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1. Introduction

Let Q C RN be a bounded domain with a C2?-boundary 0. In this paper, we study
the following semilinear Robin problem

9u 4 B(z)u=0 on 0f). )

{ —Au(z) + E(2)ul2) = f(z,u(z) inQ, }

In this problem, the potential function £ € L*(Q2) with s > N and is indefinite (that is,
&(+) is sign changing). The reaction term f(z,z) is a Carathéodory function (that is, for
all z € R 2 — f(z,x) is measurable and for almost all z € Q x — f(z,z) is continuous),
which is superlinear in the x € R variable, but without satisfying the usual in such cases
Ambrosetti-Rabinowitz condition (AR-condition for short). In addition, for almost all
z € Q f(z,-) satisfies a one-sided Lipschitz condition and it is odd. In the boundary

condition g—z denotes the usual normal derivative defined by extension of the map

cC*Q)su— g—z = (Du,n)gw,
with n(-) being the outward unit normal on 9. The boundary coefficient 3 € W1:>°(9€)
with 5(z) > 0 for all z € 9Q. When = 0, then we recover the Neumann problem.

We are looking for the existence of multiple nodal (that is, sign changing) solutions
for problem (1). Using a version of the symmetric mountain pass theorem due to Qian
and Li [13, Theorem 4.2], we show the existence of a sequence of distinct nodal solutions
with energies diverging to +oo.

In the past, an infinity of nodal solutions for superlinear Dirichlet problems with £ = 0,
we proved by Qian and Li [13, Theorem 5.4] using AR~condition and with more restrictive
conditions on the reaction term f. Subsequently, Qian [12, Theorem 1.1] produced an
infinity of nodal solutions for a superlinear Neumann problem with £ = a € (0, +00). So,
in Qian [12] the differential operator (right-hand side of the equation), is coercive and
this simplifies the arguments considerably. Qian [12] did not use the AR~condition and
instead employed a condition which was first introduced by Jeanjean [4]. This condition
is global in nature and for this reason not entirely satisfactory. For Robin problems, there
is the work of Qian and Li [14], who assume that ¢ = 0 and f € C(Q x R) satisfies the
Jeanjean condition. They produce an infinity of distinct solutions, but they do not show
that these solutions are nodal (see [14, Theorem 1.3]).

Problems with indefinite linear part (that is, the potential function () is indefi-
nite), were investigated by Zhang and Liu [18], Qin, Tang and Zhang [15], Zhang, Tang
and Zhang [19]. All the aforementioned works deal with Dirichlet problems and use
a nonquadraticity condition analogous to the one employed by Costa and Magalhaes
[2]. They produce infinitely many nontrivial solutions, but the not show that they are
nodal. Multiple nodal solutions for problems with indefinite linear part, were produced
by Papageorgiou and Papalini [7] (Dirichlet problems), Papageorgiou and Radulescu [8]
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(Neumann problems) and Papageorgiou and Rédulescu [10] (Robin problems). None of
the above works produces infinitely many nodal solutions. Finally we mention the very
recent paper of Papageorgiou and Riadulescu [11], who produce a sequence of nodal so-
lutions for nonlinear Robin problems but under different conditions and using different
tools.

2. Mathematical background

Let X be a Banach space and X* its topological dual. By (-, -) we denote the duality
brackets for the pair (X*, X). Given ¢ € C*(X,R), we say that ¢ satisfies the “Cerami
condition” (the “C-condition” for short), if the following property holds

“Every sequence {up}n>1 € X such that {¢(uy)}n>1 € R is bounded and
(1 + |un|])¢ (un) = 0 in X*,
admits a strongly convergent subsequence”.

This is a compactness-type condition on ¢, more general than the usual Palais—Smale
condition. Nevertheless, it leads to the same deformation theorem from which one can
derive the minimax theory of the critical values of ¢.

The following spaces will be important in our analysis:

¢ The Sobolev space H!(Q);
« The Banach space C(9Q);
o The “boundary” Lebesgue spaces L1(9f2), 1 < ¢ < oo.

The Sobolev space H(f2) is a Hilbert space with inner product

(u, h) i) = /uhdz + /(Du7 Dh)gndz for all u,h € H(Q)
Q Q

and corresponding norm
ul| = [l + [|Dul 312 for all u € H(Q).

The Banach space C'!(€2) is an order Banach space with positive (order) cone given
by

Cy={uecC'Q:u(z) = 0forall € Q)}
This cone has a nonempty interior containing

Dy ={u€ Cy:u(z) >0 forall z € Q}.
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On 09 we consider the (N — 1)-dimensional Hausdorff (surface) measure o(-). Using
this measure, we can define in the usual way the Lebesgue spaces L7(992) 1 < ¢ < oo.
According to the theory of Sobolev spaces, there exists a unique continuous linear map
vo @ HY(Q2) — L%(092) known as the “trace map”, which satisfies

Yo(u) = ulaq for all uw € H(Q) N C(Q).
So, the trace map assigns “boundary values” to all Sobolev functions. This map is

compact into L2(02) for all ¢ € [1, QJJ\Y:QQ) if N > 3 and into L?(0?) for all ¢ > 1 if
N =1,2. In addition we have

keryo = HY(Q) and imryg = H%’z(f)ﬁ).
In the sequel, for the sake of notational economy, we drop the use of the map ~y. All

restrictions of Sobolev functions on 92 are understood in the sense of traces.
Next we consider the following linear eigenvalue problem:

{ —Au(z) +&(2)u(z) = Au(z) in Q, } (2)
%-}-B(z)uzo on 0f).

We impose the following conditions on the data of this eigenvalue problem

¢ £€L>(Q)if N >3,6eLI(N) withg>1if N =2and £ € L}(Q) if N = 1.
o B € WE>(0Q) with 5(z) = 0 for all z € 9.

Let ¢ : H*(2) — R be the C'-functions defined by
I(u) = || Dul|3 + /f(z)quz + /6(Z)u2d0' for all u € H*(Q).
Q 09

We know (see [10]) that there exists u > 0 such that
I(u) + pllul]3 = col|u||? for all u € H(Q), some ¢y > 0. (3)

Using (3) and the spectral theorem for compact self-adjoint operators on a Hilbert
space, we define the spectrum of (2) consisting of a sequence {5\;6}@1 C R such that
Ak — +00. By E(j\k) k € N we denote the eigenspace corresponding to the eigenvalue M.
We know that each E(:\k) is finite dimensional and we have the following orthogonal
direct sum decomposition



N.S. Papageorgiou, V.D. Rdadulescu / Bull. Sci. math. 141 (2017) 251-266 255

We know that
e )\ is simple (that is, dimE(A) = 1).

. Xlsz[f(ﬁi ue HY( } (4)

« ) (u ) e
e )\, =inf |:|| ||§ NS kgBmE(Ak),u#O}

o ﬁ(u) . m ~
sup|:||u||% .quG_BlE()\k),u#O} m > 2. (5)

The infimum in (4) is realized on E(\;). Both the infimum and supremum in (5)
are realized on E(),). Evidently the elements of E(\;) do not change sign, while the
elements of E(\,,) m > 2 are nodal (that is sign changing).

In what follows A : H*(2) — H'(Q)* is the bounded linear operator defined by

(A(u),h) = /(Du7 Dh)gndz for all u,h € H(Q).
Q

2N if N >3

Also, by |- denote the Leb RY and 2* =
SO, y‘ ‘N we denote e Le esgue measure on aqn {—|—oo 1fN:1,2

3. A sequence of nodal solutions

Our hypotheses on the data of (1) are the following:

H(): € € L*(Q),s > N and £+ € L=(Q).

H(B): B € WH(9Q) with 8(z) > 0 for all z € 9.

H(f): f: QxR — Risa Carathéodory function such that for almost all z € Q f(z,)
is odd and

(i) |f(z,2)| < a(2)(1 + |z|"=1) for almost all z € Q, all x € R, with a € L>®(Q),r €
(2,27);

(ii) if F(z,2) = [ f(z,s)ds, then lirin % = +o00 uniformly for almost all z € Q;

(iii) if e(z,2) = f(z,2)x — 2F(z, ), then there exists d € L'(Q2) such that
e(z,7) < e(z,y) +d(z) for almost all z € Q, all 0 <z <yory <z <0;
(iv) there exists /) > 0 such that for almost all z € © the function
= f(z,x) +nz

is increasing on R;
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(v) there exist é, ¢ > 0 such that

—¢p < liminf M < lim sup

< ¢; uniformly for almost all z € €.
z—0 T z—0

[z 2)

Remark 1. Hypothesis H(f)(i7) implies that the primitive F(z, ) is superquadratic near
+o00. Hypotheses H(f)(ii), (ii4) imply that

e f2)

= +oo uniformly for almost all z €
r—+oo €T

So, the reaction term f(z,-) is superlinear. However, this superlinearity is not ex-
pressed via the classical AR-condition, which says that there exist ¢ > 2 and M > 0
such that

0 < qF(z,2) < f(z,z)x for almost all z € Q, all |z| > M (6a)

0 < ess ing(~,iM) (6b)

(see Ambrosetti and Rabinowitz [1] and Mugnai [6]). Integrating (6a) and using (6b),
we obtain the weaker condition

c1]z|? < F(z,x) for almost all z € Q, all |z| > M, some ¢; >0

This means that under the AR-condition f(z,-) has at least (¢— 1)-polynomial growth
near +o0o. The Jeanjean condition used in some works mentioned in the Introduction,
says that there exist n > 1 and s € [0, 1] such that

e(z, sx) < ne(z,x) for almost all z € Q, all z € R

We mention the global nature of this condition. This is a feature which we would
like to avoid. Here instead of the AR-condition and the Jeanjean condition we employ
a quasimonotonicity condition on e(z,-) (see hypothesis H(f)(éi7)). This condition is a
slightly more general version of a condition used by Li and Yang [5]. It is satisfied if
there exists M > 0 such that

e(z,-) is nondecreasing on x > M and nonincreasing on & < —M.

In turn, this is implied by the following condition

T —

[z, 2)

is nondecreasing on z > M,

f(z2)

T

T — is nonincreasing on x < —M
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We stress the local character of the last two conditions. Hypothesis H(f)(iv) is a
one-sided Lipschitz condition. Finally hypothesis H(f)(v) implies that for almost all
z € Q, f(z,-) is linear near zero.

Let ¢ : HY(Q) — R be the energy (Euler) functional for problem (1) defined by

o(u) = %ﬁ(u) - /F(z,u)dz for all u € H*(Q).

Evidently p € C1(H(Q)).

Proposition 1. If hypotheses H(E), H(), H(f) hold, then the functional ¢ satisfies the
C-condition.

Proof. We consider a sequence {uy, },>1 C H*(2) such that

lp(un)| < M, for some My >0, all n € N, (7)
(1+ [Jul])¢ (un) — 0 in HY(Q)* as n — oo (8)

From (8) we have

€nl|P]]

)+ unhdz—i—/ z)uphdo —/ Z,Up)hdz| < ————— 9
m+ [ et 8(2) fleuhds| < TRl )
Q Q
for all h € H'(Q), with ¢, — 0"
In (9) we choose h = u,, € H'(Q2). Then
I un) + /f(z,un)undz < e foralln e N (10)
From (7), we have
—(uyn) — /QF(z,un)dz < 2M; for alln e N (11)
Q
Adding (10)and (11), we obtain
/e(z,un)dz < M, for some My >0, alln € N. (12)

Q

Claim 1. {uy},>1 C H(Q) is bounded.
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We argue by contradiction. So, suppose that the Claim is not true. By passing to a
suitable subsequence if necessary, we may assume that

[|un|| — . (13)
Let y, = IIZ—nH n € N. Then ||y,|| = 1 for all n € N and so we may assume that
Yn —y in HY(Q) and y,, — y in L"(Q) and L*(0Q) (14)

(note that we can always assume r > 2%, see hypothesis H(f)(7)).
First assume that y # 0 and let Qy = {z € Q : y(z) # 0}. We have |Qp|n > 0 and

|tun (2)| = 400 for almost all z € Q.
Then hypothesis H(f)(ii) implies that

F(z,up F(z, un
(ﬁ’uH(QZ)) = (2 z(t )(QZ))yn(z)2 — +oo for almost all z € Qp as n — oc. (15)
Un, U (2

Using (15) and Fatou’s lemma (it can be used on account of hypothesis H(f)(iii)),
we have

1

Tl /F(z, Up)dz — +00 as n — oo. (16)

Qo

Hypothesis h(f)(47) implies that we can find M3 > 0 such that

F(z,z) > 0 for almost all z € Q, all |x| > Ms. (17)
We have
! /F( )dz ! /F(z Up)dz + ! / F(z,u,)dz +
Z7u’rL T y 'n T y n
[l |2 [l 2 [l 2
Q Qo Q5N{|un|=>M3}
1
T F(z,uy)dz
[lun|
Q5N {|un|<Ms}
1 Co
> —Q/F(zgun)dz— 5 for some c3 >0, alln € N
[Tl 4 [l
0

(see (17 and use hypothesis) H(f)(7)),

= lim / Pz, un)dz = +o0 (see (16)). (18)

n=o0 ||up ||
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On the other hand from (7) we have

1 M 1
Tfnl 2 /F(Z,un)dz < W + 519(%) for alln € N
1
= I |2/F(Z,un)dz<M4 for some My > 0, alln € N (19)

Q
(see hypotheses H(£), H(/) and recall that ||y,|| = 1, n € N)

Comparing (16) and (19), we reach a contradiction.
Next suppose that y = 0. Given 7 > 0, let

v = (27)Y2y,, for all n € N.
We have
v, — 0 in L7(Q) and in L?(99) (see (14) and recall that y=0).
It follows that

/F(z,vn)dz — 0 as n — o0. (20)
Q

From (13) we see that we can find ng € N such that

0<(27’)1/2|| T < 1 for all n > ng (21)
Un,
Choose t,, € [0, 1] such that

P(tpun) = maxp(tu) : 0 <t < 1] for all n € N. (22)

Taking into account (21), we have

o(tnun) = ¢(vy)

= Tﬁ(yn) — /F(Z, un)dz
Q

> 7lco — pl|ynl|3] — /F(z,vn)dz for all n > ng (see (3)). (23)
Q

Passing to the limit as n — oo in (23) and using (14) and (20) and recalling that
y = 0, we obtain

lim inf p(t,u,) = Tco.
n— oo
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But 7 > 0 is arbitrary. So, it follows that
p(tpty) = 00 as n — 0.
We have
©(0) =0 and ¢(u,) < M; for all n € N (see (7)).
The from (24) we infer that we can find ns € N such that
€ (0,1) for all n > ngy

From (22) and (25) it follows that

=0 for all n > no,
t=t,

d
E‘P(tun)

/ .
= (¢ (tnun), trt,) = 0 for all n > ng (bu the chain rule),

= Wtpun) = /f(z,tnun)(tnun)dz for all n > no.
Q

Hypothesis H(f)(4i¢) and (25) imply that

/e(z, tuy,)dz

le(z,u)) + e(z, —u,, )]dz + ||d||1 (see hypothesis H(f)(iii))

e(z,un)dz + ||d||1 for all n = na.

{O\ {OA b\ 2

Using this inequality in (26), we obtain

20(tpuy) < /e(z,un)dz—F [|d]]1
Q

< Mo+ ||d]|y = M5 for all n > ny (see (12)).

Comparing (24) and (27), we have a contradiction.
This proves the Claim.

[e(z,tul) + e(z, —tnu,, )]dz (note that e(z,0) = 0 for almost all z € Q)

(24)

(25)

(26)
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On account of the Claim, we may assume that
Up ~ w and u, — u in L"(Q) and in L?(99). (28)

In (9) we choose h = —u € H'(Q), pass to the limit as n — oo and use (28) (recall
r> 231). We obtain

s—

lim (A(uy,),u, —u) =0,

n—oo

= [[Dull2 — || Dull2,

= u, — u in H(Q) (by the KadecKlee property for Hilbert spaces, see (28)),

=  satisfies the C-condition. 0O

For every m € N, we define

Y, = k% E(Ae) and Vi, = @ E(Ap).
=1

k>m
Let
B = sup[|ully - w € Vi, ||ul| = 1] (29)
As in the proof of Lemma 3.8 of Willem [17, p. 60], we show that
Bm — 07 as m — +oo0. (30)

Proposition 2. If hypotheses H(E), H(B), H(f) hold, then we can find {ln}men C
(0, +00) such that

Ym = infle(u) : u € Vi, ||u|| = ln] = +00 as m — oo.
Proof. Let u € V,,,. We have
1
o(u) = §l9(u) - /F(z,u)dz
Q

1
= iﬁ(u) + g||u||§ - gHuH% - /F(z,u)dz (with g > 0 as in (3))
Q

¢
> 50||u||2 — gHuH% — cs||ul|;. — e3 for some ¢35 >0 (31)

(see (3 and hypothesis H(f)(i))
Recall that r > 2 (see hypothesis H(f)(2)). So, we can find ¢4 > 0 such that

[ull2 < ca||ul], for all w € H(Q) (32)



262 N.S. Papageorgiou, V.D. Rdadulescu / Bull. Sci. math. 141 (2017) 251-266

Using (32) and (31) we obtain

o(u) > C?0||u||2 —cs(||ull; + ||u||£) —c3 for some ¢c5 >0, allu €V,

Suppose that ||u|| = 1. Then using once more the fact that r > 2, we obtain
o(u) > %O||u||2 — cgl|ul|; — e with ¢g = 2¢5 > 0, all u € Vi, |[ul| > 1 (33)
From (29) we have
Bmllul| = ||u|], for all u € V,,
Using this inequality in (33), we obtain

o(u) > C?0||u||2 —cgf|u]|” — s for all u € Vi, ||ul| > 1. (34)

1

Let I,,, = (ﬁ—grﬂa) ﬁ, we have
Im — +00 as m — +oo (see (30) and recall that r > 2).

Hence we may assume that [,,, > 1 for all m € N. Then from (34) we see that for all

u € Vi, with ||u|| = I, we have
=5 e
ot > 9 (L) = o (2o, )
2 \ ¢ Co

2
~ [eo . o C_6 . PR
- [2 o Cﬁ’”ﬂfn] (Corﬁm>
1 17 (e ., \*"
=c|z——||—r
S R R ’
= 1y, — +00 as m — oo (see (30) and recall that > 2). O

Proposition 3. If hypotheses H(&), H(B), H(f) hold, then we can find {pm}men C (0, 00),
po >l > 0 for all m € N such that

S = suplp(u) : u € Yo, ||ul| = pm] <0 for all m € N.

Proof. Let u € Y,,,. We have

o(u) = %ﬁ(u) - /F(z,u)dz
Q

1 1 1
< §||Du||§ + 3 /§+(Z)u2dz + 3 /,B(z)uzdcr - /F(z,u)dz. (35)
Q

[5}9) Q
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Hypotheses H(f)(i), (¢¢) imply that given any n > 0, we can find ¢; = ¢7(n) > 0 such
that

F(z,x) > nx? — ¢; for almost all z € Q, all x € R.
Using this unilateral growth estimate and hypothesis H(£) in (35), we obtain
o(u) < csllul]® = nl|ull3 + ¢7|Q|n for some cg > 0, all u € Y,.

But Y, is finite dimensional. So, all norms are equivalent. Hence we can find cg > 0
such that

p(u) < csflul® = negllul|* + cr |9 w

= [eg — neol||u])* 4 c7|Q|n for all u € Yyy,. (36)

Recall that n > 0 is arbitrary. So, we choose 1 > ‘Lf—z Then from (36) it is clear that
we can find p,,, > l,, m € N such that

o(u) <0 for all u € Yy, ||ul| = pm,

=G, <0forallmeN. O

Proposition 4. If hypotheses H(&), H(B), H(f) hold and u € H(Q) is a solution of (1),
then uw € CT*(Q) with a =1— % > 0 (see hypothesis H(£)).

Proof. Hypotheses H(f)(i), (v) imply that
|f(z,2)| < cro(|x| + |2|"71) for almost all z € Q, all 2 € R, some c19 > 0. (37)
By hypothesis we have

—Au(z) + £(2)u(z) = f(z,u(z)) for almost all z € Q

(see also Papageorgiou and Réadulescu [9)),

= —Au(z) = [% - f(z)] u(z) for almost all z € Q.

Note that f(z,0) = 0 for almost all z € 2 (see hypothesis H(f)(v)) and let

feaG)
a(z):{ e lf“(zhég

0 if u(z) =
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Then

[f(z u(z))]
u(2)]
< ero(1+ |u(2)|"72) + |€(2)| for almost all z € Q (see (37))

+15(2)]

la(2)| <

Note that |u(-)|"~2 € L= () (recall that u € H*(£2) and use the Sobolev embedding

2 > X (recall that r < 2*). Therefore

T

theorem) and observe that

a € L1(Q) with ¢ > g (see hypothesis H(£)).
Then Lemma 5.1 of Wang [16] implies that
u € L>®(Q).
Using this fact and hypotheses H(f)(¢) and H(§), we have
feul)) —€&()u(-) € L¥(Q) with s > N.
So, the Calderon—Zygmund estimates (see Wang [16, Lemma 5.2]), we have
u € W25(Q).
The Sobolev embedding theorem implies that
uGCl’“(ﬁ)witha:1—§>0. O

Proposition 5. If hypotheses H(€), H(B), H(f) hold and u,v € H'(Q) are distinct solu-
tions of (1) such that v < wu, thenu—v € D.

Proof. From Proposition 4, we know that
u,v € CH(Q).

Let /) > 0 be as in hypothesis H(f)(iv). Then

—Av(z) + (€(2) + H)v(2)
(
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= A(u—v)(2) < [||€F]|oo + A](u — v)(2) for almost all z € Q
(see hypothesis H(¢)),

=u—vecDy
(by the strong maximum principle, see Gasinski and Papageorgiou [3, p. 738]). O

Corollary 6. If hypotheses H (), H(B), H(f) hold and uw € H*(Q),u # 0,u > 0 is a
solution of (1), then u € Dy..

From Proposition 5, Corollary 6 and Proposition 5.4 of Qian and Li [13] (see also the
proof of Theorem 2 in Papageorgiou and Papalini [7]), we obtain the following result.

Proposition 7. If hypotheses H(E), H(B), H(f) hold, then Cy is an admissible invariant
set of .

We make a final observation before formulating our multiplicity theorem.

Proposition 8. If hypotheses H(E), H(B), H(f) and I, > 0 m € N is as in Proposition 2,
then V,,, NOB;, NCy =0 for allm > 2 (hence B,;,, = {u € H*(Q) : |jul| = ln}).

Proof. Let @; be the positive, L?-normalized (that is, ||i1|2 = 1) eigenfunction corre-
sponding to A;. The regularity theory (see [16]) and the strong maximum principle (see
[3]), imply that 41 € Dy.

For u € C+\{0} we have

/uﬂldz >0
Q

On the other hand for every u € V,,, with m > 2, we have

/uﬁldz =0 (since V} D E(}y)).
Q

Therefore V,, N0B;,, NC, =0. O

All these auxiliary results permit the use of Theorem 4.2 of Qian and Li [13] (the
symmetric mountain pass theorem). So, we have the following multiplicity theorem.

Theorem 9. If hypotheses H (&), H(B), H(f) hold, the problem (1) admits a sequence
{un}n>1 C CH(Q) of distinct nodal solutions such that ¢(u,) — +00.
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