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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we study 

the following semilinear Robin problem
{

−Δu(z) + ξ(z)u(z) = f(z, u(z)) in Ω,
∂u
∂n + β(z)u = 0 on ∂Ω.

}
(1)

In this problem, the potential function ξ ∈ Ls(Ω) with s > N and is indefinite (that is, 
ξ(·) is sign changing). The reaction term f(z, x) is a Carathéodory function (that is, for 
all x ∈ R z → f(z, x) is measurable and for almost all z ∈ Ω x → f(z, x) is continuous), 
which is superlinear in the x ∈ R variable, but without satisfying the usual in such cases 
Ambrosetti–Rabinowitz condition (AR-condition for short). In addition, for almost all 
z ∈ Ω f(z, ·) satisfies a one-sided Lipschitz condition and it is odd. In the boundary 
condition ∂u∂n denotes the usual normal derivative defined by extension of the map

C1(Ω) � u → ∂u

∂n
= (Du, n)RN ,

with n(·) being the outward unit normal on ∂Ω. The boundary coefficient β ∈ W 1,∞(∂Ω)
with β(z) � 0 for all z ∈ ∂Ω. When β ≡ 0, then we recover the Neumann problem.

We are looking for the existence of multiple nodal (that is, sign changing) solutions 
for problem (1). Using a version of the symmetric mountain pass theorem due to Qian 
and Li [13, Theorem 4.2], we show the existence of a sequence of distinct nodal solutions 
with energies diverging to +∞.

In the past, an infinity of nodal solutions for superlinear Dirichlet problems with ξ ≡ 0, 
we proved by Qian and Li [13, Theorem 5.4] using AR-condition and with more restrictive 
conditions on the reaction term f . Subsequently, Qian [12, Theorem 1.1] produced an 
infinity of nodal solutions for a superlinear Neumann problem with ξ ≡ a ∈ (0, +∞). So, 
in Qian [12] the differential operator (right-hand side of the equation), is coercive and 
this simplifies the arguments considerably. Qian [12] did not use the AR-condition and 
instead employed a condition which was first introduced by Jeanjean [4]. This condition 
is global in nature and for this reason not entirely satisfactory. For Robin problems, there 
is the work of Qian and Li [14], who assume that ξ ≡ 0 and f ∈ C(Ω × R) satisfies the 
Jeanjean condition. They produce an infinity of distinct solutions, but they do not show 
that these solutions are nodal (see [14, Theorem 1.3]).

Problems with indefinite linear part (that is, the potential function ξ(·) is indefi-
nite), were investigated by Zhang and Liu [18], Qin, Tang and Zhang [15], Zhang, Tang 
and Zhang [19]. All the aforementioned works deal with Dirichlet problems and use 
a nonquadraticity condition analogous to the one employed by Costa and Magalhaes 
[2]. They produce infinitely many nontrivial solutions, but the not show that they are 
nodal. Multiple nodal solutions for problems with indefinite linear part, were produced 
by Papageorgiou and Papalini [7] (Dirichlet problems), Papageorgiou and Rădulescu [8]
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(Neumann problems) and Papageorgiou and Rădulescu [10] (Robin problems). None of 
the above works produces infinitely many nodal solutions. Finally we mention the very 
recent paper of Papageorgiou and Rădulescu [11], who produce a sequence of nodal so-
lutions for nonlinear Robin problems but under different conditions and using different 
tools.

2. Mathematical background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the duality 
brackets for the pair (X∗, X). Given ϕ ∈ C1(X, R), we say that ϕ satisfies the “Cerami 
condition” (the “C-condition” for short), if the following property holds

“Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is bounded and

(1 + ||un||)ϕ′(un) → 0 in X∗,

admits a strongly convergent subsequence”.

This is a compactness-type condition on ϕ, more general than the usual Palais–Smale 
condition. Nevertheless, it leads to the same deformation theorem from which one can 
derive the minimax theory of the critical values of ϕ.

The following spaces will be important in our analysis:

• The Sobolev space H1(Ω);
• The Banach space C1(Ω);
• The “boundary” Lebesgue spaces Lq(∂Ω), 1 � q � ∞.

The Sobolev space H1(Ω) is a Hilbert space with inner product

(u, h)H1(Ω) =
∫
Ω

uhdz +
∫
Ω

(Du,Dh)RNdz for all u, h ∈ H1(Ω)

and corresponding norm

||u|| = [||u||22 + ||Du||22]1/2 for all u ∈ H1(Ω).

The Banach space C1(Ω) is an order Banach space with positive (order) cone given 
by

C+ = {u ∈ C1(Ω : u(z) � 0 for all z ∈ Ω)}

This cone has a nonempty interior containing

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.
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On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·). Using 
this measure, we can define in the usual way the Lebesgue spaces Lq(∂Ω) 1 � q � ∞. 
According to the theory of Sobolev spaces, there exists a unique continuous linear map 
γ0 : H1(Ω) → L2(∂Ω) known as the “trace map”, which satisfies

γ0(u) = u|∂Ω for all u ∈ H1(Ω) ∩ C(Ω).

So, the trace map assigns “boundary values” to all Sobolev functions. This map is 
compact into Lq(∂Ω) for all q ∈

[
1, 2N−2

N−2

)
if N � 3 and into Lq(∂Ω) for all q � 1 if 

N = 1, 2. In addition we have

kerγ0 = H1
0 (Ω) and imγ0 = H

1
2 ,2(∂Ω).

In the sequel, for the sake of notational economy, we drop the use of the map γ0. All 
restrictions of Sobolev functions on ∂Ω are understood in the sense of traces.

Next we consider the following linear eigenvalue problem:

{
−Δu(z) + ξ(z)u(z) = λ̂u(z) in Ω,
∂u
∂n + β(z)u = 0 on ∂Ω.

}
(2)

We impose the following conditions on the data of this eigenvalue problem

• ξ ∈ L
N
2 (Ω) if N � 3, ξ ∈ Lq(Ω) with q > 1 if N = 2 and ξ ∈ L1(Ω) if N = 1.

• β ∈ W 1,∞(∂Ω) with β(z) � 0 for all z ∈ ∂Ω.

Let ϑ : H1(Ω) → R be the C1-functions defined by

ϑ(u) = ||Du||22 +
∫
Ω

ξ(z)u2dz +
∫
∂Ω

β(z)u2dσ for all u ∈ H1(Ω).

We know (see [10]) that there exists μ > 0 such that

ϑ(u) + μ||u||22 � c0||u||2 for all u ∈ H1(Ω), some c0 > 0. (3)

Using (3) and the spectral theorem for compact self-adjoint operators on a Hilbert 
space, we define the spectrum of (2) consisting of a sequence {λ̂k}k�1 ⊆ R such that 
λ̂k → +∞. By E(λ̂k) k ∈ N we denote the eigenspace corresponding to the eigenvalue λ̂k. 
We know that each E(λ̂k) is finite dimensional and we have the following orthogonal 
direct sum decomposition

H1(Ω) = ⊕ E(λ̂k).

k�1
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We know that

• λ̂1 is simple (that is, dimE(λ̂1) = 1).

• λ̂1 = inf

[
ϑ(u)
||u||22

: u ∈ H1(Ω), u �= 0
]
. (4)

• λ̂m = inf

[
ϑ(u)
||u||22

: u ∈ ⊕
k�m

E(λ̂k), u �= 0
]

= sup

[
ϑ(u)
||u||22

: u ∈
m
⊕

k=1
E(λ̂k), u �= 0

]
m � 2. (5)

The infimum in (4) is realized on E(λ̂1). Both the infimum and supremum in (5)
are realized on E(λ̂m). Evidently the elements of E(λ̂1) do not change sign, while the 
elements of E(λ̂m) m � 2 are nodal (that is sign changing).

In what follows A : H1(Ω) → H1(Ω)∗ is the bounded linear operator defined by

〈A(u), h〉 =
∫
Ω

(Du,Dh)RNdz for all u, h ∈ H1(Ω).

Also, by | · |N we denote the Lebesgue measure on RN and 2∗ =
{

2N
N−2 if N � 3,
+∞ if N = 1, 2.

3. A sequence of nodal solutions

Our hypotheses on the data of (1) are the following:
H(ξ): ξ ∈ Ls(Ω), s > N and ξ+ ∈ L∞(Ω).
H(β): β ∈ W 1,∞(∂Ω) with β(z) � 0 for all z ∈ ∂Ω.
H(f): f : Ω ×R → R is a Carathéodory function such that for almost all z ∈ Ω f(z, ·)

is odd and

(i) |f(z, x)| � a(z)(1 + |x|r−1) for almost all z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω), r ∈
(2, 2∗);

(ii) if F (z, x) =
∫ x

0 f(z, s)ds, then lim
x→±∞

F (z,x)
x2 = +∞ uniformly for almost all z ∈ Ω;

(iii) if e(z, x) = f(z, x)x − 2F (z, x), then there exists d ∈ L1(Ω) such that

e(z, x) � e(z, y) + d(z) for almost all z ∈ Ω, all 0 � x � y or y � x � 0;

(iv) there exists η̂ > 0 such that for almost all z ∈ Ω the function

x → f(z, x) + η̂x

is increasing on R;
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(v) there exist ĉ0, ̂c1 > 0 such that

−ĉ0 � lim inf
x→0

f(z, x)
x

� lim sup
x→0

f(z, x)
x

� ĉ1 uniformly for almost all z ∈ Ω.

Remark 1. Hypothesis H(f)(ii) implies that the primitive F (z, ·) is superquadratic near 
+∞. Hypotheses H(f)(ii), (iii) imply that

lim
x→±∞

f(z, x)
x

= +∞ uniformly for almost all z ∈ Ω

So, the reaction term f(z, ·) is superlinear. However, this superlinearity is not ex-
pressed via the classical AR-condition, which says that there exist q > 2 and M > 0
such that

0 < qF (z, x) � f(z, x)x for almost all z ∈ Ω, all |x| � M (6a)

0 < ess inf
Ω

F (·,±M) (6b)

(see Ambrosetti and Rabinowitz [1] and Mugnai [6]). Integrating (6a) and using (6b), 
we obtain the weaker condition

c1|x|q � F (z, x) for almost all z ∈ Ω, all |x| � M, some c1 > 0

This means that under the AR-condition f(z, ·) has at least (q−1)-polynomial growth 
near ±∞. The Jeanjean condition used in some works mentioned in the Introduction, 
says that there exist η � 1 and s ∈ [0, 1] such that

e(z, sx) � ηe(z, x) for almost all z ∈ Ω, all x ∈ R

We mention the global nature of this condition. This is a feature which we would 
like to avoid. Here instead of the AR-condition and the Jeanjean condition we employ 
a quasimonotonicity condition on e(z, ·) (see hypothesis H(f)(iii)). This condition is a 
slightly more general version of a condition used by Li and Yang [5]. It is satisfied if 
there exists M � 0 such that

e(z, ·) is nondecreasing on x � M and nonincreasing on x � −M.

In turn, this is implied by the following condition

x → f(z, x)
x

is nondecreasing on x � M,

x → f(z, x) is nonincreasing on x � −M

x
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We stress the local character of the last two conditions. Hypothesis H(f)(iv) is a 
one-sided Lipschitz condition. Finally hypothesis H(f)(v) implies that for almost all 
z ∈ Ω, f(z, ·) is linear near zero.

Let ϕ : H1(Ω) → R be the energy (Euler) functional for problem (1) defined by

ϕ(u) = 1
2ϑ(u) −

∫
Ω

F (z, u)dz for all u ∈ H1(Ω).

Evidently ϕ ∈ C1(H1(Ω)).

Proposition 1. If hypotheses H(ξ), H(β), H(f) hold, then the functional ϕ satisfies the 
C-condition.

Proof. We consider a sequence {un}n�1 ⊆ H1(Ω) such that

|ϕ(un)| � M1 for some M1 > 0, all n ∈ N, (7)

(1 + ||u||)ϕ′(un) → 0 in H1(Ω)∗ as n → ∞ (8)

From (8) we have

∣∣∣∣∣∣〈A(un), h〉 +
∫
Ω

ξ(z)unhdz +
∫
∂Ω

β(z)unhdσ −
∫
Ω

f(z, un)hdz

∣∣∣∣∣∣ � εn||h||
1 + ||un||

(9)

for all h ∈ H1(Ω), with εn → 0+

In (9) we choose h = un ∈ H1(Ω). Then

ϑ(un) +
∫
Ω

f(z, un)undz � εn for all n ∈ N (10)

From (7), we have

−ϑ(un) −
∫
Ω

2F (z, un)dz � 2M1 for all n ∈ N (11)

Adding (10)and (11), we obtain

∫
Ω

e(z, un)dz � M2 for some M2 > 0, all n ∈ N. (12)

Claim 1. {un}n�1 ⊆ H1(Ω) is bounded.
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We argue by contradiction. So, suppose that the Claim is not true. By passing to a 
suitable subsequence if necessary, we may assume that

||un|| → ∞. (13)

Let yn = un

||un|| n ∈ N. Then ||yn|| = 1 for all n ∈ N and so we may assume that

yn
x−→ y in H1(Ω) and yn → y in Lr(Ω) and L2(∂Ω) (14)

(note that we can always assume r � 2s
s−1 , see hypothesis H(f)(i)).

First assume that y �= 0 and let Ω0 = {z ∈ Ω : y(z) �= 0}. We have |Ω0|N > 0 and

|un(z)| → +∞ for almost all z ∈ Ω0.

Then hypothesis H(f)(ii) implies that

F (z, un(z))
||un||2

= F (z, un(z))
un(z)2 yn(z)2 → +∞ for almost all z ∈ Ω0 as n → ∞. (15)

Using (15) and Fatou’s lemma (it can be used on account of hypothesis H(f)(iii)), 
we have

1
||un||2

∫
Ω0

F (z, un)dz → +∞ as n → ∞. (16)

Hypothesis h(f)(ii) implies that we can find M3 > 0 such that

F (z, x) � 0 for almost all z ∈ Ω, all |x| � M3. (17)

We have

1
||un||2

∫
Ω

F (z, un)dz = 1
||un||2

∫
Ω0

F (z, un)dz + 1
||un||2

∫
Ωc

0∩{|un|�M3}

F (z, un)dz +

1
||un||2

∫
Ωc

0∩{|un|<M3}

F (z, un)dz

� 1
||un||2

∫
Ω0

F (z, un)dz − c2
||un||2

for some c2 > 0, all n ∈ N

(see (17 and use hypothesis) H(f)(i)),

⇒ lim
n→∞

1
||un||2

∫
F (z, un)dz = +∞ (see (16)). (18)
Ω
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On the other hand from (7) we have

1
||un||2

∫
Ω

F (z, un)dz � M1

||un||2
+ 1

2ϑ(yn) for all n ∈ N

⇒ 1
||un||2

∫
Ω

F (z, un)dz � M4 for some M4 > 0, all n ∈ N (19)

(see hypotheses H(ξ), H(β) and recall that ||yn|| = 1, n ∈ N)

Comparing (16) and (19), we reach a contradiction.
Next suppose that y = 0. Given τ > 0, let

vn = (2τ)1/2yn for all n ∈ N.

We have

vn → 0 in Lr(Ω) and in L2(∂Ω) (see (14) and recall that y=0).

It follows that ∫
Ω

F (z, vn)dz → 0 as n → ∞. (20)

From (13) we see that we can find n0 ∈ N such that

0 < (2τ)1/2 1
||un||

� 1 for all n � n0 (21)

Choose tn ∈ [0, 1] such that

ϕ(tnun) = max[ϕ(tu) : 0 � t � 1] for all n ∈ N. (22)

Taking into account (21), we have

ϕ(tnun) � ϕ(vn)

= τϑ(yn) −
∫
Ω

F (z, un)dz

� τ [c0 − μ||yn||22] −
∫
Ω

F (z, vn)dz for all n � n0 (see (3)). (23)

Passing to the limit as n → ∞ in (23) and using (14) and (20) and recalling that 
y = 0, we obtain

lim inf ϕ(tnun) � τc0.

n→∞
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But τ > 0 is arbitrary. So, it follows that

ϕ(tnun) → +∞ as n → ∞. (24)

We have

ϕ(0) = 0 and ϕ(un) � M1 for all n ∈ N (see (7)).

The from (24) we infer that we can find n2 ∈ N such that

tn ∈ (0, 1) for all n � n2 (25)

From (22) and (25) it follows that

d

dt
ϕ(tun)

∣∣∣∣
t=tn

= 0 for all n � n2,

⇒ 〈ϕ′(tnun), tnun〉 = 0 for all n � n2 (bu the chain rule),

⇒ ϑ(tnun) =
∫
Ω

f(z, tnun)(tnun)dz for all n � n2. (26)

Hypothesis H(f)(iii) and (25) imply that

∫
Ω

e(z, tun)dz

=
∫
Ω

[e(z, tu+
n ) + e(z,−tnu

−
n )]dz (note that e(z, 0) = 0 for almost all z ∈ Ω)

�
∫
Ω

[e(z, u+
n ) + e(z,−u−

n )]dz + ||d||1 (see hypothesis H(f)(iii))

=
∫
Ω

e(z, un)dz + ||d||1 for all n � n2.

Using this inequality in (26), we obtain

2ϕ(tnun) �
∫
Ω

e(z, un)dz + ||d||1

� M2 + ||d||1 = M5 for all n � n2 (see (12)). (27)

Comparing (24) and (27), we have a contradiction.
This proves the Claim.
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On account of the Claim, we may assume that

un
w−→ u and un → u in Lr(Ω) and in L2(∂Ω). (28)

In (9) we choose h = −u ∈ H1(Ω), pass to the limit as n → ∞ and use (28) (recall 
r � 2s

s−1 ). We obtain

lim
n→∞

〈A(un), un − u〉 = 0,

⇒ ||Du||2 → ||Du||2,
⇒ un → u in H1(Ω) (by the Kadec–Klee property for Hilbert spaces, see (28)),

⇒ ϕ satisfies the C-condition. �
For every m ∈ N, we define

Ym =
m
⊕

k=1
E(λ̂k) and Vm = ⊕

k�m
E(λ̂k).

Let

βm = sup[||u||r : u ∈ Vm, ||u|| = 1] (29)

As in the proof of Lemma 3.8 of Willem [17, p. 60], we show that

βm → 0+ as m → +∞. (30)

Proposition 2. If hypotheses H(ξ), H(β), H(f) hold, then we can find {lm}m∈N ⊆
(0, +∞) such that

γm = inf [ϕ(u) : u ∈ Vm, ||u|| = lm] → +∞ as m → ∞.

Proof. Let u ∈ Vm. We have

ϕ(u) = 1
2ϑ(u) −

∫
Ω

F (z, u)dz

= 1
2ϑ(u) + μ

2 ||u||
2
2 −

μ

2 ||u||
2
2 −

∫
Ω

F (z, u)dz (with μ > 0 as in (3))

� c0
2 ||u||2 − μ

2 ||u||
2
2 − c3||u||rr − c3 for some c3 > 0 (31)

(see (3 and hypothesis H(f)(i))

Recall that r > 2 (see hypothesis H(f)(i)). So, we can find c4 > 0 such that

||u||2 � c4||u||r for all u ∈ H1(Ω) (32)
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Using (32) and (31) we obtain

ϕ(u) � c0
2 ||u||2 − c5(||u||rr + ||u||2r) − c3 for some c5 > 0, all u ∈ Vm

Suppose that ||u|| � 1. Then using once more the fact that r > 2, we obtain

ϕ(u) � c0
2 ||u||2 − c6||u||rr − c3 with c6 = 2c5 > 0, all u ∈ Vm, ||u|| � 1 (33)

From (29) we have

βm||u|| � ||u||r for all u ∈ Vm

Using this inequality in (33), we obtain

ϕ(u) � c0
2 ||u||2 − c6β

r
m||u||r − c3 for all u ∈ Vm, ||u|| � 1. (34)

Let lm =
(

c6
c0
rβr

m

) 1
2−r , we have

lm → +∞ as m → +∞ (see (30) and recall that r > 2).

Hence we may assume that lm � 1 for all m ∈ N. Then from (34) we see that for all 
u ∈ Vm with ||u|| = lm, we have

ϕ(u) � c0
2

(
c6
c0

rβr
m

) 2
2−r

− c6β
r
m

(
c6
c0
rβr

m

) r
2−r

=
[
c0
2 − c6β

r
m

c0
c6rβr

m

](
c6
c0

rβr
m

) 2
2−r

= c0

[
1
2 − 1

r

](
c6
c0

rβr
m

) 2
2−r

,

⇒ lm → +∞ as m → ∞ (see (30) and recall that r > 2). �
Proposition 3. If hypotheses H(ξ), H(β), H(f) hold, then we can find {ρm}m∈N ⊆ (0, ∞), 
ρ0 > lm > 0 for all m ∈ N such that

�m = sup[ϕ(u) : u ∈ Ym, ||u|| = ρm] � 0 for all m ∈ N.

Proof. Let u ∈ Ym. We have

ϕ(u) = 1
2ϑ(u) −

∫
Ω

F (z, u)dz

� 1
2 ||Du||22 + 1

2

∫
ξ+(z)u2dz + 1

2

∫
β(z)u2dσ −

∫
F (z, u)dz. (35)
Ω ∂Ω Ω
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Hypotheses H(f)(i), (ii) imply that given any η > 0, we can find c7 = c7(η) > 0 such 
that

F (z, x) � ηx2 − c7 for almost all z ∈ Ω, all x ∈ R.

Using this unilateral growth estimate and hypothesis H(ξ) in (35), we obtain

ϕ(u) � c8||u||2 − η||u||22 + c7|Ω|N for some c8 > 0, all u ∈ Ym.

But Ym is finite dimensional. So, all norms are equivalent. Hence we can find c9 > 0
such that

ϕ(u) � c8||u||2 − ηc9||u||2 + c7|Ω|N
= [c8 − ηc9]||u||2 + c7|Ω|N for all u ∈ Ym. (36)

Recall that η > 0 is arbitrary. So, we choose η > c8
c9

. Then from (36) it is clear that 
we can find ρm > lm m ∈ N such that

ϕ(u) � 0 for all u ∈ Ym, ||u|| = ρm,

⇒ �m � 0 for all m ∈ N. �
Proposition 4. If hypotheses H(ξ), H(β), H(f) hold and u ∈ H1(Ω) is a solution of (1), 
then u ∈ C1,α(Ω) with α = 1 − N

s > 0 (see hypothesis H(ξ)).

Proof. Hypotheses H(f)(i), (v) imply that

|f(z, x)| � c10(|x| + |x|r−1) for almost all z ∈ Ω, all x ∈ R, some c10 > 0. (37)

By hypothesis we have

−Δu(z) + ξ(z)u(z) = f(z, u(z)) for almost all z ∈ Ω

(see also Papageorgiou and Rădulescu [9]),

⇒ −Δu(z) =
[
f(z, u(z))

u(z) − ξ(z)
]
u(z) for almost all z ∈ Ω.

Note that f(z, 0) = 0 for almost all z ∈ Ω (see hypothesis H(f)(v)) and let

â(z) =
{

f(z,u(z))
u(z) if u(z) �= 0

0 if u(z) = 0
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Then

|â(z)| � |f(z, u(z))|
|u(z)| + |ξ(z)|

� c10(1 + |u(z)|r−2) + |ξ(z)| for almost all z ∈ Ω (see (37))

Note that |u(·)|r−2 ∈ L
2∗
r−2 (Ω) (recall that u ∈ H1(Ω) and use the Sobolev embedding 

theorem) and observe that 2∗

r−2 > N
2 (recall that r < 2∗). Therefore

â ∈ Lq(Ω) with q >
N

2 (see hypothesis H(ξ)).

Then Lemma 5.1 of Wang [16] implies that

u ∈ L∞(Ω).

Using this fact and hypotheses H(f)(i) and H(ξ), we have

f(·, u(·)) − ξ(·)u(·) ∈ Ls(Ω) with s > N.

So, the Calderon–Zygmund estimates (see Wang [16, Lemma 5.2]), we have

u ∈ W 2,s(Ω).

The Sobolev embedding theorem implies that

u ∈ C1,α(Ω) with α = 1 − N

s
> 0. �

Proposition 5. If hypotheses H(ξ), H(β), H(f) hold and u, v ∈ H1(Ω) are distinct solu-
tions of (1) such that v � u, then u − v ∈ D+.

Proof. From Proposition 4, we know that

u, v ∈ C1(Ω).

Let η̂ > 0 be as in hypothesis H(f)(iv). Then

−Δv(z) + (ξ(z) + η̂)v(z)

= f(z, v(z)) + η̂v(z)

� f(z, u(z)) + η̂u(z) (see hypothesis H(f)(iv) and recall that v � u)

= −Δu(z) + (ξ(z) + η̂)u(z) for almost all z ∈ Ω,
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⇒ Δ(u− v)(z) � [||ξ+||∞ + η̂](u− v)(z) for almost all z ∈ Ω

(see hypothesis H(ξ)),

⇒ u− v ∈ D+

(by the strong maximum principle, see Gasinski and Papageorgiou [3, p. 738]). �
Corollary 6. If hypotheses H(ξ), H(β), H(f) hold and u ∈ H1(Ω), u �= 0, u � 0 is a 
solution of (1), then u ∈ D+.

From Proposition 5, Corollary 6 and Proposition 5.4 of Qian and Li [13] (see also the 
proof of Theorem 2 in Papageorgiou and Papalini [7]), we obtain the following result.

Proposition 7. If hypotheses H(ξ), H(β), H(f) hold, then C+ is an admissible invariant 
set of ϕ.

We make a final observation before formulating our multiplicity theorem.

Proposition 8. If hypotheses H(ξ), H(β), H(f) and lm > 0 m ∈ N is as in Proposition 2, 
then Vm ∩ ∂Blm ∩ C+ = ∅ for all m � 2 (hence ∂Blm = {u ∈ H1(Ω) : ||u|| = lm}).

Proof. Let û1 be the positive, L2-normalized (that is, ||û1||2 = 1) eigenfunction corre-
sponding to λ̂1. The regularity theory (see [16]) and the strong maximum principle (see 
[3]), imply that û1 ∈ D+.

For u ∈ C+\{0} we have ∫
Ω

uû1dz > 0

On the other hand for every u ∈ Vm with m � 2, we have∫
Ω

uû1dz = 0 (since V 1
m ⊇ E(λ̂1)).

Therefore Vm ∩ ∂Blm ∩ C+ = ∅. �
All these auxiliary results permit the use of Theorem 4.2 of Qian and Li [13] (the 

symmetric mountain pass theorem). So, we have the following multiplicity theorem.

Theorem 9. If hypotheses H(ξ), H(β), H(f) hold, the problem (1) admits a sequence 
{un}n�1 ⊆ C1(Ω) of distinct nodal solutions such that ϕ(un) → +∞.
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