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1 | INTRODUCTION

Let Q C RN be a bounded domain with a Lipschitz boundary dQ. In this paper, we study the
following singular double-phase Dirichlet problem:

—Agu(z) — Aqu(z) = 9(2u(z) " + B(z)u(z)* ' in Q,
D

Ulgo=0,1<7<g<p<N,1<n u>0.
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For a € L*(Q) \ {0} with a(z) > 0 for a.a. z € Q and for r € (1, ), we denote by AY the
weighted r-Laplace differential operator defined by

A%u = div(a(z)|Dul""*Du).

Note that when a(z) = 1 for all z € Q, then we have the standard r-Laplace differential operator
denoted by A,.

The interest in the study of this type of problem is twofold. On the one hand, there are physical
motivations, since the double-phase operator has been applied to describe steady-state solutions
of reaction-diffusion problems in biophysics, plasma physics, and chemical reaction analysis. The
prototype equation for these models can be written in the form

u, = Agu(z) +Agu + g(x,u).

In this framework, the function u generally stands for a concentration, and the term Agu(z) +Agu
corresponds to the diffusion with coefficient a(z)|Du|P~2 + |Du|972, whereas g(x, u) represents
the reaction term related to source and loss processes; see Cherfils-II'yasov [5] and Singer [21]. On
the other hand, such operators provide a valuable framework for explaining the behavior of highly
anisotropic materials whose hardening properties, which are linked to the exponent governing the
propagation of the gradient variable, differ considerably with the point, where the modulating
coefficient a(z) dictates the geometry of a composite made by two different materials.

In problem (1), the equation is driven by the sum of two such operators with different exponents.
So, the differential operator (left-hand side) of problem (1) is not homogeneous. In the operator
A%, we do not assume that the weight function a(-) is bounded away from zero, that is, we do not
have that essinf o > 0. So, the integrand

w(z,x) = a(z)xP? + x?forallz € Qand forall x > 0

associated with the energy functional of the differential operator, exhibits unbalanced growth with
respect to the x-variable, namely, we have

x? < p(z,x) < |1+ xP] for a.a.z € Q, all x > 0, some ¢, > 0.

Such integral functionals arise in the context of problems of mathematical physics (elasticity
theory, fluid dynamics) and of the calculus of variations and were first investigated by Zhikov [24]
and Marecellini [10, 11]. Recently, the interest for such functionals was revived with emphasis on
the regularity properties of minimizers. We refer to the works of Baroni-Colombo-Mingione [1]
and Marcellini [12, 13] and the references therein. We also mention the survey papers of Mingione-
Réadulescu [14], Papageorgiou [15], and Raddulescu [20].

The double-phase problem (1) is motivated by numerous models arising in mathematical
physics. For instance, we can refer to the following Born-Infeld equation [2] that appears in
electromagnetism:

—div[ —Y* )= hwinQ.
(1—2|Vu2)'/?
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Indeed, by the Taylor formula, we have

I 2n —3)!
(l—x)_1/2:1+5+ 3 x? + Mg gx"‘

1
—X + .- for||x| < 1.
2 2.22 31.23 (n —1)12n-1 Il

Taking x = 2|Vu|? and adopting the first-order approximation, we obtain problem (1) for p =
4 and q = 2. Furthermore, the nth-order approximation problem is driven by the multiphase
differential operator

(2n —3)!

3
—Au—-Au—=Au—--———A, U

We also refer to the following fourth-order relativistic operator:

2
u - div Lﬂ Vu ,
(- [Vulty”
which describes large classes of phenomena arising in relativistic quantum mechanics. Again, by
Taylor’s formula, we have

3x0 | 21x0

x2(1=xH3 = x2 +
4 32

This shows that the fourth-order relativistic operator can be approximated by the following
autonomous double-phase operator:

U Au+ iAgu.

In the reaction (right-hand side) of (1), we have the combined effects of two terms of different
nature. One term is the singular function u — 8(z)u~" and the other term is the (g — 1)-sublinear
perturbation u — B(z)u’~(1 < 7 < q). The singular term has two special features, which distin-
guish our work here from earlier ones on the subject. The first special feature is that the exponent
7 > 1. This means that the problem has a “strong” singularity. Such problems are more difficult to
deal with compared to the so-called “weakly” singular problems in which 0 < 7 < 1 and lead to
regular solutions. In the context of purely singular equations (i.e., there is no perturbation term)
driven by the Laplacian, Lazer-McKenna [9] proved that, if § € C*(Q),0 < a < 1, 9(z) > 0 for
all z € Q and 1 < 7, then the problem —Au(z) = 9(z)u(z)™7 in Q, u|3o = 0 has a unique solu-
tion that is not in Cé(Q) and it belongs to H(l)(Q) if and only if # < 3. So, for strongly singular
problems, even in the semilinear case, we do not have regularity of the solutions and this leads
to substantial difficulties in the analysis of the problem. The second special feature of the sin-
gular term is that the coefficient function 9(-) need not be bounded. We have § € L(Q) and
9(z) > 0 for a.a. z € Q. In the perturbation term u — B(z)u’"!, we have § € L®(Q), (z) > 0 for
a.a.z€ Qand 1 < 7 < q. So, the perturbation is strictly (g — 1)-sublinear as x — +o0 (concave
perturbation). Such strongly singular elliptic boundary value problems were studied by Sun [22]
(semilinear problems driven by the Laplace differential operator) and by Sun-Tan [23] (semilinear
Kirchhoff-type equations). Strongly singular double-phase equations with a (p — 1)-superlinear
perturbation were studied recently by Papageorgiou-Radulescu-Zhang [17]. No works exist with
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a (p — 1)-linear perturbation. The recent work of Papageorgiou-Pudetko-Rédulescu [16] can be
helpful in this direction.

Using an approach based on the Nehari method (see Brown-Wu [3] and Brown-Zhang [4]), we
show that problem (1) admits a bounded positive solution #%i(z) > 0 for a.a. z € Q.

2 | MATHEMATICAL BACKGROUND AND HYPOTHESES

The unbalanced growth of the integrand u(z,-) implies that the standard Sobolev spaces
are not enough to study (1) and we need to consider generalized Orlicz-Sobolev spaces.
A comprehensive presentation of the theory of these spaces can be found in the book of
Harjulehto-Histo [7].

Let L°(Q) be the space of all measurable functions u : Q — R. As usual, we identify two such
functions that differ on a Lebesgue-null set. Let a € C%'(Q) \ {0} with a(z) > 0 for a.a. z € Q,
1<g<p<Nand g <1l+ % The last inequality is standard in Dirichlet, unbalanced double-

phase problems and says that the exponents p, g cannot be far apart and p < q¢* = NN—il that leads

to useful embeddings of the relevant spaces. With u(z, x) = a(z)xP + x9 for all (z,x) € QX R,,
the generalized Orlicz space L#(Q) is defined by

L#Q) = {ueL’(Q) : p,(u) < o0},

with p,,(-) being the modular function
put) = [ ptzlubdz = [ [a@ul? + uftliz
Q Q

The functional is continuous, convex, and so, it is also weakly lower semicontinuous. We equip
LH*(Q) with the so-called Luxemburg norm

lull,, = inf{/l >0: p#(%) < 1}.

Then, L#(Q) becomes a separable and uniformly convex Banach space (in particular, then
LH*(Q) is reflexive by the Milman-Pettis theorem, see Papageorgiou-Winkert [19], p. 225).
Next, we can define the generalized Orlicz-Sobolev space W#(Q) by setting

WIH(Q) = {u € LH(Q) : |Du| € LH(Q)}
where Du denotes the weak gradient of u. We equip this space with the following norm:
llully . = llull, + IDull

with ||Dull, = [||Dul|l,,.

—|Ill
Also, we set Wé’“(Q) =C2(Q)
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For this space the Poincare inequality holds (see [7, p. 138]), and so on, W;’“ (Q), we can consider
the following equivalent norm:

llull = IDull, for allu € W, *(Q).

Both spaces Wh#(Q) and Wé’“ (Q) are separable and uniformly convex (thus reflexive).
Moreover, the following embedding results hold.

Proposition 1.

(a) The embeddings L*(Q) & L5(Q), Wé’“(Q) S W(l)’S(Q) are continuous forall s € [1,q].
(b) The embedding Wé’“(Q) < L5(Q) is continuous if s € [1,q*] and compact if s € [1, g*).
(c) The embedding LP(Q) & L*(Q) is continuous.

There is a close relation between the norm || - || and the modular function Pu(')' Letu e
Wé’” (Q). Then:

Proposition 2.

(@) llull =t & p(3*) = 1;

®) Nlull <1(@resp.=1,>1) < pM(Du) <1(resp.=1,>1);
© llull <1=[lull? < p,(Du) < llull?;

@ llull > 1= [ull? < p, (Du) < [lull?;

(e) |lu|l = 0(resp. » ) & p#(Du) — 0 (resp. — o0).

We will also use another modular function p, () defined by
p(Du) = / a(z)|Du|Pdz.
Q

This too is continuous convex on Wé’“ (Q), hence weakly lower semicontinuous.
Let A%, A, Wé’” Q) - (Wé’” (Q))* be the nonlinear operators defined by

(Ag(u), h)y = /Qa(z)IDulp_Z(Du,Dh)RNdz,
(Aq(u), h) = / |Du|q_2(Du,Dh)RNdz forallu,h € W(l)’“(Q).
Q

These are bounded, continuous, and strictly monotone (thus maximal monotone too) operators.
Weset V(u) = Ag (u) + Ay(u) forallu € Wé’” (Q). Evidently, V(-) is bounded, continuous, strictly

monotone (thus maximal monotone too). If (u) = Il)pa(Du) + $||Du||g forallu € Wé’” (Q), then
(p'(w), h) = (V(w), h) for all u, h € W2H(Q).
Our hypotheses on the data of problem (1) are the following:
H:
(i) ae o) \{oLa(z)>0forallze Q,1<7<qg<p<N, § <1+ %;
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(ii) 9 € L1(Q),9(z) >0 for aa. z€Q and there exists @€ Wé’“ (Q) such that
Jo9@)al~"dz < oo;
(iii) B e L*(Q)\ {0},B(z) > 0fora.a.z € Q.

3 | POSITIVE SOLUTIONS

As we already mentioned in the Introduction, our approach is based on the Nehari method. So,
we introduce the following two sets:

N = {u € Wé’“(Q) : pu(Du) = / 8(z)|u|1_”dz+/ﬁ(z)|u|fdz},
Q Q

M= {u € Wé’“(Q) : p,(Du) > / 8(2)|ul'"dz + / ,8(z)|u|fdz}.
Q Q

Note that A is the Nehari manifold for the problem and ' C M. Moreover, let ¢ : Wé’“ Q) —»
R be the C!-functional defined by

1 1 1 1— 1 z
o) = Lo (Dw) + Lypuld + —— / 9@luldz - 1 / B@)lul dz,
p - q T 9n-1Jq T Ja
forallu e Wé’“(Q).

Proposition 3. If hypotheses H hold and u € Wé’” (Q) satisfies

/ 9(2)|u|*"dz < o,
Q
then there exists a unique t, > 0 such that

tou € N,tu € M forallt > ¢,

o(tou) < p(tu)forallt > 0.
Proof. We consider the fibering function k,,(-) corresponding to u defined by
tP 14 11 _ {7
k(0 = Zouw + Sipulf + £ [ s@iraz- £ [ purs
! p q “ n-1Jq T Jo
forallt > 0.

Since 1 < 7 < g < pand 1 < 7, we see that

k,(t) > +ooast — 0" and as t — +oo.
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So, we can find ¢, > 0 such that
Kulty) = mink, (0). ®)
Clearly, k,, € C'(0, o), and so, we have
k! (ty) =0,
= 87 p (Du) + I | Dul|] — 7 /Q 8(@)lul*dz — 77 /Q B(@)lul*dz =0
> tueN.
Note that if k/ (t) = 0, then

1 _
p-T q-t q_ 114, — T
tP7 po (Du) + 77| Dullg prr— /919(z)|u| dz—/Qﬁ(z)|u| dz.

In this equation, the left-hand side is strictly increasing as a function of t > 0, whereas the right-
hand side is independent of ¢t > 0 (constant). So, it follows that ¢, > 0 must be unique. Moreover,
we have tu € M for all ¢ > t,. Finally, from (2), we infer that

p(tou) < @(tu)
forallt > 0. [l

Next, we show that the set M is bounded away from the origin (hence so does the Nehari
manifold since N' C M).

Proposition 4. If hypotheses H hold, then there exists p > 0 such that ||u|| > p forallu € M.

Proof. We argue by contradiction. So, suppose that we can find {u,,},cy € M such that
u, = 0in W *(Q). 3)

Since 7 > 1, we have L'(Q) < L'/7(Q) continuously (see Hewitt-Stromberg [8, p. 196]).
Therefore, 9(-)!/7 € L7(Q) and for the conjugate exponent of % € (0,1), we have

, 1
1 7 1
2) = =—<o. )
(n) 3—7—1 1-7

Applying Holder’s inequality for Lebesgue spaces with exponent in (0,1) (see Hewitt-Stromberg

[8, p- 191]), we have
n
[ / 9(z)1/’7dz] [ / |un|dz]1_’7 < / 9(2)|u,|'"dz 5)
Q Q Q

for all n € N (see (4)).
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Since u,, € M, for all n € N, we have
/ 9(2)|u, | 7dz < p.(Du,) — / B(2)|u,|"dz foralln € N,
Q Q

> / 9(2)|u,|'77dz — 0asn — oo (see (3)),
Q

1-7
> (/ |un|dz> — 0asn — oo (see (5)). (6)
Q
Since n > 1, from (6), we infer that

/ |u,|dz - 400 asn = oo. @)
Q

Moreover, by virtue of Proposition 1, we know that W;’” (Q) = LY(Q) continuously, and from
(3), we have

/ |u,|dz - 0asn — oo. (8)
Q

Comparing (7) and (8), we have a contradiction. This proves that there exists p > 0 such that
lu|| = p forallu e M. O

Proposition 5. If hypotheses H hold, then ¢(-) is coercive.

Proof. Letu € W(l)’“ () and without any loss of generality, we may assume that ||u|| > 1. We have

1 1 1 1
ww=—pww+—mmW+———/8@W¢ﬂw——/¢@mmw
p q " n-1Jq T Jo

1 1
>—me——/fummw
p T Ja
> %llullp — ¢, ||u||* for some ¢; > 0. (see Propositions 1 and 2). 9)
Since 1 < 7 < g < p, from (9), it follows that ¢(-) is coercive. O

We consider the following minimization problem:
m = inf [p(u) : u € M].

Proposition 6. If hypotheses H hold, then there exists it € N' N L®(Q) such that p(u) = m and
t(z) > 0fora.a.z € Q.
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Proof. By the Ekeland variational principle (see Papageorgiou-Winkert [19, p. 564]), we can find
{u,}en © M such that

p(u,) | m and p(u,) < p(y) + %lly —u,| forally e M, alln € N. (10)

On account of Proposition 5, we have that {u,},cy C Wé’“ (Q) is bounded. So, using Proposi-
tion 1, we may assume that

Uy — 4 in WoH(Q), u, — 1 in L¥(Q), 1)
We will show that
u, — @in W,*(Q). (12)
If (12) is not true, then at least one of the following strict inequalities holds:
p(DR) < liminf p,(Du,), ID@II] < lim inf |Du 13- (13)

Since u,, € M for all n € N, we have

[ 5@l 1z <, D) - [ ez <y
Q Q
for some c, > 0 and for all n € N (see (11)).

Then from (11) and Fatou’s lemma, we obtain

[ s@iarndz <c,
Q
= |i(z)| > 0fora.a.z € Q (recall 1 < n).

Note that

m = lim ¢(u,) (see (10))
n—-oo
—liminf | 2p,(Du,) + 21Du, |1 + —— | 8@)u, | dz -1 | B2, |7dz
whe [Pt gl T f T T Jo"

1 N 1 N 1 L1 1 T
> —p,(D0) + = || Di||? + —/S(Z)Iul Ndz — = / B(@)|a|*dz
P g 1 n-1Jg T Jo
(using Fatou’s lemma and (11), (13))
=)
> ¢(t,n) where t, > 0 is such that ¢, € N (see Proposition 3)

> infe > infe = C A0, 14
>1Jr\1/f go>1/r\1/lf @ = m (recall N' C M) (14)
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which is a contradiction. Therefore, (12) is true and it implies that
D) = p, i), [ p@luy Iz ~ [ il ez 15)
Q Q

Next, let us prove that 4 € M. We distinguish two cases.
Case 1: {u,},,, € M\ N withn, €N.

Note that (1) = p(|ul|) forallu € W(l)’” (Q), and so, we may assume that u, > 0 for all n > n,.
Since u, € M\ NV, forall h € W(l)’” (Q) with h > 0and all t > 0, we have

/ 9(2)[u, + th]'dz
Q
< /Q S(Z)ui_ndz < pu(Du,) — /Qﬁ(z)ufldz foralln € N.
Hence, for t € (0, 1) small, we have
/Qé}(z)[un +th]'dz < p(D(u, +th)) — /Qﬁ(z)[un + th]'dz,

=>u, +the Mfort € (0,1) small.

So, if in (10), we choose y = u,, + th € M, we obtain

1 1-n _ =7
5 /5@ [(un + )T — ) ]dz
. ) 1 ¢
<ty +-h) = platy) = [ B[y + th) —ufJaz + £kl
Q
foralln € N, fort € (0,1) small.

Dividing by ¢ > 0 and letting ¢t — 0%, by Fatou’s lemma, we have

Jo 8w, hdz
B . (u, + )7 —u),”
= Jo$@im ( ) ) dz

(u, + th)=7 —ul ™"
< z—»lo+ /Q %2 ( tl—7n) > dz

< (V). h) = o B2~ hdz
foralln € Nand for all h € W, *(Q) with h > 0.

We pass to the limit as n — oo and use (12) and Fatou’s lemma. We obtain
/ S(z)a"hdz < (V(4),h) — / B(z)a*thdz
Q Q

forall h € W,*(Q) with > 0.
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Choosingh =1 € Wé’” (Q), &t > 0, we obtain

/«9(2)121_’7dz < pu(DR) - / B(z2)a"dz,
Q Q
>0 e M.

From (14), we have

m = (i) = ¢(tyih)

>t,=1landsod € N.

Case 2: At least for a subsequence, we have {u,},cn € N.
Fort>0and h € Wé’”(Q), h > 0, we have

/S(Z)(un +th)!7dz

Q

< / S(Z)u,lq_”dz (recalln > 1)
Q

= p,(Du,,) — /Q,B(z)u;dz (since u, € N)
< c3forsomec; > 0andforalln €N.
Proposition 3 implies that there exists a unique f,,(t) > 0 such that
a,(Ou, +th] € N. (16)

From the definition of the Nehari manifold and using the Lebesgue dominated convergence
theorem, we have that

ft,,(+) is continuous. 17)
Moreover, since by hypothesis u,, € N for all n € N, we see that
f,(0) =1foralln e N. (18)
Since 2,()[u,, + th] € N (see (16)), from the definition of the Nehari manifold, we have
0 = 1,(1)P 0o (D(tt, + th)) + (DD (ut, + )

— () /Q 8, + th]'7dz — fu, (6 /Q B(2)(w, + thYdz 19)
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In addition, since u,, € N for all n € N, we have

0=p,(Du,) - /QS(Z)u,lfndz— /Qﬁ(z)u;dz.

(20)

From (19) and (20), and since ,,(0) = 1 for all n € N (see (18)) and j,,(-) is continuous for all

n € N (see (17)), we have that
0 2] p(1 + o(1))P " p,(D(u,, + th)) + q(1 + 0o(1))I || D(u, + th)||]

—Q=-nA+o)™ /Q 9(z)(u, + th)'7dz

—c o) [ @+ th)fdz] (20~ 1)
Q
+ pA(un + th) - ﬁ(un)
- / 9(z) [(un +th)!77 — u,ll_n]dz - / B(2) [(un +th) — u;]dz
Q Q
witho(1) - Oast — 0%,

In what follows we set

if this limit exists and if it does not exist, we simply take a sequence t,, — 0% and define

m

Y, = lim € R U {#oo}.

m—co

So, if we divide (21) by ¢t > 0 and let t - 0™, then we obtain
0> [ pPo(Du,) + qllDuy |1 + (1 — 1)/ S(2)uy, "dz — T/ ﬁ(Z)u;dZ] v
Q Q

+(V(u,), h) — T/ B(z)u’"'hdz (since 1 < 7).
Q
Note that

ppa(Duy,) + qllDu,||d
> q[po(Duy,) + [1Du,|ld]

=qp,(Duy,)

= q[/ 9(z)u) "dz + / ,B(Z)ufldz] foralln € N.
Q Q

1Y)

(22)

(23)
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Also since {u,},cn € Wé’” (Q) is bounded, we have

V(u,), h) — 1'/ B(z)u,dz > —c,||h|| for some ¢, > 0 and for all n € N.
Q

Returning to (22) and using (23) and (24), we have

0>(g—1) [/Q S(Z)u,ll_ndz + /Q,B(z)u;dz] v, —cllhll.

(24)

(25)

From Proposition 4, we know that the sequence {u,,},,cy € N C M is bounded away from zero.

So, from (25), we deduce that

¥, < cs for some cs > 0 and foralln € N.
From (10) with y = &,(9)[u,, + th] € N (see (16)), we have
p(u,) — @(fun (O)(u, + th))

1 N

< Z”un - /'ln(t)(un + th)”

< 21220 = [l + L, ONRL
n n n n n

Using (27) and the fact that u,, € N for all n € N, we obtain
t N p p—l
LA OIAI > = | 1+ o= )1 +0(1))P po(D(u, + th))

_ <1 N L)a +0(1)T1|D(u, + )]
n—1

+ <1 + 77TTI)(l +o(1) ! /Q B(2)(u, + th)'dz

luall . N
- Ts1gn(,un(t) - D, - 1)
_[x + 1] (po(D(u,, + th)) — p,(Duy,))
PR R o
1 + 1] (ID(w, + tWIIE = 1Du, 1)
P 7]_1_ n q nllq
+ % - 77%1 /Qﬁ(z)[(u” +th) —u; |dz.

(26)

27)

(28)
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Note that as t — 07, we have

[ - (1 + 77%1>(1 + o(1)Pp,(D(u, + th))

_<1 + L)(l + (1) [[D(u, + )
n—1

T T T
+ (1 + 77T1>(1 +o0(1))" ! /Qﬁ(z)(un + th)'dz

lual
n

—_ - L — L q T T
<1+n_1>Pa(Dun) (1+n_1>||Dun||q+<1+}7_1>/Q‘8(z)undz,

Butu, € M and 7 < g < p. Hence,

_ (1 + n%)paa)un)— (1 ¥ n%)uDunnZ ¥ <1 - n%) [ fanizaz

T
n—1

sign(f, (1) - 1)]

[pa(Dun)+||Dun||g—/gﬁ(z)u;dz] —‘/(28(z)uyll_”dz

< - 77TT1 [pa(Dun) + [|Du, I3 - /Qﬁ(z)ufldz]. (29)

We divide (28) by ¢t > 0 and let t — 0. We obtain

—(1+ P )pa<Dun>—<1+i>uDunng

0> o
n-1 n-1

T T €3
+<1 + — 1> /QB(Z)undz] 7n

1 1 o 1 1
_ (; + m)(Ap(un),h) - (5 + 77Tl><Aq(un),h>

+ <% + n%) /Q,B(z)u;_lhdz. (30)

Using (29) and the boundedness of {u,,},cn C Wé’“ (Q), from (30), we infer that

¥, = —c¢ for some ¢, > 0 and foralln € N. (31)
Then, (26) and (31) imply that

|VZ| < c; forsomec; > O0and foralln € N. (32)
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From (27) as before, we have that

1
n

An® = 1l + — a1
> p(at,) = P (Ot + th)

> [+ 001" oo (DGt + 1) = (1 + o) IDCu, + )
+(1+0(1)) / 3(2)(u, + th) "dz
Q
+(1+o(1)! / B@)(u, + th)fdz] (B, (-1
Q
- %[%(D(un +th)) — p,(Du,)] ~ é[IID(un + )8 = [IDu, ]
+ ﬁ /Q 82|, + th) 7 — 7| dz
1 T _ T
+ ;/Qﬁ(z)[(un +th)" —u’]dz.
We divide by t > 0 and then let t — 0%. We obtain
1 .
Elynl
> |-eutou - 10wy + [ S0z s [ peniasy;
—(V(u,), h) + /QS(Z)u;nhdz + /Qﬁ(z)u;_lhdz

=- <V(un)5 h) + / 19(Z)u;nhdz =+ / ﬁ(z)u;_lhdz
Q Q
since u,, € N foralln € N.

Now, we let n — oo and use (12) and (32). We have
(V(@), h) > /Q 9(z)ia "hdz + /Q B2 hdz
forall h € W,*(Q) with h > 0.
If we choose h =11 € W;’” (Q), we obtain

p#(Dﬁ)z/«9(2)121_’7dz+/ﬁ(z)ﬁfdz
Q Q

>0 e M.

(33)
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Reasoning as in Case 1 and using (14), we conclude that &t € N.

As in Gasinski-Winkert [6, Theorem 3.1], using a Moser iteration argument, we show that & €
L*°(Q). Finally, Proposition 2.4 of Papageorgiou-Vetro-Vetro [18] implies that i(z) > 0 for a.a.
ze Q. O

Next, we show that this minimizer & € N is, in fact, a solution of (1). Hence, M is, in fact, a
natural constraint for ¢(-).

Proposition 7. If hypotheses H hold and it € N N L®(Q) is the minimizer given by Proposition 6,
then 11 is a solution of (1).

Proof. Leth e Wé’“ () and € > 0. We introduce the following subsets of the domain Q:

QL ={zeQ: (@+eh)(z) >0}

QF ={ze€Q: (4 +ch)(z) <0}
Using the test function (1t + eh)* € W;’” (Q) in (33), we have
0 <(V(@), (@ +eh)™) — / 8(z)a (i + eh)Tdz — / B(z)a™ (i + ch)Tdz
Q Q

= / a(z)|Dit|P~2(Dit, D(il + €h))pndz + / |D1|972(Dit, D(@1 + €h))pndz
Qf Qf

+ +

- / 8(2)a (4 + eh)dz — / B(z)a* (@ + eh)dz
O o

+

= (V (1), (L + h)) — / a(z)|Da|P~3(Da, D(i + sﬁ))RNdz
Qf

- / |D0|972(Di, D(t + €h))pndz
QF

- / $(2)a(i + eh)dz + / 8(2)a7" (it + ch)dz
Q Qf

- / B(2)a" (i + eh)dz + / B(2)a" (1 + ch)dz
Q QF

<s[(V(a),ﬁ)— /Q 8(z)a"hdz — /Q ﬁ(z)af—lhdz]

—gl / a(z)|Di|P~2(Dtt, Dh)gndz + / |Dﬁ|q_2(Dﬁ,Dﬁ)RNdz]
Qf Qf

+gl / 9(z)a"hdz + / 5(z)af—1ﬁdz]. (34)
Qf Qf
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Since @t > 0, we see that

|Qg_|N —ase— 0"

(here we denote by |-|,; the Lebesgue measure on RY).

So, if divide (34) by € > 0 and then let ¢ — 0%, we obtain
0 <(V(),h) - / 9(z)t"hdz — / B(z)a*'hdz.
Q Q
Since h € Wé’” (Q) is arbitrary, we infer that

(V(a),h) = / 9(z)a "hdz + / B(z)a"thdz
Q Q
forallh € W(l)’”(Q).
Thus, # is a positive solution of (1). O
Summarizing we can state the following existence theorem for problem (1).

Theorem 8. If hypotheses H hold, then problem (1) has a positive solution il € W(l)’“ (Q)NL®(Q)
and i(z) > 0 fora.a. z € Q.
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