
Bull. Sci. math. 176 (2022) 103131
Contents lists available at ScienceDirect

Bulletin des Sciences Mathématiques

www.elsevier.com/locate/bulsci

Nonsmooth dynamical systems: From the existence 

of solutions to optimal and feedback control ✩

Shengda Zeng a,b, Nikolaos S. Papageorgiou c,
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a surjectivity theorem for multi-valued mappings combined 
with the theory of nonsmooth analysis and arguments on 
pseudomonotone operators, the existence of a solution to 
(NNDS) is proved. Then, an optimal control problem governed 
by (NNDS) is introduced, and a solvability result for the 
optimal control problem is established. Moreover, we study a 
nonlinear feedback control system driven by (NNDS) and an 
u.s.c. multi-valued feedback map, and employ the Kakutani-
Ky Fan fixed point theorem to obtain an existence theorem of 
solutions for the feedback control problem. Finally, we deliver 
a convergence result in the sense of Kuratowski describing the 
changes in the set of solutions for the feedback control problem 
as the initial data x0 is perturbed in Hilbert space H.

© 2022 Elsevier Masson SAS. All rights reserved.

1. Introduction

In numerous complicated physical processes and engineering applications, mathemat-
ical models often lead to inequalities instead of the more commonly seen equations. 
Variational-hemivariational inequalities present a particular class of inequalities, in which 
both convex and nonconvex functional are involved. More precisely speaking, the study of 
variational-hemivariational inequalities requires arguments of Convex Analysis, includ-
ing properties of the subdifferential of a convex function, and arguments of Nonsmooth 
Analysis, including properties of the generalized subdifferential in the sense of Clarke, 
defined for locally Lipschitz functions which are nonconvex in general. The literature on 
variational-hemivariational inequalities has been significantly enlarged in recently years, 
mainly because of their multiple relevant applications to various fields. Some represen-
tative references include: Han-Migórski-Sofonea [12] obtained the existence, uniqueness 
and the continuous dependence of the solution for a class of variational-hemivariational 
inequalities of elliptic type, and applied the linear finite element method to the in-
equality for deriving an optimal order error estimate and a convergence result; by using 
the notion of the stable ϕ-quasimonotonicity and KKM principle, Tang-Huang [47] de-
rived the necessary and sufficient condition to the existence of solutions for an elliptic 
variational-hemivariational inequality in a Banach space; Bartosz-Sofonea [3] considered 
a new class of first order evolutionary variational-hemivariational inequalities and em-
ployed Rothe method to prove the existence and uniqueness of the inequality, then they 
used the abstract results to study a quasi-static frictionless problem for Kelvin–Voigt 
viscoelastic materials; Migórski-Khan-Zeng [32] utilized Kluge fixed point theorem and 
the Minty approach to an inverse problem of parameter identification in a nonlinear 
quasi-variational-hemivariational inequality posed in a Banach space, then the authors 
explored an identification inverse problem in a complicated mixed elliptic boundary 
value problem with p-Laplace operator and an implicit obstacle. We also refer the reader 
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to [2,13,17,19–21,27–29,32,33,39–41,46,48] and the references therein for a more detailed 
discussion of this topic.

Given an evolution triple of spaces V ↪→ H ↪→ V ∗ such that the embedding from 
V into H is compact, a reflexive Banach space Z, 0 < T < ∞, a nonlinear operator 
A : [0, T ] × V → V ∗, a proper convex and lower semicontinuous function ϕ : Z → R, a 
linear operator β : V → Z, a function J : [0, T ] ×H → R, we formulate a nonlinear and 
nonsmooth evolution inclusion problem with two multi-valued terms which are a convex 
subdifferential operator and a generalized subdifferential operator in the sense of Clarke, 
respectively, as follows:

Problem 1.1. Given a function f ∈ H := L2(0, T ; H), find a function x : [0, T ] → V such 
that

{
x′(t) + A(t, x(t)) + β∗∂Cϕ(βx(t)) + ∂J(t, x(t)) � f(t) for a.e. t ∈ [0, T ],
x(0) = x0,

(1.1)

where ∂Cϕ : Z → 2Z∗ and ∂J(t, ·) : H → 2H are the convex subdifferential operator of 
ϕ, and the generalized Clarke subdifferential operator of J(t, ·), respectively.

It should be mentioning that operator A involved in Problem 1.1 can describe exactly 
and effectively various natural phenomena and constitutive laws arising in engineering 
applications, for example, nonlinear elasticity operators, Navier-Stokes operators, nonlin-
ear diffusion operators and so forth, see [24,27,31,35,36,49,52–55]. Under the assumptions 
that x �→ A(t, x) is strongly monotone and Lipschitz, w �→ J(t, w) is relaxed monotone 
and ϕ is continuous, Han-Migórski-Sofonea [14] proved that Problem 1.1 has a unique so-
lution. However, in many real-life problems, the nonlinear operator could be x �→ A(t, x)
not strongly monotone and Lipschitz. For example, let Ω be a bounded domain in RN , 
V = H1

0 (Ω), and A : [0, T ] × V → V ∗ be defined by

〈A(t, u), v〉 =
∫
Ω

k1(z, t)(∇u(z),∇v(z))RN − k2(t)(u(z) 1
2 v(z) + log |u(z)|v(z))

− l(z, u(z),∇u(z))v(z) dz (1.2)

for all u, v ∈ V and a.e. t ∈ [0, T ]. It is not difficult to see that x �→ A(t, x) not 
strongly monotone and Lipschitz in general. In this moment, the theoretical results 
obtained in [14] can not able to solve those problems involving the nonlinear operator A
defined in (1.2). Therefore, a natural question arises that may we establish the generalized 
theoretical result to fill this gap. Based on this motivation, in Section 3, without the 
strong monotonicity of x �→ A(t, x) and relaxed monotonicity of w �→ J(t, w), we are 
devoted to establish an existence theorem for Problem 1.1 in the general functional 
framework.
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The optimal control of hemivariational/variational-hemivariational inequalities as a 
new research branch of the optimal control theory has been widely studied in various per-
spectives. In the following, we provide a brief review of some of the related developments. 
Li-Liu [23] considered an optimal control problem governed by a differential hemivaria-
tional inequality on Banach spaces, and applied an extension of Filippov’s theorem to 
establish the sensitivity properties of the optimal control problem. Peng-Kunisch [45]
dealt with the optimality system of an optimal control problem involving a nonlinear 
elliptic inclusion and a nonsmooth cost functional where the existence of optimal pairs 
was proved and necessary optimality conditions of first order were derived by applying an 
adapted penalty method and nonsmooth analysis techniques. More recently, an optimal 
control problem described a generalized nonlinear quasi-variational-hemivariational in-
equality involving a multi-valued map was investigated by Zeng-Migórski-Khan [51], the 
authors examined a solvability result for the optimal control problem by employing the 
geometric version of the Hahn-Banach theorem together with Tychonov fixed point prin-
ciple and Weierstrass type theorem. Although the theory and computational techniques 
for optimal control of hemivariational/variational-hemivariational inequalities have been 
studied for quite some time now (see e.g. [25,26,37,38]), it seems that there are still many 
unanswered questions and many interesting ideas are still in the making.

Denote by Γ(f) the solution set of Problem 1.1 corresponding to f ∈ H. To the best 
of the authors’ knowledge, if Γ(f) is nonempty and is not a singleton set, it is still an 
open problem whether the following optimal control problem is solvable:

Problem 1.2. Find (x∗, f∗) ∈ W ×H such that x∗ ∈ Γ(f∗) and

Q(x∗, f∗) ≤ Q(x, f) for all x ∈ Γ(f) and f ∈ H, (1.3)

where the cost function Q : W ×H → R is defined by

Q(x, f) := α1

2 ‖f − g‖2
H + α2

2 ‖x(T ) − z0‖2
H + α3

2 ‖x− y0‖2
V , (1.4)

and α1, α2, α3 > 0 are regularization parameters.

Here g, z0 and y0 are given target profiles, which will be specialized in Section 4. To 
deliver a positive answer for the above issue, the second contribution of the paper is 
to explore, in Section 4, a sufficient theorem for the existence of an optimal control to 
Problem 1.2.

Moreover, there are many real-life problems which could be modeled by different feed-
back control systems, for example, trajectory planning of a robot manipulator, guidance 
of a tactical missile toward a moving target, regulation of room temperature, and control 
of string vibrations. The third aim of the paper is to deal with the following feedback 
control system:
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Problem 1.3. Find functions x : [0, T ] → V and u : [0, T ] → Y such that
{

x′(t) + A(t, x(t)) + β∗∂Cϕ(βx(t)) + ∂J(t, x(t)) � B(t, x(t))u(t) for a.e. t ∈ [0, T ],
x(0) = x0,

(1.5)

and

u(t) ∈ U(t, x(t)) for a.e. t ∈ [0, T ]. (1.6)

To highlight the general form of our problem, we list the following particular cases of 
Problem 1.3.

• If ϕ ≡ 0, then Problem 1.3 becomes the one, which has been studied by Bin-Liu [5]. 
Under the assumptions that B is uniformly bounded and U is continuous in the sense 
of Hausdorff metric, [5] gave the existence of a feedback control pair.

• Papageorgiou-Rǎdulescu-Repovš [44] considered Problem 1.3, under the functional 
framework V = Rn, Y = Rm, A ≡ 0, J ≡ 0, B is Lipscthiz continuous with respect to 
the second variable, U is uniformly bounded and continuous in the sense of Hausdorff 
metric.

• If V is a Hilbert space, A(t, x) = A(x) and B(t, x) = M for all x ∈ H and a.e. 
t ∈ [0, T ] with M ∈ L(Y, H), ϕ ≡ 0, then Problem 1.3 reduces to the one, which was 
investigated by Huang-Liu-Zeng [16].

In contrast to all the aforementioned papers, in this paper, we do not assume that U
is continuous in the sense of Hausdorff metric and uniformly bounded, B is Lipschitz 
and uniformly bounded. Additionally, the method applied in this paper is different from 
that used in [5,44] and [16]. More precisely, our approach is based on the Kakutani–Ky 
Fan fixed point theorem. Moreover, we also deliver a new convergence result in the sense 
of Kuratowski describing the changes in the set of solutions for the feedback control 
problem as the initial data x0 is perturbed in Hilbert space H.

2. Notation and preliminary material

In this section we briefly review some basic notation and preliminary results which 
will be used in the rest of the paper. For more details on the material presented below 
we refer to the monographs [7–9,15,18,30,50].

Let X be a Hausdorff topological space and D ⊂ X. We denote by 2X the set of all 
nonempty subsets of X. Also, we denote by “→” and “ w−→” the strong and the weak 
convergences, respectively, in various spaces which will be specified. Let V ↪→ H ↪→ V ∗

be an evolution triple of spaces (or a Gelfand triple of spaces, i.e., V is a separable 
and reflexive Banach space, H is a separable Hilbert space, the embedding V ⊂ H is 
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continuous and V is dense in H) and Y, Z be reflexive Banach spaces. In the sequel, we 
denote by 〈·, ·〉 and (·, ·)H the duality pairing between V ∗ and V , and the inner product 
of H, respectively. Given 0 < T < ∞, in what follows, we introduce the following 
Bochner-Lebesgue spaces

V = L2(0, T ;V ), H = L2(0, T ;H), V∗ = L2(0, T ;V ∗), Y = L2(0, T ;Y ),

Y∗ = L2(0, T ;Y ∗), Z = L2(0, T ;Z), Z∗ = L2(0, T ;Z∗), W = {v ∈ V | v′ ∈ V∗},

where the time derivative v′ = ∂v
∂t is understood in the sense of vector-valued distribu-

tions. Since spaces V and V∗ are reflexive Banach spaces, then it is not difficult to see 
that W endowed with the graph norm

‖v‖W = ‖v‖V + ‖v′‖V∗ for all v ∈ W,

is a separable and reflexive Banach space and the embeddings W ⊂ V ⊂ H ⊂ V∗ are 
continuous. Besides, the embedding W ⊂ C(0, T ; H) is continuous too, where C(0, T ; H)
is the space of continuous functions on [0, T ] with values in H. In what follows, we denote 
by 〈〈·, ·〉〉 and ((·, ·)) the duality pairing between V∗ and V, and the inner product of H, 
respectively.

We next recall a number of basic definitions.

Definition 2.1. Let (X, τ) be a Hausdorff topological space and {An} ⊂ 2X . The τ -
Kuratowski lower limit of the sequence {An} is the set given by

τ - lim inf
n→∞

An :=
{
x ∈ X | x = τ - lim

n→∞
xn, xn ∈ An for all n ≥ 1

}
,

and the τ -Kuratowski upper limit of the sequence {An} is the set given by

τ - lim sup
n→∞

An :=
{
x ∈ X | x = τ - lim

k→∞
xnk

, xnk
∈ Ank

, n1 < n2 < . . . < nk < . . .

}
.

We say that the sequence {An} τ -converges in the sense of Kuratowski if

τ - lim inf
n→∞

An = τ - lim sup
n→∞

An.

In this case the set A = τ - lim infn→∞ An = τ - lim supn→∞ An, is called τ -Kuratowski 
limit of the sequence {An}.

Definition 2.2. Let (V, ‖ · ‖V ) be a reflexive Banach space, let L : D(L) ⊂ V → V ∗ be 
a linear maximal monotone operator, and let B : V → 2V ∗ be a multivalued operator. 
We said that B is pseudomonotone with respect to D(L) (or L-pseudomonotone), if the 
following conditions hold:
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(i) B has nonempty, bounded, closed and convex values;
(ii) B is upper semicontinuous from each finite-dimensional subspace of V to V ∗ endowed 

with the weak topology;
(ii) if {un} ⊂ D(L) with un

w−→ u in V , Lun
w−→ Lu in V ∗ and u∗

n ∈ Bun is such 
that

lim sup
n→∞

〈u∗
n, un − u〉 ≤ 0,

then, u∗ ∈ Bu and 〈u∗
n, un〉 → 〈u∗, u〉.

Let (V, ‖ · ‖V ) be a Banach. A function ϕ : V → R := R ∪ {+∞} is called proper, 
convex, and lower semicontinuous, if it fulfills the conditions

D(ϕ) := {u ∈ V | ϕ(u) < +∞} �= ∅,

ϕ(λu + (1 − λ)v) ≤ λϕ(u) + (1 − λ)ϕ(v) for all λ ∈ [0, 1] and u, v ∈ V,

ϕ(u) ≤ lim inf
n→∞

ϕ(un) for all sequences {un} ⊂ V with un → u,

respectively. We also denote by ∂Cϕ : D(ϕ) → 2V ∗ the subdifferential operator of ϕ
defined by

∂Cϕ(u) := {η ∈ V ∗ | 〈η, v − u〉 ≤ ϕ(v) − ϕ(u) for all v ∈ V } for all u ∈ D(ϕ).

A function J : V → R is called locally Lipschitz continuous at u ∈ V , if there exist a 
neighborhood N(u) of u and a constant Lu > 0 such that

|J(w) − J(v)| ≤ Lu‖w − v‖V for all w, v ∈ N(u).

The generalized directional derivative in the sense of Clarke of J at a point u ∈ V in the 
direction v ∈ V , denoted by J0(u; v), is defined by

J0(u; v) = lim sup
λ→0+, z→u

J(z + λv) − J(z)
λ

.

Then, the generalized gradient of J at u ∈ V is defined by

∂J(u) = { ξ ∈ V ∗ | J0(u; v) ≥ 〈ξ, v〉 for all v ∈ V }.

The generalized gradient and generalized directional derivative of a locally Lipschitz 
function enjoy several properties that we recall below, following [30, Proposition 3.23].

Proposition 2.3. Assume that J : V → R is a locally Lipschitz function. Then:
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(i) for every u ∈ V , the function V � v �→ J0(u; v) ∈ R is positively homogeneous and 
subadditive, i.e.,

J0(u;λv) = λJ0(u; v) and J0(u; v1 + v2) ≤ J0(u; v1) + J0(u, ; v2)

for all u, v, v1, v2 ∈ V , λ ≥ 0;
(ii) for every v ∈ V , it holds J0(u; v) = max { 〈ξ, v〉 | ξ ∈ ∂J(u) };
(iii) for every u ∈ V , the gradient ∂J(u) is a nonempty, convex, weakly∗ compact subset 

of V ∗ which is bounded by the Lipschitz constant Lu > 0 of J near u;
(iv) the function V × V � (u, v) �→ J0(u; v) ∈ R is upper semicontinuous.
(v) the multifunction V � u �→ ∂J(u) ⊂ V ∗ is upper semicontinuous (u.s.c.) from V

into the space V ∗ endowed with the weak∗ topology.

Furthermore, we consider the important concept of strongly-quasi boundedness for 
set-valued operators (see for instance [10, Definition 2.14]).

Definition 2.4. Let (V, ‖ ·‖V ) be a reflexive Banach space with its dual V ∗ and A : D(A) ⊂
V → 2V ∗ be a multivalued mapping. A is called to be strongly-quasi bounded, if for each 
M > 0, there exists KM > 0 satisfying if u ∈ D(A) and u∗ ∈ Au are such that

〈u∗, u〉 ≤ M and ‖u‖V ≤ M,

then ‖u∗‖V ∗ ≤ KM .

Obviously, it is not easy to verify that a multivalued operator is strongly-quasi 
bounded by using the definition. However, Browder-Hess in [6, Proposition 14] pro-
vided the following criterion to validate the strongly-quasi boundedness for multivalued 
operators.

Proposition 2.5. Let E be a reflexive Banach space with its dual E∗. If A : D(A) ⊂ E →
2E∗ is a monotone operator such that 0 ∈ intD(A), then A is strongly-quasi bounded.

Moreover, we recall the following surjectivity result for the sum of operators in Banach 
spaces (its detailed proof can be found in [10, Theorem 3.1]), which will play a significant 
role in the proof of the existence of a solution for the parabolic variational-hemivariational 
inequality, Problem 1.1.

Theorem 2.6. Let (E, ‖ · ‖E) be a reflexive, strictly convex Banach space, L : D(L) ⊂
E → E∗ be a linear, densely defined and maximal monotone operator, A : E → 2E∗ be a 
bounded and L-pseudomonotone operator such that

〈Au, u〉E∗×E ≥ r(‖u‖E)‖u‖E for all u ∈ E,
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where r : R+ → R is a function satisfying r(s) → +∞ as s → +∞. If the multivalued 
mapping B : D(B) ⊂ E → 2E∗ is a maximal monotone operator which is strongly-quasi 
bounded and 0 ∈ B(0), then L + A + B is surjective, namely, R(L + A + B) = E∗.

We end the section by recalling the Kakutani–Ky Fan theorem for a reflexive Banach 
space, see e.g. [43, Theorem 2.6.7], which will be applied to prove the solvability of the 
feedback control problem, Problem 1.3.

Theorem 2.7. Let E be a reflexive Banach space and D ⊆ E be a nonempty, bounded, 
closed and convex set. Let Λ: D → 2D be a set-valued map with nonempty, closed and 
convex values such that its graph is sequentially closed in Ew×Ew topology. Then Λ has 
a fixed point.

3. Parabolic variational-hemivariational inequalities

The section is devoted to the study of a class of abstract variational-hemivariational 
inequalities of parabolic type in the framework of an evolution triple of spaces (or a 
Gelfand triple of spaces), V ↪→ H ↪→ V ∗. Under the mild conditions, the existence of 
a solution for the inequality problem, Problem 1.1, is established in which our method 
is based on a surjectivity theorem for set-valued mappings that we use for the sum of a 
maximal monotone and strongly-quasi bounded operator, a linear densely defined and 
maximal monotone operator L, and a bounded pseudomonotone operator with respect 
to L. Furthermore, we apply monotone arguments to reveal the uniqueness of solution 
for the solution to Problem 1.1.

The concept of the solutions of Problem 1.1 is understood as follows.

Definition 3.1. We say that x ∈ W is a solution to Problem 1.1, if there exist two 
functions ξ : [0, T ] → H and η : [0, T ] → V ∗ such that

{
x′(t) + A(t, x(t)) + ξ(t) + η(t) = f(t) for a.e. t ∈ [0, T ],
x(0) = x0,

(3.1)

and

η(t) ∈ β∗∂Cϕ(βx(t)) and ξ(t) ∈ ∂J(t, x(t)) for a.e. t ∈ [0, T ]. (3.2)

In order to obtain the solvability of Problem 1.1, we impose the following assumptions 
on the data of Problem 1.1.

H(A): A : [0, T ] × V → V ∗ is such that

(i) for each x ∈ V , the function t �→ A(t, x) is measurable on [0, T ];
(ii) x �→ A(t, x) is pseudomonotone for a.e. t ∈ [0, T ];
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(iii) there exist aA ∈ L2(0, T )+ and bA > 0 such that

‖A(t, x)‖V ∗ ≤ aA(t) + bA‖x‖V

for all x ∈ V and a.e. t ∈ [0, T ];
(iv) there exist mA > 0, cA ∈ L2(0, T )+ and dA ∈ L1(0, T )+ satisfying

〈A(t, x), x〉 ≥ mA‖x‖2
V − cA(t)‖x‖V − dA(t)

for a.e. t ∈ [0, T ] and x ∈ V ;
(v) there exists mA > 0 such that

〈A(t, x) −A(t, y), x− y〉 ≥ mA‖x− y‖2
V

for a.e. t ∈ [0, T ] and x, y ∈ V .

Remark 3.2. Let V = H1
0 (Ω), k1 ∈ L∞(Ω × (0, T ))+ be such that k1(z, t) ≥ mk1 > 0 for 

a.e. (z, t) ∈ Ω × [0, T ], k2 ∈ L2(0, T ), and l : Ω ×R ×RN be a Carathéodory function such 
that: (i) there exist α ∈ L2(Ω) and a1, a2 ≥ 0 satisfying |f(z, s, ξ)| ≤ a1‖ξ‖RN + a2|s| +
α(z) for a.e. z ∈ Ω, for all (s, ξ) ∈ RN+1; (ii) there exists w ∈ L1(Ω)+ and b1, b2 ≥ 0
with b2ĉ2 < mk1 satisfying f(z, s, ξ)s ≤ b1‖ξ‖RN + b2|s|2 + w(z) for a.e. z ∈ Ω for all 
(s, ξ) ∈ RN+1, where ĉ is the smallest constant such that ‖v‖L2(Ω) ≤ ĉ‖∇v‖L2(Ω;RN ) for 
all v ∈ H1

0 (Ω). Then, arguing as in the proof of [11, Theorem 3.2], it is not difficult to 
prove that the function A : [0, T ] × V → V ∗ defined in (1.2) is not strongly monotone 
and Lipschitz, but it satisfies conditions H(A)(i)–(iv).

H(J): J : [0, T ] ×H → R is such that

(i) for all x ∈ H, the function t �→ J(t, x) is measurable on [0, T ];
(ii) x �→ J(t, x) is locally Lipschitz on H for a.e. t ∈ [0, T ];
(iii) there are a function aJ ∈ L2(0, T )+ and a constant bJ > 0 such that

‖∂J(t, x)‖H ≤ aJ(t) + bJ‖x‖H

for all x ∈ H and a.e. t ∈ [0, T ];
(iv) there exist θ ∈ [1, 2], cJ ∈ L2(0, T )+ and dJ ∈ L1(0, T )+ such that

J0(t, x;−x) ≤ mJ‖x‖θH + cJ (t)‖x‖H + dJ(t)

for all x ∈ H and a.e. t ∈ [0, T ], where mJ > 0 is such that
{

mJ > 0 if θ ∈ [1, 2),
mJ‖γ‖2 < mA if θ = 2,
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where mA > 0 is given in H(A)(iv) and γ is the embedding operator from V into 
H;

(v) there exists a constant mJ > 0 with mJ‖γ‖2 < mA such that

J0(t, x; y − x) + J0(t, y;x− y) ≤ mJ‖x− y‖2
H

for all x, y ∈ H and a.e. t ∈ [0, T ], where mA > 0 is given in H(A)(v).

H(0): x0 ∈ V and β : V → Z is linear and bounded.

H(ϕ): ϕ : Z → R is a proper, convex and lower semicontinuous function such that 
0 ∈ ∂Cϕ(βx0) (or βx0 ∈ intD(ϕ)).

Let us consider the mappings A : V → V∗, N : H → 2H and Φ: V → R defined by

A(x)(t) = A(t, x(t) + x0) for a.e. t ∈ [0, T ], (3.3)

N (y) := {ξ ∈ H | ξ(t) ∈ ∂J(t, y(t) + x0) for a.e. t ∈ [0, T ]}, (3.4)

Φ(x) =
T∫

0

ϕ(β(x(t) + x0)) dt (3.5)

for all (x, y) ∈ V ×H.

Lemma 3.3. Assume that H(ϕ) holds. Then the function Φ defined in (3.5) is proper, 
convex and lower semicontinuous.

Proof. It is obvious from H(ϕ) that Φ(0) =
∫ T

0 ϕ(βx0) dt = Tϕ(βx0) < +∞. Besides, 
the convexity of ϕ guarantees that Φ is convex as well. Let {xn} ⊂ V be a sequence with 
xn → x in V as n → ∞ for some x ∈ V. So, we may assume that xn(t) → x(t) in V as 
n → ∞ for a.e. t ∈ [0, T ]. It follows from [1, Proposition 1.10] that there are constants 
cϕ, dϕ ≥ 0 such that

ϕ(z) ≥ −cϕ‖z‖Z − dϕ for all z ∈ Z. (3.6)

Applying Fatou lemma, see e.g. [30, Theorem 1.64], it yields

lim inf
n→∞

Φ(xn) = lim inf
n→∞

T∫
0

ϕ(β(xn(t) + x0)) dt ≥
T∫

0

lim inf
n→∞

ϕ(β(xn(t) + x0)) dt

≥
T∫

0

ϕ(β(x(t) + x0)) dt = Φ(x),

where we have used the lower semicontinuity of ϕ. This means that Φ is lower semicon-
tinuous. �
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Also, we define L : D(L) ⊂ V → V∗ by

Lx = ∂x

∂t
for all x ∈ D(L), (3.7)

where D(L) is the effective domain of L given by

D(L) = W0 := {x ∈ W | x(0) = 0}.

We now introduce an auxiliary problem as follows.

Problem 3.4. Find a function x ∈ W such that

Lx + A(x) + N (x) + ∂CΦ(x) � f in V∗. (3.8)

Next, we provide the following lemma, which will be used to prove the solvability of 
Problem 1.1.

Lemma 3.5. Assume that H(A)(i)–(iv), H(J)(i)–(iv) and H(0) hold. Then the set-valued 
mapping A + N : V → 2V∗ is bounded and pseudomonotone with respect to D(L) (L-
pseudomonotone, for short) such that

〈〈A(x) + N (x), x〉〉 ≥ r(‖x‖V)‖x‖V for all x ∈ V, (3.9)

where r : R+ → R is such that r(s) → +∞ as s → ∞.

Proof. We first show that N is well-defined. For any x ∈ H fixed, hypotheses H(J)(i), 
(ii) and [30, Proposition 3.44] imply that t �→ ∂J(t, x(t)) is measurable on [0, T ]. Yankov-
von Neumann-Aumann selection theorem (see [15, Theorem 2.14, p. 158] or [18, Theorem 
1.3.1]) indicates that there is a measurable selection ξ : [0, T ] → H of t �→ ∂J(t, x(t)), 
i.e., ξ(t) ∈ ∂J(t, x(t)) for a.e. t ∈ [0, T ]. But, the estimate (see hypothesis H(J)(iii))

‖ξ(t)‖H ≤ aJ(t) + bJ‖x(t)‖H for a.e. t ∈ [0, T ],

entails that ξ ∈ H. Hence, N is well-defined.
Let x ∈ V be fixed. For any ξ ∈ N (x), we use conditions H(A)(iii) and H(J)(iii) to 

obtain

‖A(x) + ξ‖V∗

≤ ‖A(x)‖V∗ + ‖ξ‖V∗ ≤

⎛
⎝ T∫

‖A(t, x(t) + x0)‖2
V ∗ dt

⎞
⎠

1
2

+

⎛
⎝ T∫

‖ξ(t)‖2
V ∗ dt

⎞
⎠

1
2

0 0
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≤

⎛
⎝ T∫

0

‖A(t, x(t) + x0)‖2
V ∗ dt

⎞
⎠

1
2

+ ‖γ∗‖

⎛
⎝ T∫

0

‖ξ(t)‖2
H dt

⎞
⎠

1
2

≤
√

2

⎛
⎝ T∫

0

aA(t)2 + b2A‖x(t) + x0‖2
V dt

⎞
⎠

1
2

+
√

2‖γ∗‖

⎛
⎝ T∫

0

aJ(t)2 + b2J‖x(t) + x0‖2
H dt

⎞
⎠

1
2

.

This means that for each x ∈ V the set A(x) +N (x) is bounded in V∗. Additionally, the 
convexity and closedness of ∂J(t, x(t)) points out that A(x) +N (x) is convex and closed 
in V∗ for each x ∈ V.

For any x ∈ V, hypotheses H(A)(iii) and (iv) deduce

〈〈A(x), x〉〉 =
T∫

0

〈A(t, x(t) + x0), x(t) + x0〉 dt−
T∫

0

〈A(t, x(t) + x0), x0〉 dt (3.10)

≥
T∫

0

mA‖x(t) + x0‖2
V − cA(t)‖x(t) + x0‖V − dA(t) dt

−
T∫

0

(aA(t) + bA‖x(t) + x0‖V )‖x0‖V dt.

We apply conditions H(J)(iii) and (iv) to find

((ξ, x)) = −
T∫

0

(ξ(t),−x(t) − x0)H dt−
T∫

0

(ξ(t), x0)H dt

≥ −
T∫

0

J0(t, x(t) + x0;−x(t) − x0) dt−
T∫

0

‖ξ(t)‖H‖x0‖H dt (3.11)

≥ −mJ

T∫
0

‖x(t) + x0‖θH − cJ (t)‖x(t) + x0‖H − dJ (t) dt

−
T∫

0

(aJ(t) + bJ‖x(t) + x0‖H)‖x0‖H dt.

From (3.10) and (3.11), we have

〈〈A(x) + N (x), x〉〉

≥
T∫
mA‖x(t) + x0‖2

V − cA(t)‖x(t) + x0‖V − dA(t) dt

0
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−
T∫

0

(aA(t) + bA‖x(t) + x0‖V )‖x0‖V dt−mJ

T∫
0

‖x(t) + x0‖θH − cJ(t)‖x(t) + x0‖H

−dJ(t) dt−
T∫

0

(aJ(t) + bJ‖x(t) + x0‖H)‖x0‖H dt.

Let ε = mA

2 . If θ ∈ [1, 2), using Young’s inequality and Hölder’s inequality yields

〈〈A(x) + N (x), x〉〉

≥ mA‖x‖2
V − 2mA

√
T‖x0‖V ‖x‖V −mAT‖x0‖2

V − ‖cA‖L2(0,T )‖x‖V
−‖cA‖L2(0,T )‖x0‖2

V

√
T − ‖dA‖L1(0,T ) − ‖x0‖V ‖aA‖L1(0,T ) − bA

√
T‖x0‖V ‖x‖V

−bAT‖x0‖2
V − ε‖x‖2

V − 2ε
√
T‖x0‖‖x‖2

V − εT‖x0‖2
V − k(ε) − ‖cJ‖L2(0,T )‖γ‖‖x‖V

−‖cJ‖L2(0,T )‖x0‖H
√
T − ‖dJ‖L1(0,T ) − ‖x0‖H‖aJ‖L1(0,T )

−‖x0‖HbJ‖γ‖
√
T‖x‖V − bJ‖x0‖2

HT, (3.12)

with some k(ε) > 0, where we have used the element inequality ‖x(t) +x0‖2
V ≥ ‖x(t)‖2

V −
2‖x0‖V ‖x(t)‖V − ‖x0‖2

V . When θ = 2, we have

〈〈A(x) + N (x), x〉〉

≥ (mA −mJ‖γ‖2)‖x‖2
V − 2mA

√
T‖x0‖V ‖x‖V −mAT‖x0‖2

V − ‖cA‖L2(0,T )‖x‖V
−‖cA‖L2(0,T )‖x0‖2

V

√
T − ‖dA‖L1(0,T ) − ‖x0‖V ‖aA‖L1(0,T ) − bA

√
T‖x0‖V ‖x‖V

−bAT‖x0‖2
V − 2mJ‖γ‖

√
T‖x0‖H‖x‖V −mJ‖x0‖2

HT − ‖cJ‖L2(0,T )‖γ‖‖x‖V
−‖cJ‖L2(0,T )‖x0‖H

√
T − ‖dJ‖L1(0,T ) − ‖x0‖H‖aJ‖L1(0,T )

−‖x0‖HbJ‖γ‖
√
T‖x‖V − bJ‖x0‖2

HT. (3.13)

By virtue of (3.12) and (3.13), it yields

〈〈A(x) + N (x), x〉〉 ≥ r(‖x‖V)‖x‖V ,

where r : R+ → R is defined by

r(s) :=

⎧⎪⎨
⎪⎩

mA

2 s− L1 −
L2

s
,

(mA −mJ‖γ‖2)s− L3 −
L4

s
,

and L1, L2, L3, L4 are given by
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L1 := 2mA

√
T‖x0‖V + ‖cA‖L2(0,T ) + bA

√
T‖x0‖V + 2ε

√
T‖x0‖ + ‖cJ‖L2(0,T )‖γ‖

+‖x0‖HbJ‖γ‖
√
T ,

L2 := mAT‖x0‖2
V + ‖cA‖L2(0,T )‖x0‖2

V

√
T + ‖dA‖L1(0,T ) + ‖x0‖V ‖aA‖L1(0,T )

+bAT‖x0‖2
V + εT‖x0‖2

V + k(ε) + ‖cJ‖L2(0,T )‖x0‖H
√
T + ‖dJ‖L1(0,T )

+‖x0‖H‖aJ‖L1(0,T ) + bJ‖x0‖2
HT,

L3 := 2mA

√
T‖x0‖V + ‖cA‖L2(0,T ) + bA

√
T‖x0‖V + 2mJ‖γ‖

√
T‖x0‖H

+‖cJ‖L2(0,T )‖γ‖ + ‖x0‖HbJ‖γ‖
√
T ,

L4 := mAT‖x0‖2
V + ‖cA‖L2(0,T )‖x0‖2

V

√
T + ‖dA‖L1(0,T ) + ‖x0‖V ‖aA‖L1(0,T )

+bAT‖x0‖2
V + mJ‖x0‖2

HT + ‖cJ‖L2(0,T )‖x0‖H
√
T + ‖dJ‖L1(0,T )

+‖x0‖H‖aJ‖L1(0,T ) + bJ‖x0‖2
HT.

Therefore, (3.9) is verified.
Moreover, we show that A +N is L-pseudomonotone. It is obvious that for each x ∈ V, 

A(x) + N (x) is nonempty, bounded, closed and convex in V∗. We now assert that A is 
demicontinuous. Let {xn} ⊂ V be a sequence satisfying xn → x in V as n → ∞, for some 
x ∈ V. Then, without loss of generality, we may assume that xn(t) → x(t) in V as n → ∞
for a.e. t ∈ [0, T ]. Recall that z �→ A(t, z) is pseudomonotone, so, using [30, Theorem 
3.69] and hypothesis H(A)(iii) conclude that z �→ A(t, z) demicontinuous and {A(xn)}
is bounded in V∗. For any y ∈ V fixed, employing Lebesgue dominated convergence 
theorem finds

lim
n→∞

〈〈A(xn), y〉〉 = lim
n→∞

T∫
0

〈A(t, xn(t) + x0), y(t)〉 dt

=
T∫

0

lim
n→∞

〈A(t, xn(t) + x0), y(t)〉 dt =
T∫

0

〈A(t, x(t) + x0), y(t)〉 dt = 〈〈A(x), y〉〉.

The arbitrariness of y ∈ V indicates that A is demicontinuous. Nevertheless, we are going 
to prove that N is strongly-weakly u.s.c., i.e., N is u.s.c. from H with the norm topology 
into H endowed with its weak topology. So, we have to verify that for each weakly closed 
subset D in H, N−(D) is closed in H. Let {xn} ⊂ N−(D) be such that xn → x in H as 
n → ∞ for some x ∈ H. Then, it has

xn(t) → x(t) in H as n → ∞ for a.e. t ∈ [0, T ]. (3.14)

Also, we are able to find a sequence {ξn} ⊂ H with ξn ∈ N (xn) ∩ D. But, condition 
H(J)(iii) points out that {ξn} is bounded in H. Passing to a subsequence if necessary, 
we may suppose that
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ξn
w−→ ξ in H as n → ∞, (3.15)

for some ξ ∈ H. The convergences (3.14)–(3.15) and the convergence theorem of Aubin 
and Cellina (see for example, [30, Theorem 3.13]) yield that ξ(t) ∈ ∂J(t, x(t) +x0) for a.e. 
t ∈ [0, T ], namely, ξ ∈ N (x) ∩D thanks to the weak closedness of D. Hence, x ∈ N−(D). 
We conclude that N is strongly-weakly u.s.c. Therefore, A +N is strongly-weakly u.s.c. 
as well, see [18, Theorem 1.2.14].

Let sequences {xn} ⊂ V and {x∗
n} ⊂ V∗ be such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xn
w−→ x in V ,

Lxn
w−→ Lx in V∗,

x∗
n ∈ A(xn) + N (xn), i.e., x∗

n = A(xn) + ξn with ξn ∈ N (xn),
x∗
n

w−→ x∗ in V∗,

lim supn→∞〈〈x∗
n, xn − x〉〉 ≤ 0.

(3.16)

This means that {xn} is bounded in W and {ξn} is bounded in H (see H(J)(iii)). So, 
we may assume that the following convergences and (3.15) hold

xn
w−→ x in W and xn → x in H, as n → ∞. (3.17)

Keeping in mind that for each x ∈ H the set N (x) is bounded, closed and convex in 
H, so, N (x) is weakly closed as well. The latter together with the strong-weak upper 
semicontinuity of N and [18, Theorem 1.1.4] concludes that N is closed from H into 
w −H (i.e., the graph of N is closed in H× w −H). Taking into account (3.16)–(3.17)
and the closedness of N , we have ξ ∈ N (x). Then, it has A(xn) = x∗

n − ξn
w−→ x∗ − ξ

in V∗ as n → ∞. But, (3.16) deduces

0 ≥ lim sup
n→∞

〈〈x∗
n, xn − x〉〉 ≥ lim sup

n→∞
〈〈A(xn), xn − x〉〉 + lim inf

n→∞
((ξn, xn − x))

= lim sup
n→∞

〈〈A(xn), xn − x〉〉, (3.18)

where the last equation is obtained by using (3.17). However, hypotheses H(A) allow us 
to apply [42, Proposition 1] to reveal that A is pseudomonotone. We use (3.16), (3.18)
and [30, Proposition 3.66] to get

A(xn) w−→ A(x) and lim
n→∞

〈〈A(xn), xn〉〉 = 〈〈A(x), x〉〉.

From the analysis above, we confess that A(x) = x∗ − ξ, i.e., A(x) + ξ ∈ A(x) + N (x)
and limn→∞〈〈x∗

n, xn〉〉 = 〈〈A(x) + ξ, x〉〉 = 〈〈x∗, x〉〉. Consequently, A + N : V → 2V∗ is 
pseudomonotone with respect to D(L). �
Theorem 3.6. Assume that H(A)(i)–(iv), H(J)(i)–(iv), H(0) and H(ϕ) hold. Then for 
each f ∈ H, Problem 1.1 admits a solution.
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Proof. We will utilize Theorem 2.6 to prove the desired conclusion. It follows from [9, 
Section 8.5] that L defined in (3.7) is closed, linear, densely defined, and maximal mono-
tone. Besides, Lemma 3.3 and [9, Theorem 6.3.19, p. 48] infer that ∂CΦ is a maximal 
monotone operator with 0 ∈ ∂CΦ(0), due to H(ϕ). On the other side, we apply [4, 
Proposition 2.7] to obtain that intD(Φ) ⊂ D(∂CΦ), that is, intD(Φ) ⊂ intD(∂CΦ). This 
combined with H(ϕ) and Proposition 2.5 implies that ∂CΦ is strongly-quasi bounded.

To conclude, all conditions of Theorem 2.6 are verified. Using this theorem, we admit 
that there exists a function x ∈ W such that

Lx + A(x) + N (x) + ∂CΦ(x) � f in V∗.

Set x = x + x0, then, x solves the above problem
{

x′(t) + A(t, x(t)) + ξ(t) + η(t) = f(t) for a.e. t ∈ [0, T ],
x(0) = x0,

with ξ ∈ N (x − x0) and η ∈ ∂CΦ(x − x0). Whereas, by virtue of [30, Proposition 3.46]
and H(ϕ), it gives

∂CΦ(x− x0) = S2
ϕ(x(·)) := {η ∈ V∗ | η(t) ∈ β∗∂Cϕ(β(x(t))) for a.e. t ∈ [0, T ]}.

Then, we have ξ(t) ∈ ∂J(t, x(t)) and η(t) ∈ β∗∂Cϕ(β(x(t))) for a.e. t ∈ [0, T ]. Conse-
quently, x ∈ W solves Problem 1.1. �

We end the section to deliver the unique solvability of Problem 1.1.

Theorem 3.7. Assume that H(A)(i)–(iii), (v), H(J)(i)–(iii), (v), H(0) and H(ϕ) are 
satisfied. Then for each f ∈ H, Problem 1.1 has a unique solution.

Proof. We will use Theorem 3.6 to prove the existence of solutions to Problem 1.1. 
Therefore, we have to verify the validity of H(A)(iv) and H(J)(iv). Indeed, H(A)(iii) 
and (v) imply

〈A(t, x), x〉 = 〈A(t, x) −A(t, 0), x〉 + 〈A(t, 0), x〉 ≥ mA‖x‖2
V − ‖A(t, 0)‖V ∗‖x‖V

≥ mA‖x‖2
V − aA(t)‖x‖V

for all x ∈ V and a.e. t ∈ [0, T ]. This means that H(A)(iv) is satisfied with cA = aA and 
dA ≡ 0. For any y ∈ H and a.e. t ∈ [0, T ], we have

J0(t, y;−y) = J0(t, y;−y) + J0(t, 0; y) − J0(t, 0; y) ≤ mJ‖y‖2
H + aJ(t)‖y‖H .

So, H(J)(iv) is available with θ = 2, cJ = aJ and dJ ≡ 0. Employing Theorem 3.6, we 
conclude that Problem 1.1 is solvable.
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For the uniqueness, let x, y ∈ W be two solutions to Problem 1.1. We are able to 
find functions ξx(t) ∈ ∂J(t, x(t)), ξy(t) ∈ ∂J(t, y(t)), ηx(t) ∈ β∗∂Cϕ(βx(t)) and ηy(t) ∈
β∗∂Cϕ(βy(t)) for a.e. t ∈ [0, T ]. A simple calculating gives

〈x′(t) − y′(t), x(t) − y(t)〉 + 〈A(t, y(t)) −A(t, x(t)), y(t) − x(t)〉

+(ξx(t) − ξy(t), y(t) − x(t))H = 〈ηy(t) − ηx(t), x(t) − y(t)〉 ≤ 0

for a.e. t ∈ [0, T ], where the last inequality is obtained by using the monotonicity of ∂Cϕ. 
Integrating the inequality above over [0, t] and using hypotheses H(A)(v) and H(J)(v), 
we have

1
2‖x(t) − y(t)‖2

H + (mA −mJ‖γ‖2)
t∫

0

‖x(s) − y(s)‖2
V ds ≤ 0

for all t ∈ [0, T ]. This concludes that Problem 1.1 has a unique solution. �
4. Optimal control

In this section, we are interesting in the investigation of a nonlinear optimal control 
problem, Problem 1.2, governed by the nonlinear and nonsmooth dynamics system, Prob-
lem 1.1. Our main goal is to establish a sufficient theorem for examining the existence 
of an optimal control of Problem 1.2.

In the sequel, we denote by Γ: H → 2W by the solution mapping of Problem 1.1, i.e.,

Γ(f) := {x ∈ W | x is a solution to Problem 1.1 corresponding to f}. (4.1)

To obtain the existence of an optimal control to Problem 1.2, we make the following 
assumptions.

H(ϕ)′: ϕ : Z → R is a convex and lower semicontinuous function such that there exists 
bϕ > 0 satisfying

‖∂Cϕ(z)‖Z∗ ≤ bϕ(1 + ‖z‖Z)

for all z ∈ Z.

H(β)′: β : V → Z is a bounded, linear and compact operator such that its Nemytskii 
operator β : W ⊂ V → Z is compact, where Z := L2(0, T ; Z).

H(1): g ∈ H, z0 ∈ H and y0 ∈ V.

Remark 4.1. Let Ω be a bounded domain in RN (N ≥ 2) with a smooth boundary 
∂Ω such that ∂Ω is divided into two measurable and disjoint parts Γ1 and Γ2 with 
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meas(Γ1) > 0. Also let V = {v ∈ H1(Ω; RN ) | v = 0 on Γ1}, Z = L2(Γ2; RN ), and 
β be the trace operator from V to Z. From the trace theorem, it is not difficult to 
prove that β is bounded, linear and compact, and the function ϕ : Z → R defined by 
ϕ(v) =

∫
Γ2

‖v(z)‖RN dΓ for all v ∈ Z satisfies H(ϕ)′. Moreover, [34, Theorem 2.18]
reveals that the Nemytskii operator β : W ⊂ V → Z corresponding to β is compact.

We provide the following lemma to reveal the critical properties of solution map Γ for 
Problem 1.1, which will play a significant role for the proof of the main results of the 
paper.

Lemma 4.2. Suppose that H(A)(i)–(iv), H(J)(i)–(iv), H(0), H(β)′ and H(ϕ)′ are ful-
filled. Then, the statements hold

(i) Γ maps bounded sets of H into bounded sets of W;
(ii) Γ is weakly-weakly u.s.c. from H into W (i.e., Γ is u.s.c. from w−H into w−W), 

and weakly-strongly u.s.c. from H into C(0, T ; H) (i.e., Γ is u.s.c. from w−H into 
C(0, T ; H));

(iii) for each bounded and closed subset I ⊂ H, the set Γ(I) is compact in C(0, T ; H), 
namely, Γ is compact from H into C(0, T ; H).

Proof. (i) Let O be a bounded subset of H. For any x ∈ Γ(O), we can find functions 
f ∈ O, ξ ∈ H and η ∈ V∗ such that (3.1) and (3.2) hold. We use the integration by parts 
formula and hypothesis H(A)(iv) to get

t∫
0

〈x′(s), x(s)〉 ds = 1
2(‖x(t)‖2

H − ‖x(0)‖2
H) (4.2)

and

t∫
0

〈A(s, x(s)), x(s)〉 ds ≥ mA

t∫
0

‖x(s)‖2
V − cA(s)‖x(s)‖V − dA(s) ds (4.3)

for all t ∈ [0, T ]. Applying condition H(J)(iv), it gives

t∫
0

(ξ(s),−x(s))H ds ≤
t∫

0

J0(s, x(s);−x(s)) ds

≤
t∫

0

mJ‖x(s)‖θH + cJ (s)‖x(s)‖H + dJ (s) ds (4.4)

for all t ∈ [0, T ]. It follows from H(ϕ)′ that
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t∫
0

〈η(s),−x(s)〉 ds ≤
t∫

0

ϕ(β0) − ϕ(βx(s)) ds ≤ T (ϕ(β0) + dϕ) +
t∫

0

cϕ‖βx(s)‖Z ds

(4.5)

for all t ∈ [0, T ], where the constants cϕ and dϕ are given in (3.6). Besides, it has

t∫
0

(f(s), x(s))H ds ≤ ‖f‖H‖x‖L2(0,t;H) (4.6)

for all t ∈ [0, T ]. Multiplying (3.1) by x(t) and integrating the resulting equality over 
[0, t], we can use the estimates (4.2)–(4.6) to obtain

1
2(‖x(t)‖2

H − ‖x(0)‖2
H) + mA

t∫
0

‖x(s)‖2
V − cA(s)‖x(s)‖V − dA(s) ds

≤
t∫

0

mJ‖x(s)‖θH + cJ (s)‖x(s)‖H + dJ(s) ds + T (ϕ(β0) + dϕ) +
t∫

0

cϕ‖βx(s)‖Z ds

+‖f‖H‖x‖L2(0,t;H)

for all t ∈ [0, T ]. Furthermore, when θ ∈ [1, 2), we utilize Young’s inequality and Hölder’s 
inequality to get

1
2(‖x(t)‖2

H − ‖x(0)‖2
H) + (mA − 2ε)

t∫
0

‖x(s)‖2
V ds

≤
‖cA‖L2(0,T ) + ‖cJ‖L2(0,T )

4ε + ‖dA‖L1(0,T ) + 3ε
t∫

0

‖x(s)‖2
H ds + c(ε)

+‖dJ‖L1(0,T ) + T (ϕ(β0) + dϕ) +
‖β‖2c2ϕT

4ε + ‖f‖2
H

4ε

for all t ∈ [0, T ], with some c(ε) > 0; if θ = 2, we also obtain

1
2(‖x(t)‖2

H − ‖x(0)‖2
H) + (mA − 2ε)

t∫
0

‖x(s)‖2
V ds

≤
‖cA‖L2(0,T ) + ‖cJ‖L2(0,T )

4ε + ‖dA‖L1(0,T ) +
t∫

0

(2ε + mJ)‖x(s)‖2
H ds

+‖dJ‖L1(0,T ) + T (ϕ(β0) + dϕ) +
‖β‖2c2ϕT + ‖f‖2

V∗
4ε
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for all t ∈ [0, T ]. We are now in a position to invoke Gronwall’s inequality to find that 
Γ(O) is bounded both in V and C(0, T ; H).

Moreover, it follows from (3.1) that

‖x′(t)‖V ∗ ≤ ‖A(t, x(t))‖V ∗ + ‖ξ(t)‖V ∗ + ‖η(t)‖V ∗ + ‖f(t)‖V ∗

for a.e. t ∈ [0, T ]. This combined with hypotheses H(A)(iii), H(J)(iii) and H(ϕ)′ deduces

‖x′(t)‖V ∗ ≤ aA(t) + bA‖x(t)‖V + ‖γ∗‖(aJ(t) + bJ‖x(t)‖H)

+ ‖β∗‖bϕ(1 + ‖β‖‖x(t)‖V ) + ‖γ∗‖‖f(t)‖H (4.7)

for a.e. t ∈ [0, T ]. Recall that Γ(O) is bounded both in V and C(0, T ; H), we conclude 
that Γ(O) is bounded in W too.
(ii) We first prove that Γ is u.s.c. from w−H into w−W. It is sufficient to show that for 
each weakly closed set D in W, the set Γ−(D) is weakly closed in H. Let {fn} ⊂ Γ−(D)
be a sequence such that

fn
w−→ f in H as n → ∞, (4.8)

for some f ∈ H. Then, we are able to find a sequence {xn} ⊂ W satisfying xn ∈ Γ(fn) ∩D
for each n ∈ N, namely, for each n ∈ N we have

{
x′
n(t) + A(t, xn(t)) + ξn(t) + ηn(t) = fn(t) for a.e. t ∈ [0, T ],

xn(0) = x0,
(4.9)

where ξn ∈ H and ηn ∈ V∗ are such that

ηn(t) ∈ β∗∂Cϕ(βxn(t)) and ξn(t) ∈ ∂J(t, xn(t)) for a.e. t ∈ [0, T ]. (4.10)

By virtue of assertion (i), we conclude that the sequence {xn} is bounded in W. Then, 
passing to a relabeled subsequence, we can assume that

xn
w−→ x in W and xn → x in H as n → ∞, (4.11)

with some x ∈ W, due to the compactness of the embedding from W into H. So, we may 
say that

xn(t) → x(t) in H as n → ∞ (4.12)

for a.e. t ∈ [0, T ]. Using H(J)(iii), we can see that {ξn} is bounded in H. Without 
loss of generality, it has ξn

w−→ ξ in H for some ξ ∈ H as n → ∞. This together 
with the convergence (4.12) and the convergence theorem of Aubin and Cellina (see for 
example, [30, Theorem 3.13]) gives ξ(t) ∈ ∂J(t, x(t)) for a.e. t ∈ [0, T ].
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We multiply (4.9) by xn(t) − x(t) and integrate the resulting equality over [0, t] to 
obtain

t∫
0

〈x′
n(s), xn(s) − x(s)〉 + 〈A(s, xn(s)), xn(s) − x(s)〉 ds

=
t∫

0

(ξn(s), x(s) − xn(s))H + 〈ηn(s), x(s) − xn(s)〉 + (fn(s), xn(s) − x(s))H ds

for all t ∈ [0, T ]. Note that

t∫
0

〈x′
n(s), xn(s) − x(s)〉 ds = 1

2(‖x(t) − xn(t)‖2
H − ‖x(0) − xn(0)‖2

H)

+
t∫

0

〈x′(s), xn(s) − x(s)〉 ds

t∫
0

〈ηn(s), x(s) − xn(s)〉 ds ≤
t∫

0

ϕ(βx(s)) − ϕ(βxn(s)) ds

for all t ∈ [0, T ], we have

1
2‖x(t) − xn(t)‖2

H +
t∫

0

〈A(s, xn(s)), xn(s) − x(s)〉 ds +
t∫

0

〈x′(s), xn(s) − x(s)〉 ds

≤
t∫

0

(ξn(s), x(s) − xn(s))H + (fn(s), xn(s) − x(s))H ds +
t∫

0

ϕ(βx(s)) − ϕ(βxn(s)) ds

(4.13)

for all t ∈ [0, T ]. Recall that (4.12) and the inequality

t∫
0

(ξn(s), x(s) − xn(s))H ds ≤
t∫

0

J0(t, xn(s);x(s) − xn(s)) ds,

we apply Fatou lemma and Proposition 2.3(iv) to find

lim sup
n→∞

t∫
(ξn(s), x(s) − xn(s))H ds ≤ lim sup

n→∞

t∫
J0(t, xn(s);x(s) − xn(s)) ds
0 0
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≤
t∫

0

lim sup
n→∞

J0(t, xn(s);x(s) − xn(s)) ds ≤ 0 (4.14)

for all t ∈ [0, T ]. The convergences (4.8) and (4.12) imply

lim
n→∞

t∫
0

(fn(s), xn(s) − x(s))H ds = 0 and lim
n→∞

t∫
0

〈x′(s), xn(s) − x(s)〉 ds = 0

(4.15)

for all t ∈ [0, T ]. Nevertheless, arguing as in the proof of Lemma 3.3 indicates that the 
function y �→

∫ t

0 ϕ(βy(s)) ds is convex and lower semicontinuous on L2(0, t; V ), so, it is 
weakly lower semicontinuous on L2(0, t; V ) too. Hence,

lim sup
n→∞

t∫
0

ϕ(βx(s)) − ϕ(βxn(s)) ds ≤
t∫

0

ϕ(βx(s)) ds− lim inf
n→∞

t∫
0

ϕ(βxn(s)) ds ≤ 0

(4.16)

for all t ∈ [0, T ]. Passing to the upper limit as n → ∞ into inequality (4.13) and using 
(4.14)–(4.16), it yields

lim sup
n→∞

t∫
0

〈A(s, xn(s)), xn(s) − x(s)〉 ds ≤ 0.

But, hypothesis H(A), [42, Proposition 1] and convergence (4.11) turn out that

⎧⎪⎪⎨
⎪⎪⎩

A(·, xn(·)) w−→ A(·, x(·)) in L2(0, t;V ∗) and
t∫

0

〈A(s, xn(s)), xn(s)〉 ds →
t∫

0

〈A(s, x(s)), x(s)〉 ds as n → ∞ (4.17)

for all t ∈ [0, T ]. Remembering that ηn(t) ∈ β∗∂Cϕ(βxn(t)) for a.e. t ∈ [0, T ], we can find 
ζn : [0, T ] → Z∗ such that ηn(t) = β∗ζn(t) for a.e. t ∈ [0, T ]. Condition H(ϕ)′ ensures 
that {ζn} is bounded in Z∗, so, passing to a subsequence if necessary, we may suppose 
that ζn

w−→ ζ in Z∗ as n → ∞ for some ζ ∈ Z∗, hence, ηn
w−→ β

∗
ζ := η in V∗ as 

n → ∞, where β
∗ : Z∗ → V∗ is the dual operator of β. For any y ∈ V, we have

〈ζn, β(y − xn)〉Z =
T∫
〈ζn(t), β(y(t) − xn(t))〉Z dt =

T∫
〈ηn(t), y(t) − xn(t)〉 dt
0 0
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= 〈〈ηn, y − xn〉〉 ≤
T∫

0

ϕ(βy(t)) − ϕ(βxn(t)) dt,

where we have used the hypothesis H(β)′. Passing to the upper limit as n → ∞ into the 
inequality above, it gives

〈〈η, y − x〉〉 = 〈〈β∗
ζ, y − x〉〉 = 〈ζ, β(y − x)〉Z = lim

n→∞
〈ζn, β(y − xn)〉Z

≤
T∫

0

ϕ(βy(t)) dt− lim inf
n→∞

T∫
0

ϕ(βxn(t)) dt ≤
T∫

0

ϕ(βy(t)) − ϕ(βx(t)) dt.

Combining the above estimates and [30, Proposition 3.46], we obtain η(t) ∈ β∗∂Cϕ(βx(t))
for a.e. t ∈ [0, T ]. Under the analysis above, we can see that

x′
n + A(·, xn(·)) + ξn + ηn − fn

w−→ x′ + A(·, x(·)) + ξ + η − f in V∗ as n → ∞,

with η(t) ∈ β∗∂Cϕ(βx(t)) and ξ(t) ∈ ∂J(t, x(t)) for a.e. t ∈ [0, T ]. Then, from the fact 
xn(0) → x0 as n → ∞, we can see that x solves Problem 1.1 associated with f , namely, 
x ∈ Γ(f). Hence, x ∈ Γ(f) ∩D, due to the weak closedness of D. This concludes that Γ
is u.s.c. from w −H into w −W.

Next, we are going to illustrate that Γ is u.s.c. from w − H into C(0, T ; H). So, we 
have to verify that Γ−(E) is weakly closed in H, for each closed set E of C(0, T ; H). 
Let {fn} be a sequence such that (4.8) is available. Then, there is a sequence {xn} ⊂ W
such that (4.9) and (4.10) hold. As before we did, it is not difficult to prove that (4.11)
hold with x ∈ Γ(f). Our aim is to show that x ∈ E. From (3.1) and (4.9), we have

〈x′(t) − x′
n(t), x(t) − xn(t)〉 + 〈A(t, x(t)) −A(t, xn(t)), x(t) − xn(t)〉

= (ξn(t) − ξ(t), x(t) − xn(t))H + 〈ηn(t) − η(t), x(t) − xn(t)〉
+(fn(t) − f(t), x(t) − xn(t))H

for a.e. t ∈ [0, T ]. Keeping in mind that z �→ ∂Cϕ(z) is monotone, it has

〈ηn(t) − η(t), x(t) − xn(t)〉 = 〈ζn(t) − ζ(t), β(x(t) − xn(t))〉Z ≤ 0

for a.e. t ∈ [0, T ]. Then, we obtain

1
2‖x(t) − xn(t)‖2

H +
t∫

0

〈A(s, x(s)) −A(s, xn(s)), x(s) − xn(s)〉 ds

≤
t∫
(ξn(s) − ξ(s), x(s) − xn(s))H + (fn(s) − f(s), x(s) − xn(s))H ds
0
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for all t ∈ [0, T ]. Letting limn→∞ into the inequality above, we utilize (4.8), (4.11), (4.14), 
(4.15) and (4.17) to get

lim
n→∞

1
2‖x(t) − xn(t)‖2

H

≤ lim
n→∞

t∫
0

〈A(s, x(s)) −A(s, xn(s)), xn(s) − x(s)〉 ds

+ lim
n→∞

t∫
0

(ξn(s) − ξ(s), x(s) − xn(s))H + (fn(s) − f(s), x(s) − xn(s))H ds

≤ 0

for all t ∈ [0, T ]. This means that xn → x in C(0, T ; H). Recall that E is closed in 
C(0, T ; H) and {xn} ⊂ E, we have x ∈ E, namely, x ∈ Γ−(E). Consequently, Γ is u.s.c. 
from w −H to C(0, T ; H).
(iii) Let I be a bounded closed set of H. Let sequence {xn} ⊂ Γ(I) be arbitrary. Because 
I is bounded in H, from assertion (i), we can see that {xn} is bounded in W. Passing 
to a relabeled subsequence if necessary, we may assume that (4.11) is available. In fact, 
for each n ∈ N, there exists fn ∈ I such that xn ∈ Γ(fn). Using the boundedness and 
closedness of I again, it can say that (4.8) holds with some f ∈ I. Applying the same 
arguments as in the proof of assertion (ii), we can see that there exists a subsequence of 
{xn}, still denoted by {xn}, such that xn → x in C(0, T ; H) as n → ∞ with x ∈ Γ(f) ⊂
Γ(I). Therefore, we conclude that the set Γ(I) is compact in C(0, T ; H). �
Remark 4.3. Furthermore, from the proof of Lemma 4.2, it is not difficult to prove that Γ
is also closed from w−H into w−W (i.e., the graph of Γ is closed in w−H×w−W), and 
for each f ∈ H, Γ(f) is bounded and weakly closed in W, and compact in C(0, T ; H).

Particularly, if Problem 1.1 has a unique solution, i.e., Γ is a single-valued operator, 
then we have the following corollary.

Corollary 4.4. Suppose that H(A)(i)–(iii), (v), H(J)(i)–(iii), (v), H(0), H(β)′ and H(ϕ)′
are fulfilled. Then, the statements hold

(i) Γ: H → W is a bounded mapping;
(ii) Γ is continuous from w −H into w −W;
(iii) Γ: H → C(0, T ; H) is compact (therefore, Γ is continuous from w − H into 

C(0, T ; H)).

We now give the existence theorem for Problem 1.2 as follows.
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Theorem 4.5. Assume that H(A)(i)–(iv), H(J)(i)–(iv), H(0), H(β)′, H(ϕ)′ and H(1)
are fulfilled. Then, the set of solutions to Problem 1.2 is nonempty and weakly compact 
in W ×H.

Proof. By virtue of definition of Q (see (1.4)), we can see that Q(x, f) ≥ 0 for all x ∈ W
and f ∈ H. Let {(xn, fn)} ⊂ W ×H with xn ∈ Γ(fn) for each n ∈ N, be a minimizing 
sequence of Problem 1.2, i.e.,

lim
n→∞

Q(xn, fn) = inf
f∈H,x∈Γ(f)

Q(x, f) := ρ ≥ 0. (4.18)

But, the estimate

Q(xn, fn) ≥ α1

2 ‖fn − g‖2
H,

indicates that {fn} is bounded in H. Passing to a subsequence if necessary, we may 
assume that

fn
w−→ f∗ in H as n → ∞, (4.19)

for some f∗ ∈ H.
Lemma 4.2(i) points out that {xn} is bounded in W. So, passing to a relabeled 

subsequence, we can suppose that

xn
w−→ x∗ in W and V as n → ∞, (4.20)

for some x∗ ∈ W. Since the embedding from W into C(0, T ; H) is continuous, so, we 
have

xn(T ) w−→ x∗(T ) in H as n → ∞. (4.21)

The convergences (4.19) and (4.20), and the closedness of Γ entail that x∗ ∈ Γ(f∗) (see 
Remark 4.3).

We use convergences (4.19)–(4.21) to yield

lim inf
n→∞

Q(xn, fn)

≥ lim inf
n→∞

α1

2 ‖fn − g‖2
H + lim inf

n→∞
α2

2 ‖xn(T ) − z0‖2
H + lim inf

n→∞
α3

2 ‖xn − y0‖2
V

≥ α1

2 ‖f∗ − g‖2
H + α2

2 ‖x∗(T ) − z0‖2
H + α3

2 ‖x∗ − y0‖2
V

= Q(x∗, f∗).

This combined with the fact x∗ ∈ Γ(f∗) and (4.18) deduces
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inf
f∈H,x∈Γ(f)

Q(x, f) ≤ Q(x∗, f∗) ≤ lim inf
n→∞

Q(xn, fn) = inf
f∈H,x∈Γ(f)

Q(x, f).

This implies that (x∗, f∗) ∈ W×H with x∗ ∈ Γ(f∗) is an optimal control of Problem 1.2.
Finally, we show that the set of solutions to Problem 1.2 is weakly compact in W×H. 

Let {(xn, fn)} ⊂ W × H with xn ∈ Γ(fn) is an any solution sequence of Problem 1.2. 
Therefore, {fn} and {xn} are bounded in H and W, respectively. This allows us to 
assume that (4.19)–(4.21) hold with x∗ ∈ Γ(f∗). An easy computing finds

inf
f∈H,x∈Γ(f)

Q(x, f) = lim inf
n→∞

Q(xn, fn)

≥ lim inf
n→∞

α1

2 ‖fn − g‖2
H + lim inf

n→∞
α2

2 ‖xn(T ) − z0‖2
H + lim inf

n→∞
α3

2 ‖xn − y0‖2
V

≥ α1

2 ‖f∗ − g‖2
H + α2

2 ‖x∗(T ) − z0‖2
H + α3

2 ‖x∗ − y0‖2
V

= Q(x∗, f∗) ≥ inf
f∈H,x∈Γ(f)

Q(x, f).

This turns out that (x∗, f∗) with x∗ ∈ Γ(f∗) is a solution of Problem 1.2. Consequently, 
the set of solutions to Problem 1.2 is weakly compact in W ×H. �
5. Feedback control

The main goal of the section is to explore the existence of a feedback control pair to the 
nonlinear and nonsmooth feedback dynamic system, Problem 1.3, in which our method is 
based on Kakutani-Ky Fan fixed point theorem for set-valued mappings and the theory of 
nonsmooth analysis. Then, the compactness of the solution set of Problem 1.3 is proved. 
Finally, we obtain a convergence result in the sense of Kuratowski which describes the 
changes in the set of solutions for Problem 1.3 as the initial data x0 is perturbed in 
Hilbert space H.

To this end, we make the following assumptions.

H(B): B : [0, T ] ×H → L(Y, H) is such that

(i) t �→ B(t, x)u is measurable on [0, T ] for any (x, u) ∈ H × Y ;
(ii) x �→ B∗(t, x)u is continuous for all u ∈ H and a.e. t ∈ [0, T ], where B∗(t, x) ∈

L(H∗, Y ∗) is the dual operator of B(t, x);
(iii) for any x ∈ H and a.e. t ∈ T , there exist cB ∈ L2(0, T )+ and dB > 0 such that

‖B(t, x)‖L(Y,H) ≤ cB(t) + dB‖x‖H

for all x ∈ H and a.e. t ∈ [0, T ];
(iv) there exists cB ∈ L2(0, T )+ with cBcU ∈ L2(0, T )+ such that

‖B(t, x)‖L(Y,H) ≤ cB(t)
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for all x ∈ H and a.e. t ∈ [0, T ], where cU is given in H(U)(iv) (see below).

H(U): U : [0, T ] ×H → 2Y is such that

(i) for each x ∈ H, the function t �→ U(t, x) is measurable on [0, T ];
(ii) U has nonempty, bounded, closed and convex values;
(iii) for a.e. t ∈ [0, T ], the function x �→ U(t, x) is upper semicontinuous;
(iv) there exist cU ∈ L2(0, T )+ and dU > 0 such that

‖U(t, x)‖Y ≤ cU (t) + dU‖x‖H

for all x ∈ H and a.e. t ∈ [0, T ];
(v) there exists a function cU ∈ L2(0, T )+ with cBcU ∈ L2(0, T )+ such that

‖U(t, x)‖Y ≤ cU (t)

for all x ∈ H and a.e. t ∈ [0, T ], where cB is given in H(B)(iii).

Definition 5.1. We say that a pair of functions (x, u) ∈ W×Y is a solution (or a feedback 
control pair) to Problem 1.3, if there exist ξ ∈ H and η ∈ V∗ such that

{
x′(t) + A(t, x(t)) + ξ(t) + η(t) = B(t, x(t))u(t) for a.e. t ∈ [0, T ],
x(0) = x0,

(5.1)

and

ξ(t) ∈ ∂J(t, x(t)), η(t) ∈ β∗∂Cϕ(βx(t)), and u(t) ∈ U(t, x(t)) for a.e. t ∈ [0, T ].

(5.2)

In what follows, we denote by S(x0) the solution set of Problem 1.3 corresponding to 
the initial data x0 ∈ V .

Lemma 5.2. Suppose that H(A)(i)–(iv), H(J)(i)–(iv), H(0), H(ϕ)′, H(B)(i)–(ii) and 
H(U)(i)–(iii) are fulfilled. If H(B)(iii) and H(U)(v), or H(B)(iv) and H(U)(iv), hold, 
then there exists a constant M > 0 such that for each (x, u) ∈ S(x0) we have

‖x‖C ≤ M, ‖x‖W ≤ M and ‖u‖Y ≤ M, (5.3)

where ‖x‖C := inft∈[0,T ] ‖x(t)‖H .

Proof. Assume that S(x0) �= ∅, let (x, u) ∈ S(x0) be an any solution of Problem 1.3. 
Then, we can find ξ ∈ H and η ∈ V∗ such that (5.1) and (5.2) hold. By virtue of 
hypotheses H(B)(iii) and H(U)(v), we have
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t∫
0

(B(s, x(s))u(s), x(s))H ds ≤
t∫

0

‖B(s, x(s))u(s)‖H‖x(s)‖H ds

≤
t∫

0

(cB(s) + dB‖x(s)‖H)cU (s)‖x(s)‖H ds (5.4)

for all t ∈ [0, T ]. Likewise, from H(B)(iv) and H(U)(iv), it has

t∫
0

(B(s, x(s))u(s), x(s))H ds ≤
t∫

0

cB(s)(cU (s) + dU‖x(s)‖H)‖x(s)‖H ds (5.5)

for all t ∈ [0, T ].
Suppose that H(B)(iii) and H(U)(v) are fulfilled. Multiplying (5.1) by x(t) and in-

tegrating the resulting equality over [0, t], we use the estimates (4.2)–(4.6) and (5.4) to 
obtain

1
2(‖x(t)‖2

H − ‖x(0)‖2
H) + mA

t∫
0

‖x(s)‖2
V − cA(s)‖x(s)‖V − dA(s) ds

≤
t∫

0

mJ‖x(s)‖θH + cJ (s)‖x(s)‖H + dJ (s) ds + T (ϕ(β0) + dϕ)

+
t∫

0

cϕ‖βx(s)‖Z ds +
t∫

0

(cB(s) + dB‖x(s)‖H)cU (s)‖x(s)‖H ds

for all t ∈ [0, T ]. Furthermore, when θ ∈ [1, 2), we utilize Young’s inequality and Hölder’s 
inequality to get

1
2(‖x(t)‖2

H − ‖x(0)‖2
H) + (mA − 2ε)

t∫
0

‖x(s)‖2
V ds

≤
‖cA‖L2(0,T ) + ‖cJ‖L2(0,T )

4ε + ‖dA‖L1(0,T ) +
t∫

0

(3ε + dBcU (s))‖x(s)‖2
H ds + c1(ε)

+‖dJ‖L1(0,T ) + T (ϕ(β0) + dϕ) +
‖β‖2c2ϕT + ‖cBcU‖2

L2(0,T )

4ε

for all t ∈ [0, T ], with some c1(ε) > 0; if θ = 2, we also obtain

1
2(‖x(t)‖2

H − ‖x(0)‖2
H) + (mA − 2ε)

t∫
‖x(s)‖2

V ds
0
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≤
‖cA‖L2(0,T ) + ‖cJ‖L2(0,T )

4ε + ‖dA‖L1(0,T ) +
t∫

0

(2ε + dBcU (s) + mJ)‖x(s)‖2
H ds

+‖dJ‖L1(0,T ) + T (ϕ(β0) + dϕ) +
‖β‖2c2ϕT + ‖cBcU‖2

L2(0,T )

4ε

for all t ∈ [0, T ]. We are now in a position to invoke Gronwall’s inequality to find a 
constant M0 > 0 such that

‖x(t)‖H ≤ M0 for all t ∈ [0, T ] and ‖x‖V ≤ M0. (5.6)

However, while H(B)(iv) and H(U)(iv) are satisfied, we could apply the similar argu-
ments to verify the estimates (5.6).

Furthermore, it follows from (5.1) that

‖x′(t)‖V ∗ ≤ ‖A(t, x(t))‖V ∗ + ‖ξ(t)‖V ∗ + ‖η(t)‖V ∗ + ‖B(t, x(t))u(t)‖V ∗

for a.e. t ∈ [0, T ]. If H(B)(iii) and H(U)(v) hold, then we use hypotheses H(A)(iii), 
H(J)(iii) and H(ϕ)′ to find

‖x′(t)‖V ∗ ≤ aA(t) + bA‖x(t)‖V + ‖γ∗‖(aJ(t) + bJ‖x(t)‖H)

+‖β∗‖bϕ(1 + ‖β‖‖x(t)‖V ) + ‖γ∗‖(cB(t) + dB‖x(t)‖H)cU (t) (5.7)

for a.e. t ∈ [0, T ]. But, when H(B)(iv) and H(U)(iv) hold, we can calculate to get the 
similar estimate as (5.7). Taking into account (5.6) and (5.7), we can see that there exists 
M1 > 0 such that

‖x′‖V ≤ M1. (5.8)

However, (5.6), and H(U)(iv) or H(U)(v) ensure that

‖u‖Y ≤ M2, (5.9)

with some M2 > 0. So, from (5.6), (5.8) and (5.9), we can take M = max{M2, M0 +M1}
to conclude that the estimates (5.3) are valid. �

We, first, give the following existence theorem to Problem 1.3.

Theorem 5.3. Assume that H(A)(i)–(iii), (v), H(J)(i)–(iii), (v), H(0), H(ϕ)′, H(B)(i)–
(ii) and H(U)(i)–(iii) are fulfilled. If H(B)(iii) and H(U)(v), or H(B)(iv) and H(U)(iv), 
hold, then for each x0 ∈ V Problem 1.3 has at least one solution, i.e., S(x0) �= ∅.
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Proof. Let us introduce the set-valued mapping SU : W → 2Y defined by

SU (x) := {u ∈ Y | u(t) ∈ U(t, x(t)) for a.e. t ∈ [0, T ]} for all x ∈ W. (5.10)

Recall that t �→ U(t, y) is measurable on [0, T ] for all y ∈ H and y �→ U(t, y) is u.s.c. (see 
hypothesis H(U)(iii)) for a.e. t ∈ [0, T ], so, for each x ∈ W, the function t �→ U(t, x(t)) is 
measurable on [0, T ] too. Therefore, applying Yankov-von Neumann-Aumann selection 
theorem (see [15, Theorem 2.14, p. 158] or [18, Theorem 1.3.1]), for each x ∈ W, U(·, x(·))
has a measurable selector u : [0, T ] → Y with u(t) ∈ U(t, x(t)) for a.e. t ∈ [0, T ]. From 
condition H(U)(iv) or H(U)(v), we have

‖u(t)‖Y ≤ aU (t) + cU‖x(t)‖H or ‖u(t)‖Y ≤ aU (t) for a.e. t ∈ [0, T ],

thus, u ∈ Y. This means that SU : W → 2Y is well-defined. In addition, hypothesis 
H(U)(ii) ensures that SU has nonempty, closed and convex values.

We affirm that SU is weakly-weakly u.s.c., i.e., SU is u.s.c. from w −W to w − Y. It 
is enough to show that for any weakly closed set D in Y the set S−

U (D) is weakly closed 
in W. Let {xn} ⊂ S−

U (D) be such that

xn
w−→ x in W as n → ∞, (5.11)

for some x ∈ W. Then, the compactness of the embedding from W into H indicates that

xn → x in H as n → ∞. (5.12)

In the meanwhile, we are able to find a sequence {un} ⊂ Y such that

un ∈ SU (xn) ∩D for each n ∈ N, (5.13)

i.e., un(t) ∈ U(t, xn(t)) for a.e. t ∈ [0, T ]. Condition H(U)(iv) or H(U)(v) implies that 
the sequence {un} is bounded in Y. Without loss of generality, we may assume that

un
w−→ u∗ in Y as n → ∞, (5.14)

for some u∗ ∈ Y. Applying Mazur’s Theorem (see e.g. [22, Chapter 2, Corollary 2.8]), 
for each l ∈ N, there exists a sequence {ail}i≥1 ⊂ R with ail ≥ 0 and 

∑
i≥1 ail = 1 such 

that

ul(·) :=
∑
i≥1

ailui+l(·) → u∗ in Y as l → ∞.

Hence, we may assume that

ul(t) → u∗(t) in Y as l → ∞ for a.e. t ∈ [0, T ]. (5.15)
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Convergence (5.12) allows us to suppose that

xn(t) → x(t) in H as n → ∞ for a.e. t ∈ [0, T ]. (5.16)

Since x �→ U(t, x) is u.s.c., then for any ε > 0 and k > 0 large enough, we have

uk(t) ∈ U(t, xk(t)) ⊂ U(t, x(t)) + Oε for a.e. t ∈ [0, T ],

where Oε is an open ball with radius ε > 0 centered at 0Y . Indeed, we also have

ul(t) ∈ U(t, x(t)) + Oε for a.e. t ∈ [0, T ],

due to the convexity of U(t, x(t)) + Oε. This combined with the convergence (5.15)
deduces

u∗(t) ∈ U(t, x(t)) + Oε for a.e. t ∈ [0, T ].

Letting ε → 0, we have

u∗(t) ∈ U(t, x(t)) for a.e. t ∈ [0, T ].

Since U has closed values, so, we get u∗(t) ∈ U(t, x(t)) = U(t, x(t)) for a.e. t ∈ [0, T ]. 
This means that u ∈ SU (x). But, the weak closedness of D infers that u ∈ D, that is, 
x ∈ S−

U (D). To summary, SU is u.s.c. from w −W to w − Y.
Given u ∈ Y, let us consider the problem: find x ∈ W such that

{
x′(t) + A(t, x(t)) + ξ(t) + η(t) = B(t, x(t))u(t) for a.e. t ∈ [0, T ],
x(0) = x0,

(5.17)

and

ξ(t) ∈ ∂J(t, x(t)) and η(t) ∈ β∗∂Cϕ(βx(t)) for a.e. t ∈ [0, T ]. (5.18)

Arguing as in the proof of Theorems 3.6 and 3.7, we can see that for each u ∈ Y, problem 
(5.17)–(5.18) has a unique solution x ∈ W. Let us introduce a function F : Y → W
defined by F (u) = x(u), where x(u) ∈ W is the unique solution of problem (5.17)–(5.18)
corresponding to u ∈ Y. Applying the same arguments as in the proof of Lemma 4.2(i), 
we can see that F is a bounded map.

We assert that F is weakly-weakly continuous, namely, F is continuous from w − Y
into w − W. Let {un} ⊂ Y be such that un

w−→ u in Y as n → ∞ for some u ∈ Y. 
Then, for each n ∈ N, we can find sequences {ξn} ⊂ H and {ηn} ⊂ V∗ such that

{
x′
n(t) + A(t, xn(t)) + ξn(t) + ηn(t) = B(t, xn(t))un(t) for a.e. t ∈ [0, T ],

x (0) = x ,
n 0
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and

ξn(t) ∈ ∂J(t, xn(t)) and ηn(t) ∈ β∗∂Cϕ(βxn(t)) for a.e. t ∈ [0, T ].

Because the sequence {xn} with xn = F (un) is bounded in W. Hence, passing to a 
subsequence if necessary, we may assume that xn

w−→ x in W as n → ∞ for some 
x ∈ W. We will show that x = F (u). A simple calculating gives (see (4.13) for example)

1
2‖x(T ) − xn(T )‖2

H +
T∫

0

〈A(s, xn(s)), xn(s) − x(s)〉 ds (5.19)

≤
T∫

0

(ξn(s), x(s) − xn(s))H + (B(s, xn(s))un(s), xn(s) − x(s))H ds

+
T∫

0

ϕ(βx(s)) − ϕ(βxn(s)) ds +
T∫

0

〈x(s), x(s) − xn(s)〉 ds.

For any y ∈ H, it has

T∫
0

(B(t, xn(t))un(t), y(t))H dt =
T∫

0

〈un(t), B∗(t, xn(t))y(t)〉Y dt.

The continuity of x �→ B∗(t, x) and Lebesgue dominated convergence theorem entail

lim
n→∞

T∫
0

(B(t, xn(t))un(t), y(t))H dt

= lim
n→∞

T∫
0

〈un(t), [B∗(t, xn(t)) −B∗(t, x(t))]y(t)〉Y dt

+ lim
n→∞

T∫
0

〈un(t), B∗(t, x(t))y(t)〉Y dt

=
T∫

0

〈u(t), B∗(t, x(t))y(t)〉Y dt =
T∫

0

(B(t, x(t))u(t), y(t))H dt, (5.20)

where we have used the convergence xn(t) → x(t) in H as n → ∞ for a.e. t ∈ [0, T ], 
owing to the compactness of the embedding from W into H. So, B(·, xn(·))un(·) w−→
B(·, x(·))u(·) in H as n → ∞. Passing to the upper limit as n → ∞ into (5.19), we have
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lim sup
n→∞

T∫
0

〈A(s, xn(s)), xn(s) − x(s)〉 ds ≤ 0, (5.21)

where we have applied the weak lower semicontinuity of x �→
∫ T

0 ϕ(βx(t)) dt and the 
boundedness of {ξn} (see hypothesis H(J)(iii)). From (5.21) and the convergence, xn

w−→
x in W as n → ∞, we can invoke [42, Proposition 1] to obtain

A(·, xn(·)) w−→ A(·, x(·)) in V∗ as n → ∞.

Using the similar arguments as in the proof of Lemma 4.2(ii), we may say that ξn
w−→ ξ

in H as n → ∞ with some ξ ∈ H and ξ(t) ∈ ∂J(t, x(t)) for a.e. t ∈ [0, T ], and ηn
w−→ η

in V∗ as n → ∞ with some η ∈ V∗ such that η(t) ∈ β∗∂Cϕ(βx(t)) for a.e. t ∈ [0, T ]. 
Therefore, we have

x′
n(·) + A(·, xn(·)) + ξn(·) + ηn(·) −B(·, xn(·))un(·)

w−→ x′(·) + A(·, x(·)) + ξ(·) + η(·) −B(·, x(·))u(·) in V∗,

xn(0) → x0 and ξ(t) ∈ ∂J(t, x(t)), η(t) ∈ β∗∂Cϕ(βx(t)) for a.e. t ∈ [0, T ]. This means 
that x is the unique solution of problem (5.17) associated with u ∈ Y, i.e., x = F (u). 
Therefore, we conclude that the whole sequence {xn} weakly converges to F (u), namely, 
F is weakly-weakly continuous from H into W.

Furthermore, we introduce a set-valued mapping Λ: W ×Y → 2W×Y defined by

Λ(x, u) = (F (u), SU (x)) for all (x, u) ∈ W × Y. (5.22)

It is obvious that Λ has nonempty closed and convex values in W×Y. Let D be a subset 
of W ×Y defined by

D := {(x, u) ∈ W × Y | ‖x‖W ≤ M and ‖u‖Y ≤ M},

where M > 0 is given in Lemma 5.2. Following the proof of Lemma 5.2, it is not difficult 
to prove that Λ maps D into itself.

However, the weak-weak upper semicontinuity of Λ (i.e., Λ is u.s.c. from w −W into 
w − Y) and [18, Theorem 1.1.4] imply that the graph of Λ is sequentially closed in 
w −W × w − Y. Consequently, all conditions of Theorem 2.7 are verified with D = D
and E = W × Y. Using this theorem, we infer that there exists (x∗, u∗) ∈ W × Y such 
that (x∗, u∗) ∈ Λ(x∗, u∗), i.e., x∗ = F (u∗) and u∗ ∈ SU (x∗). Hence,

{
x∗′(t) + A(t, x∗(t)) + ξ∗(t) + η∗(t) = B(t, x∗(t))u∗(t) for a.e. t ∈ [0, T ],

x∗(0) = x0,

and
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ξ∗(t) ∈ ∂J(t, x∗(t)), η∗(t) ∈ β∗∂Cϕ(βx∗(t)), and u∗(t) ∈ U(t, x∗(t)) for a.e. t ∈ [0, T ].

Therefore, Problem 1.3 admits a feedback control pair, i.e., S(x0) �= ∅.
It remains us to show that S(x0) is weakly compact in W×Y. Let {(xn, un)} ⊂ S(x0)

be a solution sequence of Problem 1.3. Lemma 5.2 concludes that {xn} and {un} are 
both bounded in W and Y, respectively. So, we may assume that (5.11), (5.12) and (5.14)
hold. Since the graph of SU is sequentially weakly-weakly closed and F is weakly-weakly 
continuous, then we have xn = F (un) w−→ F (u∗) = x and u∗ ∈ SU (x) with x(0) = x0. 
This means that (x, u∗) ∈ S(x0). Consequently, S(x0) is weakly compact in W × Y . �

Finally, we give a convergence result in the sense of Kuratowski which describes the 
changes in the set of solutions for Problem 1.3 as the initial data x0 is perturbed in 
Hilbert space H.

Theorem 5.4. Assume that H(A)(i)–(iii), (v), H(J)(i)–(iii), (v), H(0), H(ϕ)′, H(B)(i)–
(ii) and H(U)(i)–(iii) are fulfilled. If H(B)(iii) and H(U)(v), or H(B)(iv) and H(U)(iv), 
hold, and {xn

0} ⊂ V is a sequence such that xn
0 → x0 in H as n → ∞ with x0 ∈ V , then 

it is true

∅ �= w − lim sup
n→∞

S(xn
0 ) ⊂ S(x0), (5.23)

where w − lim supn→∞ S(xn
0 ) stands for the Kuratowski upper limit of the sequence 

{S(xn
0 )} with respect to the weak topology of W ×Y.

Proof. Let {xn
0} ⊂ V and x0 ∈ V be such that xn

0 → x0 in H as n → ∞. It follows from 
Theorem 5.3 that S(xn

0 ) �= ∅ for each n ≥ 1 and S(x0) �= ∅. Arguing as in the proof 
of Lemma 5.2, we can see that the set 

⋃
n≥1 S(xn

0 ) is bounded in W × Y. Passing to a 
subsequence if necessary, we may assume that

xn
w−→ x in W, xn → x in H, and un

w−→ u in Y as n → ∞, (5.24)

for some (x, u) ∈ W × Y. Therefore, we have ∅ �= w − lim supn→∞ S(xn
0 ). In fact, for 

each n ≥ 1, we have

{
x′
n(t) + A(t, xn(t)) + ξn(t) + ηn(t) = B(t, xn(t))un(t) for a.e. t ∈ [0, T ],

xn(0) = xn
0 ,

(5.25)

with ξn ∈ H and ηn ∈ V∗ satisfying

ξn(t) ∈ ∂J(t, xn(t)), ηn(t) ∈ β∗∂Cϕ(βxn(t)), and un(t) ∈ U(t, xn(t)) for a.e. t ∈ [0, T ].

(5.26)
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Since the graph of SU is sequentially closed in w−W ×w−Y. Therefore, (5.24) and 
(5.26) imply that u ∈ SU (x), i.e., u ∈ Y and u(t) ∈ U(t, x(t)) for a.e. t ∈ [0, T ]. Observe 
that {ξn} ⊂ H and {ηn} ⊂ V∗ are both bounded, we may suppose that ξn

w−→ ξ in H
and ηn

w−→ η in V∗ as n → ∞ for some (ξ, η) ∈ H × V∗. As before we did, it is not 
difficult to verify that ξ(t) ∈ ∂J(t, x(t)) and η(t) ∈ β∗∂Cϕ(βx(t)) for a.e. t ∈ [0, T ]. Recall 
that the embedding from W into C(0, T ; H) is continuous, the latter combined with the 
convergences (5.24) and xn

0 → x0 in H as n → ∞, reveals that xn(0) → x(0) = x0 in H
as n → ∞. Additionally, (5.20) indicates that B(·, xn(·))un(·) w−→ B(·, x(·))u(·) in H
as n → ∞.

Multiplying (5.25) by xn(t) − x(t) and integrating the resulting equality over [0, T ], 
it yields

T∫
0

〈A(s, xn(s)), xn(s) − x(s)〉 ds

≤
T∫

0

(ξn(s), x(s) − xn(s))H + (B(s, xn(s))un(s), xn(s) − x(s))H ds

+
T∫

0

ϕ(βx(s)) − ϕ(βxn(s)) ds + 1
2‖x(0) − xn(0)‖2

H .

Passing to the upper limit as n → ∞, we have lim supn→∞
∫ T

0 〈A(s, xn(s)), xn(s) −
x(s)〉 ds ≤ 0. This together with [42, Proposition 1] finds that A(·, xn(·)) w−→ A(·, x(·))
in V∗ as n → ∞. Letting n → ∞ in (5.25), we obtain

{
x′(t) + A(t, x(t)) + ξ(t) + η(t) = B(t, x(t))u(t) for a.e. t ∈ [0, T ],
x(0) = x0.

Taking into account (ξ, η, u) ∈ H × V∗ × Y with ξ(t) ∈ ∂J(t, x(t)), η(t) ∈ β∗∂Cϕ(βx(t))
and u(t) ∈ U(t, x(t)) for a.e. t ∈ [0, T ], we can see that (x, u) ∈ W × Y is a solution to 
Problem 1.3 associated with the initial condition x0, i.e., (x, u) ∈ S(x0). This concludes 
that (5.23) is valid. �
Remark 5.5. In Theorem 5.3, we have proved that Problem 1.3 admits a feedback control 
pair. But, observer that the framework applied in Theorem 5.3 implies that for each u ∈ Y
given problem (5.17)–(5.18) has a unique solution x ∈ W. In this moment, the solution 
mapping F of problem (5.17)–(5.18) is single-valued. Naturally, an open problem arises 
whether we can prove the existence of solutions of Problem 1.3 in the situation that F
is a set-valued mapping. It should be mentioned that the essential difficulty is that we 
do not know the convexity of F (see Theorem 3.6), when F is a set-valued mapping.
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6. Conclusions

In this paper, under the framework of an evolution triple of spaces, we consider a 
class of nonlinear and nonsmooth dynamics systems involving two multi-valued terms 
which are a convex subdifferential operator and a generalized subdifferential operator in 
the sense of Clarke, respectively. In conclusion, in the paper, we carry out the in-depth 
research to the nonlinear and nonsmooth dynamics system under consideration from the 
following three perspectives:

• under quite general assumptions, we establish an existence theorem to nonlinear and 
nonsmooth dynamics system, Problem 1.1, by employing a surjectivity theorem for 
set-valued mappings that we use for the sum of a maximal monotone and strongly-
quasi bounded operator, a linear densely defined and maximal monotone operator 
L, and a bounded pseudomonotone operator with respect to D(L);

• an optimal control problem governed by nonlinear and nonsmooth dynamics system, 
Problem 1.1, is introduced, and the nonemptiness and weak compactness of the set 
of optimal controls for the optimal control problem are obtained;

• in the convex framework, we investigate a nonlinear feedback control problem de-
scribed by an upper semicontinuous set-valued mapping and Problem 1.1, and explore 
the sufficient condition for the existence of solutions of the feedback control problem 
in which our main tool is the well-known Kakutani-Ky Fan fixed point theorem. 
In the meantime, a convergence result in the sense of Kuratowski describing the 
changes in the set of solutions for the feedback control problem as the initial data 
x0 is perturbed in Hilbert space H, is delivered.

In fact, problems of this type are encountered in transport optimization, dynamic 
Nash equilibrium problem of multiple players, dynamic contact problems, fluid mechan-
ics problems with multivalued and nonmonotone boundary conditions, and related fields. 
In the future we plan to apply the theoretical results established in the current paper 
to an evolutionary Oseen model for generalized Newtonian fluid with multivalued non-
monotone friction law and leak/slip boundary conditions.

Moreover, we are going to study a new kind of minimizing problems driven by the 
feedback control system, Problem 1.3, in which the control constraint U and the cost 
integrand as a function of the control variable are nonconvex (i.e., the minimizing prob-
lems will be considered in the nonconvex framework), and to establish the corresponding 
relaxation-type results for the nonconvex optimal feedback control problems.
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