹn). By the diamagnetic
inequality (2.1), we get that {|vn|} is bounded in H1(ℝ3,ℝ). Using (4.5), we may assume that |vn| ⇀ v in
H1(ℝ3,ℝ) for some v ̸= 0.

Let tn > 0 be such that ṽn := tn|vn| ∈ NV0 , and set yn := ϵn ỹn.
By the diamagnetic inequality (2.1), we have

cV0 ≤ I0(ṽn) ≤ max
t≥0 Jϵn (tun) = Jϵn (un) = cV0 + on(1),

which yields I0(ṽn) → cV0 as n → +∞.
Since the sequences {|vn|} and {ṽn} are bounded inH1(ℝ3,ℝ) and |vn| ↛ 0 inH1(ℝ3,ℝ), wehave that (tn)

is also bounded and so, up to a subsequence, we may assume that tn → t0 ≥ 0.
We claim that t0 > 0. Indeed, if t0 = 0, then, since (|vn|) is bounded, we have ṽn → 0 in H1(ℝ3,ℝ), that

is, I0(ṽn) → 0, which contradicts cV0 > 0.
Thus, up to a subsequence, we may assume that ṽn ⇀ ṽ := t0v ̸= 0 in H1(ℝ3,ℝ), and, by Lemma 4.6, we

can deduce that ṽn → ṽ in H1(ℝ3,ℝ), which gives |vn| → v in H1(ℝ3,ℝ).
Now we show the final part, namely that {yn} has a subsequence such that yn → y ∈ M. Assume by con-

tradiction that {yn} is not bounded and so, up to a subsequence, |yn| → +∞ as n → +∞. Choose R > 0 such
that Λ ⊂ BR(0). Then, for n large enough, we have |yn| > 2R, and, for any x ∈ BR/ϵn (0),

|ϵnx + yn| ≥ |yn| − ϵn|x| > R.

Since un ∈ Nϵn , using (V1) and the diamagnetic inequality (2.1), we get that

∫ℝ3 (a|∇|vn||2 + V0|vn|2) dx ≤ ∫ℝ3 g(ϵnx + yn , |vn|2)|vn|2 dx
≤ ∫
BR/ϵn (0) ̃f (|vn|2)|vn|2 dx + ∫Bc

R/ϵn (0) f(|vn|2)|vn|2 dx. (4.6)

Since |vn| → v in H1(ℝ3,ℝ) and ̃f (t) ≤ V0/K, we can see that (4.6) yields

min{1, V0(1 −
1
K )} ∫ℝ3 (a|∇|vn||2 + V0|vn|2) dx = on(1),

that is, |vn| → 0 in H1(ℝ3,ℝ), which contradicts to v ̸≡ 0.
Therefore, we may assume that yn → y0 ∈ ℝ3. Assume by contradiction that y0 ̸∈ Λ. Then there exists

r > 0 such that for every n large enough we have that |yn − y0| < r and B2r(y0) ⊂ Λ
c. Then, if x ∈ Br/ϵn (0), we

have that |ϵnx + yn − y0| < 2r so that ϵnx + yn ∈ Λ
c and so, arguing as before, we reach a contradiction. Thus,

y0 ∈ Λ.
To prove that V(y0) = V0, we suppose by contradiction that V(y0) > V0. Using Fatou’s lemma, the change

of variable z = x + ỹn and maxt≥0 Jϵn (tun) = Jϵn (un), we obtain
cV0 = I0(ṽ) <

1
2 ∫ℝ3 (a|∇ṽ|2 + V(y0)|ṽ|2) dx + b4( ∫ℝ3 |∇ṽ|2 dx)

2
−
1
2 ∫ℝ3 F(|ṽ|2) dx

≤ lim inf
n
(
1
2 ∫ℝ3 (a|∇ṽn|2 + V(ϵnx + yn)|ṽn|2) dx + b4( ∫ℝ3 |∇ṽn|2 dx)

2
−
1
2 ∫ℝ3 F(|ṽn|2) dx)

= lim inf
n
(
t2n
2 ∫ℝ3 (a|∇|un||2 + V(ϵnz)|un|2) dx + t

4
nb
4 ( ∫ℝ3 |∇un|2 dx)

2
−
1
2 ∫ℝ3 F(|tnun|2) dx)

≤ lim inf
n

Jϵn (tnun)

≤ lim inf
n

Jϵn (un) = cV0 ,

which is impossible and the proof is complete.
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Let now
Ñϵ := {u ∈ Nϵ : Jϵ(u) ≤ cV0 + h(ϵ)},

where h : ℝ+ → ℝ+, h(ϵ) → 0 as ϵ → 0+.
For fixed y ∈ M, since, by Lemma 4.7, |Jϵ(Φϵ(y)) − cV0 | → 0 as ϵ → 0+, we get that Ñϵ ̸= 0 for any ϵ > 0

small enough.
We have the following relation between Ñϵ and the barycenter map.

Lemma 4.10. We have
lim
ϵ→0+ supu∈Ñϵ

dist(βϵ(u),Mδ) = 0.

Proof. Let ϵn → 0+ as n → +∞. For any n ∈ ℕ, there exists un ∈ Ñϵn such that

sup
u∈Ñϵn

inf
y∈Mδ
|βϵn (u) − y| = inf

y∈Mδ
|βϵn (un) − y| + on(1).

Therefore, it is enough to prove that there exists (yn) ⊂ Mδ such that

lim
n
|βϵn (un) − yn| = 0.

By the diamagnetic inequality (2.1), we can see that I0(t|un|) ≤ Jϵn (tun) for any t ≥ 0. Therefore, recalling that
{un} ⊂ Ñϵn ⊂ Nϵn , we can deduce that

cV0 ≤ max
t≥0 I0(t|un|) ≤ max

t≥0 Jϵn (tun) = Jϵn (un) ≤ cV0 + h(ϵn),

which implies that Jϵn (un) → cV0 as n → +∞. Then Proposition 4.9 implies that there exists {ỹn} ⊂ ℝ3 such
that yn = ϵn ỹn ∈ Mδ for n large enough.

Thus, making the change of variable z = x − ỹn, we get

βϵn (un) = yn +
∫ℝ3 (Υ(ϵnz + yn) − yn)|un(z + ỹn)|4 dz

∫ℝ3 |un(z + ỹn)|4 dz .

Since, up to a subsequence, |un|( ⋅ + ỹn) converges strongly inH1(ℝ3,ℝ) and ϵnz + yn → y ∈ M for any z ∈ ℝ3,
we conclude the proof.

4.3 Multiplicity of Solutions for Problem (3.1)

Finally, we present a relation between the topology of M and the number of solutions of the modified prob-
lem (3.1).

Theorem 4.11. For any δ > 0 such that Mδ ⊂ Λ, there exists ϵ̃δ > 0 such that, for any ϵ ∈ (0, ϵ̃δ), problem (3.1)
has at least catMδ (M) nontrivial solutions.

Proof. For any ϵ > 0, we define the function πϵ : M → S+ϵ by
πϵ(y) = m−1ϵ (Φϵ(y)) for all y ∈ M.

By Lemma 4.7 and Lemma 3.3 (B4), we obtain

lim
ϵ→0Ψϵ(πϵ(y)) = limϵ→0 Jϵ(Φϵ(y)) = cV0 uniformly in y ∈ M.

Hence, there is a number ϵ̂ > 0 such that the set S̃+ϵ := {u ∈ S+ϵ : Ψϵ(u) ≤ cV0 + h(ϵ)} is nonempty for all
ϵ ∈ (0, ϵ̂) since πϵ(M) ⊂ S̃+ϵ . Here h is given in the definition of Ñϵ.

Given δ > 0, by Lemma 4.7, Lemma 3.2 (A3), Lemma 4.8, and Lemma 4.10, we can find ϵ̃δ > 0 such that
for any ϵ ∈ (0, ϵ̃δ) the diagram

M
Φϵ󳨀󳨀→ Φϵ(M)

m−1
ϵ󳨀󳨀󳨀→ πϵ(M)

mϵ󳨀󳨀→ Φϵ(M)
βϵ󳨀󳨀→ Mδ
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is well defined and continuous. From Lemma 4.8, we can choose a function Θ(ϵ, z) with |Θ(ϵ, z)| < δ
2 uni-

formly in z ∈ M for all ϵ ∈ (0, ϵ̂) such that βϵ(Φϵ(z)) = z + Θ(ϵ, z) for all z ∈ M. Define

H(t, z) = z + (1 − t)Θ(ϵ, z).

Then H : [0, 1] ×M → Mδ is continuous. Clearly, H(0, z) = βϵ(Φϵ(z)) and H(1, z) = z for all z ∈ M. That is,
H(t, z) is a homotopy between βϵ ∘ Φϵ = (βϵ ∘ mϵ) ∘ πϵ and the embedding ι : M → Mδ. Thus, this fact implies
that

catπϵ(M)(πϵ(M)) ≥ catMδ (M). (4.7)

By Corollary 3.6 and the abstract category theorem [21], Ψϵ has at least catπϵ(M)(πϵ(M)) critical points on S+ϵ .
Therefore, from Lemma 3.3 (B4) and (4.7), we have that Jϵ has at least catMδ (M) critical points in Ñϵ, which
implies that problem (3.1) has at least catMδ (M) solutions.

5 Proof of Theorem 1.1
In this section, we prove our main result. The idea is to show that the solutions uϵ obtained in Theorem 4.11
satisfy

|uϵ(x)|2 ≤ a0 for x ∈ Λc
ϵ

for ϵ > 0 small. Arguing as in [26], the following uniform result holds.

Lemma 5.1. Let ϵn → 0+ and let un ∈ Ñϵn be a solution of problem (3.1) for ϵ = ϵn. Then Jϵn (un) → cV0 . More-
over, there exists {ỹn} ⊂ ℝ3 such that, if vn(x) := un(x + ỹn), we have that {|vn|} is bounded in L∞(ℝ3,ℝ) and

lim|x|→+∞|vn(x)| = 0 uniformly in n ∈ ℕ.

Now, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let δ > 0 be such that Mδ ⊂ Λ. We want to show that there exists ϵ̂δ > 0 such that for
any ϵ ∈ (0, ϵ̂δ) and any solution uϵ ∈ Ñϵ of problem (3.1), it holds

‖uϵ‖2L∞(Λc
ϵ) ≤ a0. (5.1)

We argue by contradiction and assume that there is a sequence ϵn → 0 such that for every n there exists
un ∈ Ñϵn which satisfies J󸀠ϵn (un) = 0 and

‖un‖2L∞(Λc
ϵn ) > a0. (5.2)

As in Lemma 5.1, we have that Jϵn (un) → cV0 , and therefore we can use Proposition 4.9 to obtain a sequence
(ỹn) ⊂ ℝ3 such that yn := ϵn ỹn → y0 for some y0 ∈ M. Then we can find r > 0 such that Br(yn) ⊂ Λ, and so
Br/ϵn (ỹn) ⊂ Λϵn for all n large enough.

By using Lemma 5.1, there exists R > 0 such that |vn|2 ≤ a0 in Bc
R(0) and n large enough, where

vn = un( ⋅ + ỹn). Hence |un|2 ≤ a0 in Bc
R(ỹn) and n large enough. Moreover, if n is so large that r/ϵn > R,

then
Λc
ϵn ⊂ B

c
r/ϵn (ỹn) ⊂ Bc

R(ỹn),

which gives |un|2 ≤ a0 for any x ∈ Λc
ϵn . This contradicts (5.2) and proves the claim.

Let now ϵδ := min{ϵ̂δ , ϵ̃δ}, where ϵ̃δ > 0 is given by Theorem 4.11. Then we have catMδ (M) nontrivial
solutions to problem (3.1). If uϵ ∈ Ñϵ is one of these solutions, then, by (5.1) and the definition of g, we
conclude that uϵ is also a solution to problem (2.2).

Finally, we study the behavior of the maximum points of |ûϵ|, where ûϵ(x) := uϵ( xϵ ) is a solution to prob-
lem (1.1) as ϵ → 0+.

Take ϵn → 0+ and the sequence (un) where each un is a solution of (3.1) for ϵ = ϵn. From the definition
of g, there exists γ ∈ (0, a) such that

g(ϵx, t2)t2 ≤ V0
K
t2 for all x ∈ ℝN , |t| ≤ γ.
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Arguing as above, we can take R > 0 such that, for n large enough,

‖un‖L∞(Bc
R(ỹn)) < γ. (5.3)

Up to a subsequence, we may also assume that, for n large enough,

‖un‖L∞(BR(ỹn)) ≥ γ. (5.4)

Indeed, if (5.4) does not hold, up to a subsequence, if necessary, we have ‖un‖∞ < γ. Thus, since J󸀠ϵn (uϵn ) = 0,
using (g5) and the diamagnetic inequality (2.1), we obtain

∫ℝ3 (a|∇|un||2 + V0|un|2) dx + b( ∫ℝ3 (|∇|un||2) dx)
2
≤ ∫ℝ3 g(ϵnx, |un|2)|un|2 dx ≤ V0

K ∫ℝ3 |un|2 dx.
Since K > 2, we obtain ‖un‖ = 0, which is a contradiction.

Taking into account (5.3) and (5.4), we can infer that the global maximum points pn of |uϵn | belong
to BR(ỹn), that is, pn = qn + ỹn for some qn ∈ BR. Recalling that the associated solution of problem (1.1) is
ûn(x) = un(x/ϵn), we can see that amaximumpoint ηϵn of |ûn| is ηϵn = ϵn ỹn + ϵnqn. Since qn ∈ BR, ϵn ỹn → y0
and V(y0) = V0, the continuity of V allows to conclude that

lim
n
V(ηϵn ) = V0.

The proof is now complete.
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