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We study nonlinear eigenvalue problems of the type −div(a(x)∇u) = g(λ,x,u) in RN ,
where a(x) is a degenerate nonnegative weight. We establish the existence of solutions
and we obtain information on qualitative properties as multiplicity and location of so-
lutions. Our approach is based on the critical point theory in Sobolev weighted spaces
combined with a Caffarelli-Kohn-Nirenberg-type inequality. A specific minimax method
is developed without making use of Palais-Smale condition.

1. Introduction

We are concerned in this paper with the existence of critical points to Euler-Lagrange en-
ergy functionals generated by nonlinear equations involving degenerate differential oper-
ators. Precisely, we study the existence of nontrivial weak solutions to degenerate elliptic
equations of the type

−div
(
a(x)∇u)= g(λ,x,u), x ∈Ω, (1.1)

where λ is a real parameter, Ω is a (bounded or unbounded) domain in RN (N ≥ 2),
and a is an nonnegative measurable weight function that is allowed to have “essential”
zeroes at some points. Problems like this have a long history (see the pioneering papers
[3, 16, 17, 18, 22]) and come from the consideration of standing waves in anisotropic
Schrödinger equations (see, e.g., [23]). Such problems in anisotropic media can be re-
garded as equilibrium solutions of the evolution equations

ut =�(λ,u,∇u) in Ω× (0,T), (1.2)

where u= u(x, t) is the state of a certain system. For instance, in describing the behavior
of a bacteria culture, the state variable u represents the number of mass of the bacteria.

It is worth to stress that the study of nontrivial solutions of the problem �(λ,u,∇u)=
0 in Ω is motivated by important phenomena. For example, consider a fluid which flows
irrotationally along a flat-bottomed canal. Then the flow can be modelled by an equation
of the form �(λ,u,∇u)= 0, with �(λ,0,0)= 0. One possible motion is a uniform stream
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(corresponding to the trivial solution u = 0), but it is of course the nontrivial solutions
which are of physical interest. Other problems of this type are encountered in various
reaction-diffusion processes (cf. [1, 2]).

A model equation that we consider in this paper is

−div
(
a(x)∇u)= f (x,u)u− λu, x ∈Ω⊂RN , (1.3)

where a is a nonnegative weight and λ is a real parameter. The behavior of solutions to the
above equation depends heavily on the sign of λ. Here we focus on the attractive case λ > 0
which, from an analytical point of view, seems to be the richest one. The main interest
of these equations is due to the presence of the singular potential a(x) in the divergence
operator. Problems of this kind arise as models for several physical phenomena related to
equilibrium of continuous media which may somewhere be “perfect insulators” (cf. [13,
page 79]). These equations can be often reduced to elliptic equations with Hardy singular
potential (see [23]). For further results and extensions we refer to [5, 7, 12, 14, 24, 25, 26].

In this paper we first establish the existence of solutions to the above problem involv-
ing the singular potential a(x) under verifiable conditions for the nonlinear term f when
λ > 0 is sufficiently small. Then we investigate a related nonlinear eigenvalue problem
obtaining an existence result which contains information about the location and multi-
plicity of eigensolutions.

The proofs of our main results rely on an adequate variational approach where, in
view of the presence of a singular potential and a (possibly) unbounded domain, the
usual methods fail to apply. Namely, on suitable Sobolev weighted spaces, we apply the
mountain-pass theorem and a special version of it involving a suitable hyperplane.
Among other things, we employ an inequality due to Caldiroli and Musina [11] (see also
[10] for the case a(x)= |x|α) which extends the inequalities of Hardy [15] and Caffarelli
et al. [9]. Our results are different from the ones in [11]. In particular, they are not related
to the first eigenvalue of the linear part, but exploit the behavior of the nonlinear term
at infinity. Another specific feature of our variational approach is that due to the lack of
compactness, we do not make use of the Palais-Smale condition.

The rest of the paper is organized as follows. Section 2 presents our main results which
are Theorems 2.6 and 2.9. In Section 3 we prove some auxiliary results. The proofs of
Theorems 2.6 and 2.9 are given in Sections 4 and 5, respectively.

2. Abstract framework and main results

Let Ω be a (bounded or unbounded) domain in RN , with N ≥ 2, and let a : Ω→ [0,+∞)
be a weight function satisfying a ∈ L1

loc(Ω). Suppose that a fulfills the following condi-
tion:

(hα) liminfx→z |x− z|−αa(x) > 0,∀z ∈Ω, with a real number α≥ 0.
If Ω is unbounded we impose the additional assumption

(h∞α ) liminf |x|→∞ |x|−αa(x) > 0.
A model example is a(x)= |x|α. The case α= 0 covers the “isotropic” case correspond-

ing to the Laplace operator.
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Under assumptions (hα) and (h∞α ), Caldiroli and Musina have proved in [11] that there
exists a finite set Z = {z1, . . . ,zk} ⊂Ω and numbers r,δ > 0 such that the balls Bi = Br(zi)
(i= 1, . . . ,k) are mutually disjoint and

a(x)≥ δ∣∣x− zi∣∣α ∀x ∈ Bi∩Ω, i= 1, . . . ,k,

a(x)≥ δ ∀x ∈Ω \
k⋃
i=1

Bi.
(2.1)

In addition, if Ω is unbounded, there exists R > 0 such that

Bi ⊂ BR(0) (i= 1, . . . ,k), a(x)≥ δ|x|α, ∀x ∈Ω, |x| > R. (2.2)

For any u∈ C∞c (Ω), we set

‖u‖2
a :=

∫
Ω
a(x)|∇u|2dx,

‖u‖2
H ,a :=

∫
Ω
a(x)|∇u|2dx+

∫
Ω
u2dx.

(2.3)

Let �1,2
a (Ω) and H1

0 (Ω,a) be the closures of C∞c (Ω) with respect to ‖ · ‖a and ‖ · ‖H ,a,
respectively. It is obvious that H1

0 (Ω,a)↩�1,2
a (Ω) with continuous embedding. For any

α∈ (0,2), denote

2∗α := 2N
N − 2 +α

. (2.4)

The following generalization of the Caffarelli-Kohn-Nirenberg inequality is given in
[11] (see also [10] for the case a(x)= |x|α).

Lemma 2.1 (Caldiroli and Musina [11]). Assume that the function a ∈ L1
loc(Ω) satisfies

conditions (hα) and (h∞α ), for some α ∈ (0,2). Then there exists a positive constant C such
that

(∫
Ω
|u|2∗α dx

)2/2∗α
≤ C‖u‖2

a, (2.5)

for any u∈ C∞c (Ω).

Using the above inequality combined with variational methods, Caldiroli and Musina
have studied in [11] the boundary value problem

−div
(
a(x)∇u)= λu+ g(x,u), in Ω,

u= 0, on ∂Ω,
(2.6)

where λ ∈ R and g : Ω×R→ R is a Carathéodory function with superlinear growth.
Their existence result is related to the first eigenvalue of the degenerate differential elliptic
operator Lu := −div(a(x)∇u). Namely, problem (2.6) has a solution for any λ < λ1(a),
where

λ1(a) := inf
{∫

Ω
a(x)|∇ϕ|2dx; ϕ∈H1

0 (Ω,a),
∫
Ω
ϕ2dx = 1

}
. (2.7)
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In the statement of our Theorem 2.6, the existence of a solution does not depend on
λ1(a), but on the behavior of the nonlinearity at infinity.

Hypotheses (hα) and (h∞α ) ensure that the potential a(x) behaves like |x|α around the
degenerate points zi (i= 1, . . . ,k). For this reason, in order to simplify the arguments we
admit throughout the paper that a(x)= |x|α, for some α∈ (0,2), and that λ > 0. Since we
are interested in the case of lack of compactness, we suppose Ω=RN .

Consider the model problem

−div
(|x|α∇u)+ λu= f (x,u)u, in RN . (2.8)

We assume that the nonlinearity f = f (x, t) : RN ×R→ R in (2.8) is continuous and
satisfies the following hypotheses:

(c1) f (x, t) ≥ 0 for all t ≥ 0, limt→0+ ( f (x, t)/tτ) = 0 uniformly in x ∈ RN , with some
constant τ > 0, f (x, t)≡ 0 for all t < 0, x ∈RN , that the mapping (x, t) 
→ t f (x, t)
is of class C1, and there exists the limit limt→+∞(d/dt) f (x, t) for all x ∈RN ;

(c2) limt→+∞ f (x, t)= � > 0 uniformly in x ∈RN ;
(c3) for any M > 0 there exists θ > 0 such that (2 + θ)F(x, t) ≤ f (x, t)t2, for all t ∈

(0,M), where

F(x,u) :=
∫ u

0
s f (x,s)ds; (2.9)

(c4) there exists η > 0 such that

lim
t→+∞

f (x, t)t2− 2F(x, t)
tr

= q(x)≥ η > 0 uniformly in x ∈RN , (2.10)

with some r ∈ (2N/(N + 2−α),2);
(c5) the function f (·, t) is bounded from above uniformly with respect to t belonging

to any bounded subset of R+.

Remark 2.2. A useful consequence of assumption (c1) is that the derivative with respect to
t of the mapping (x, t) 
→ t f (x, t) vanishes at t = 0 uniformly in x ∈RN . Indeed, condition
(c1) insures that

d

dt

(
t f (x, t)

)
(0)= lim

t→0+

t f (x, t)
t

= lim
t→0+

f (x, t)= 0 (2.11)

uniformly in x ∈RN . We also point out that the condition imposed in assumption (c1) of
having limt→0+ ( f (x, t)/tτ) = 0 uniformly in x ∈ RN , for some constant τ > 0, is stronger
than having limt→0+ f (x, t) = 0 uniformly in x ∈ RN . For instance, the function f (t) =
−1/ ln(t) for t > 0 near 0 verifies limt→0+ f (t) = 0, but limt→0+ ( f (t)/tτ) = +∞ whenever
τ > 0 (in addition, f is increasing). Moreover, without loss of generality, we may suppose
that 0 < τ < 2∗α − 2.

Remark 2.3. It is worth noting that assumption (c3) ensures

F(x, t)≤ 1
2
f (x, t)t2, ∀x ∈RN , t ≥ 0. (2.12)
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This follows readily from (c3) because M > 0 is arbitrary and θF(x, t)≥ 0 for all x ∈ RN

and t ≥ 0.

Remark 2.4. A significant case where assumption (c5) applies is when the function t 
→
f (x, t) is nondecreasing for all x ∈RN . It is so because then (c2) implies (c5).

Let �1,2
α (RN ) denote the space obtained as the completion of C∞c (RN ) with respect to

the inner product

〈u,v〉α :=
∫
RN
|x|α∇u ·∇vdx. (2.13)

We are seeking solutions of problem (2.8) belonging to the space �1,2
α (RN ) in the sense

below.

Definition 2.5. We say that u∈�1,2
α (RN ) is a weak solution of problem (2.8) if

∫
RN

(|x|α∇u ·∇v+ λuv
)
dx−

∫
RN

f (x,u)uvdx = 0, (2.14)

for all v ∈ C∞c (RN \ {0}).

We are working with C∞c (RN \ {0}) instead of C∞c (RN ) because in our approach it
is essential to keep the support of the test functions away from 0 exploiting that every
bounded sequence in the space �1,2

α (RN ) contains a strongly convergent subsequence in

L
2∗α
loc(RN \ {0}).

Our main result in solving problem (2.8) is the following.

Theorem 2.6. Assume that conditions (c1), (c2), (c3), (c4), and (c5) are fulfilled. Then
problem (2.8) has a nontrivial weak solution for every λ∈ (0,�), where � > 0 is the constant
in (c2).

The proof of Theorem 2.6 is given in Section 4. We now provide an example verifying
all the assumptions (c1), (c2), (c3), (c4), and (c5) of Theorem 2.6.

Example 2.7. Fix Q ∈ C1(RN )∩L∞(RN ), Q > 0. Set

f (x, t)= Q(x)t2−r

1 +Q(x)t2−r
for t ≥ 0, x ∈RN , (2.15)

where r is as in (c4), and f (x, t)= 0 for t < 0 and x ∈RN . It is easy to verify that f satisfies
(c1) (with τ ∈ (0,2− r)), (c2), and (c5). Since

df

dt
(x, t)= (2− r)Q(x)t1−r(

1 +Q(x)t2−r
)2 ≥ 0 ∀t > 0, (2.16)

we deduce that for any M > 0,

inf
x∈RN

min
t∈[0,M]

t(df /dt)(x, t)
f (x, t)

= inf
x∈RN

min
t∈[0,M]

2− r
1 +Q(x)t2−r

≥ 2− r
1 +‖Q‖L∞(RN )M2−r > 0. (2.17)
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Choosing

θ = 2− r
1 +‖Q‖L∞(RN )M2−r , (2.18)

we have

s
df

ds
(x,s)≥ θ f (x,s) ∀x ∈RN , s∈ [0,M]. (2.19)

Multiplying the above relation by s > 0, then integrating over [0, t] with t ∈ [0,M] and
taking into account the definition of the function F(x, t), we obtain

F(x, t)≤ 1
2 + θ

f (x, t)t2 ∀t ∈ [0,M]. (2.20)

It follows that f satisfies (c3). Finally, we note that

lim
t→+∞

[
t3−r

df

dt
(x, t)

]
= lim

t→+∞
(2− r)Q(x)t4−2r(

1 +Q(x)t2−r
)2 =

2− r
Q(x)

≥ 2− r
‖Q‖L∞(RN )

> 0. (2.21)

Thus there exists S > 0 such that

s3−r
df

ds
(x,s)≥ η

2
> 0 ∀s≥ S, (2.22)

where η = (2− r)/‖Q‖L∞(RN ). Since

f (x, t)t2− 2F(x, t)= f (x, t)t2− 2
∫ t

0
s f (x,s)ds

=
∫ t

0
s2
df

ds
(x,s)ds=

∫ t
0
sr−1

(
s3−r

df

ds
(x,s)

)
ds,

(2.23)

the above estimate yields

lim
t→+∞

[
f (x, t)t2− 2F(x, t)

]= lim
t→+∞

∫ t
0
sr−1

(
s3−r

df

ds
(x,s)

)
ds

≥ η

2
lim
t→+∞

∫ t
S
sr−1ds= +∞.

(2.24)

Hence

lim
t→+∞

f (x, t)t2− 2F(x, t)
tr

= 1
r

lim
t→+∞

t2(df /dt)(x, t)
tr−1

= 2− r
rQ(x)

≥ η

r
> 0. (2.25)

The last relation shows that condition (c4) holds true. Therefore all the assumptions (c1),
(c2), (c3), (c4), and (c5) are satisfied for the function f (x, t) and Theorem 2.6 can be
applied for the corresponding (2.8).
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In order to present our second main result, we precisely give the functional setting. Let
E be the space defined as the completion of C∞c (RN \ {0}) with respect to the norm

‖u‖2 :=
∫
RN

(|x|α|∇u|2 + λu2)dx. (2.26)

The corresponding inner product is denoted by 〈·,·〉E. The notation 〈·,·〉 will stand for
the duality pairing between E and E∗.

Remark 2.8. We have E↩�1,2
α (RN ) with continuous embedding.

Next, we state a nonlinear eigenvalue problem corresponding to the degenerate poten-
tial |x|α with α∈ (0,2).

Fix a positive number ν > 0. Let J : E→R be a C1 function satisfying

J(0)≥ 0, J ′(0) �= 0, (2.27)

J(u)≤ a1 + a2‖u‖p ∀u∈ E, (2.28)

with constants a1 ≥ 0, a2 ≥ 0, p ≥ 2,

1
γ

〈
J ′(u),u

〉− J(u)≥−b1− b2‖u‖2 ∀u∈ E, (2.29)

with constants γ > 2, b1 ≥ 0, b2 ∈ [0,ν(1/2− 1/γ)), and

J ′
(
vn
)
⇀ J ′(v) in E∗ whenever vn⇀ v in E. (2.30)

The notation⇀ in (2.30) means the weak convergence.
We formulate a nonlinear eigenvalue problem with fixed constants α > 0 and λ > 0 as

follows: find u∈ E \ {0} and µ > 0 such that

∫
RN

(|x|α∇u ·∇ϕ+ λuϕ
)
dx = µ〈J ′(u),ϕ

〉 ∀ϕ∈ C∞c
(
RN \ {0}). (2.31)

The concept of solution in (2.31) is clearly compatible with Definition 2.5. Thanks to the
assumption J ′(0) �= 0 in (2.27), a solution u∈ E of (2.31) is necessarily nontrivial, that is,
u∈ E \ {0}. Assume further that

1
ν

is not an eigenvalue of (2.31), (2.32)

that is, problem (2.31) is not solvable for µ= 1/ν.
Our main result in studying problem (2.31) is now stated.

Theorem 2.9. Assume (2.27),(2.28),(2.29), and (2.30) and (2.32) with a given number
ν > 0 hold. Then, for every number ρ ≥ √pa2, there exists an eigensolution (u,µ) ∈ (E \
{0})× (0,+∞) of problem (2.31) such that

0 < µ <
1

ν + ρ2‖u‖p−2 . (2.33)
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If p = 2 in (2.28), then for all ρ ≥ √2a2 and r > ρ there exists an eigensolution (u,µ) ∈
(E \ {0})× (0,+∞) of problem (2.31) such that

1
ν + r2

< µ <
1

ν + ρ2
. (2.34)

3. Auxiliary results

Consider the energy functional I : E→R given by

I(u) := 1
2

∫
RN

(|x|α|∇u|2 + λu2)dx−
∫
RN
F(x,u)dx ∀u∈ E, (3.1)

where the function F has been introduced in Section 2. A straightforward argument based
on Lemma 2.1, Remark 2.8, and assumptions (c1) and (c2) shows that I ∈ C1(E,R) with

〈
I′(u),v

〉=
∫
RN

(|x|α∇u ·∇v+ λuv
)
dx−

∫
RN

f (x,u)uvdx (3.2)

for all u,v ∈ E.
Using Definition 2.5, we observe that the weak solutions of problem (2.8) correspond

to the critical points of the functional I . Moreover, we indicate a method for achieving a
solution of (2.8).

Lemma 3.1. Assume (c1) and (c2). Let {un} ⊂ E be a sequence such that, for some c ∈ R,
one has I(un)→ c and I′(un)→ 0 as n→∞. If {un} converges weakly to some u0 in E, then
I′(un) converges weakly to I′(u0)= 0, so u0 is a weak solution of problem (2.8).

Proof. In view of Remark 2.8 we may assume that {un} converges strongly to the same u0

in L2∗α (ω), for all bounded domains ω in RN with 0 /∈ ω. Consider an arbitrary bounded
domain ω in RN with 0 /∈ ω and an arbitrary function ϕ ∈ C∞c (RN \ {0}) satisfying
supp(ϕ) ⊂ ω. The convergence I′(un)→ 0 in E∗ implies 〈I′(un),ϕ〉 → 0 as n→∞, that
is,

lim
n→∞

(∫
ω

(|x|α∇un ·∇ϕ+ λunϕ
)
dx−

∫
ω
f
(
x,un

)
unϕdx

)
= 0. (3.3)

Since un⇀ u0 in E, it follows that

lim
n→∞

∫
ω

(|x|α∇un ·∇ϕ+ λunϕ
)
dx =

∫
ω

(|x|α∇u0∇ϕ+ λu0ϕ
)
dx. (3.4)

We show that

lim
n→∞

∫
ω
f
(
x,un

)
unϕdx =

∫
ω
f
(
x,u0

)
u0ϕdx. (3.5)

Because un→ u0 in L2∗α (ω), we have

un −→ u0 in Li(ω) ∀i∈ [1,2∗α
]
. (3.6)
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By Remark 2.2, we obtain that

lim
t→0

d

dt

(
t f (x, t)

)= 0 (3.7)

and, by (c2),

0= lim
t→+∞

f (x, t)
t

= lim
t→+∞

t f (x, t)
t2

= lim
t→+∞

(d/dt)
(
t f (x, t)

)
2t

(3.8)

uniformly in x ∈RN , where the last limit exists owing to the final part of (c1) in conjunc-
tion with (c2). Then for every ε > 0 there exists a positive constant Cε such that

∣∣∣∣ ddt
(
t f (x, t)

)∣∣∣∣≤ ε+Cεt ∀t ≥ 0, ∀x ∈ ω. (3.9)

Here we essentially used that the derivative (d/dt)( f (x, t)t) is continuous, so bounded on
any compact set in RN ×R.

As known from (3.6), the sequence {un} converges strongly to u0 in L2(ω). Then, along
a relabelled subsequence, there is a function h∈ L2(ω) such that |un| ≤ h a.e. in ω. Using
(3.9) and the Cauchy-Schwarz inequality, we get the estimate

∣∣∣∣
∫
ω

(
f
(
x,un

)
unϕ− f

(
x,u0

)
u0ϕ

)
dx
∣∣∣∣

≤ ‖ϕ‖L∞(ω)

∫
ω

(
ε+Cεh(x)

)∣∣un(x)−u0(x)
∣∣dx

≤ ‖ϕ‖L∞(ω)

[
ε
∥∥un−u0

∥∥
L1(ω) +Cε‖h‖L2(ω)

∥∥un−u0
∥∥
L2(ω)

]
(3.10)

for all n∈N. This leads to (3.5).
Finally, from (3.3), (3.4), and (3.5), we deduce

∫
ω

(|x|α∇u0 ·∇ϕ+ λu0ϕ
)
dx−

∫
ω
f
(
x,u0

)
u0ϕdx = 0. (3.11)

The density of C∞c (RN \ {0}) in E ensures that I′(u0) = 0. The proof is thus complete.
�

Remark 3.2. Lemma 3.1 holds assuming in (c1), (c2) that the convergences are uniform
only on the bounded subsets of RN .

Towards the application of a mountain-pass argument, we need the result below.

Lemma 3.3. Assume that the conditions (c1), (c2), and (c5) hold. Then there exist constants
ρ > 0 and a > 0 such that for all u∈ E with ‖u‖ = ρ, one has I(u)≥ a.

Proof. By (c1), (c2) it follows that for any σ > 0, uniformly with respect to x ∈ RN , it is
true that

lim
t→0

f (x, t)= 0, lim
t→+∞

f (x, t)
tσ

= 0. (3.12)
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In particular, we have

lim
t→0

F(x, t)
t2

= lim
t→0

t f (x, t)
2t

= 1
2

lim
t→0

f (x, t)= 0 (3.13)

and, for any σ ′ > 2,

lim
t→+∞

F(x, t)
tσ ′

= lim
t→+∞

t f (x, t)
σ ′tσ ′−1

= 1
σ ′

lim
t→+∞

f (x, t)
tσ ′−2

= 0. (3.14)

Taking σ ′ = 2∗α implies

lim
t→+∞

F(x, t)
t2∗α

= 0. (3.15)

Then for every ε > 0 there exist constants 0 < δ1 < δ2 such that, uniformly with respect to
x ∈RN , the following estimates hold

0≤ F(x, t) < εt2 ∀t with |t| < δ1,

0≤ F(x, t) < εt2
∗
α ∀t with |t| > δ2.

(3.16)

Assumption (c5) guarantees that F is bounded on RN × [δ1,δ2]. We deduce that there
exists a positive constant Cε such that

0≤ F(x, t)≤ εt2 +Cεt2
∗
α . (3.17)

Then (3.17) and Lemma 2.1 show that

I(u)= 1
2
‖u‖2−

∫
RN
F(x,u)dx

≥ 1
4
‖u‖2 +

(
λ

4
− ε

)
‖u‖2

L2(RN )−Cε
∫
RN
|u|2∗α dx

≥ 1
4
‖u‖2 +

(
λ

4
− ε

)
‖u‖2

L2(RN )−CεC2∗α /2‖u‖2∗α .

(3.18)

Finally, choosing ε ∈ (0,λ/4) and since 2∗α > 2, we find ρ > 0 and a > 0 as required. �

Remark 3.4. Using the same techniques as in the proof of relation (3.17), we may con-
clude, on the basis of (c1), (c2), and (c5), that for any ε > 0 there exists a positive constant
Dε such that

∣∣ f (x, t)
∣∣≤ ε+Dε|t|σ , (3.19)

where σ = r((N + 2−α)/2N)− 1 > 0.

Now we construct an important element of the space E. Denote

(
d(N)

)2
:=
∫
RN
e−2|x|2dx, (3.20)
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and, for an arbitrary number a > 0,

wa(x) := (d(N)
)−1

aN/4e−a|x|
2 ∀x ∈RN . (3.21)

Proposition 3.5. The function wa satisfies wa ∈ E whenever a > 0.

Proof. Fix a > 0. Defining

h(x)= e−a|x|2 ∀x ∈RN , (3.22)

it is enough to show that h ∈ E. We have to establish that for any ε > 0 there is ψ ∈
C∞c (RN \ {0}) such that ‖h− ψ‖ < ε. First we prove that, for every ε > 0, there exists a
function ψ1 ∈ C∞c (RN ) such that

∥∥h−ψ1
∥∥ < ε. (3.23)

Given any number z > 0, we have limt→+∞ tz+1e−t = 0. We derive that a positive constant
C = C(z) can be found with the property that |tz+1e−t| ≤ C, for all t ∈ [1,∞), so

∣∣tz−1e−t
∣∣≤ C

t2
∀t ∈ [1,∞). (3.24)

We check that there exists some constant δ > 0 such that

1
4a2

∫
RN\B(0,δ)

|x|α∣∣∇h(x)
∣∣2
dx <

ε2

4
(
4a2 + 2

) . (3.25)

To this end we note that the below equality holds

1
4a2

∫
RN\B(0,δ)

|x|α∣∣∇h(x)
∣∣2
dx = ωN

∫ +∞

δ
rα+N+1e−2ar2

dr, (3.26)

where ωN is the surface measure of the unit sphere in RN . Then, using (3.24), for δ2 ≥
1/(2a) we have

1
4a2

∫
RN\B(0,δ)

|x|α∣∣∇h(x)
∣∣2
dx ≤ C1

δ2
, (3.27)

with a positive constant C1. To obtain (3.25) it is enough to choose

δ2 >max
{

1
2a

,
4
(
4a2 + 2

)
C1

ε2

}
. (3.28)

Let ϕ∈ C∞c (RN ) satisfy ϕ= 1 on B(0,δ) and 0≤ ϕ≤ 1 on RN . Using (3.25) and taking
δ sufficiently large, we find positive constants A1 and A2 satisfying

‖h−ϕh‖2
α <

a2ε2

4a2 + 2
+
∫
RN\B(0,δ)

|x|α∣∣∇(1−ϕ)(x)
∣∣2
e−2a|x|2dx < A1ε2,

λ‖h−ϕh‖2
L2(RN ) = λ

∫
RN\B(0,δ)

(
(1−ϕ)(x)

)2
e−2a|x|2dx < A2ε2.

(3.29)
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Setting ψ1 := ϕh∈ C∞c (RN ), it follows that

∥∥h−ψ1
∥∥2
<
(
A1 +A2

)
ε2. (3.30)

Since A1 +A2 is independent of ε, it turns out that property (3.23) is true.
Fix now a function ψ ∈ C∞0 (RN \ {0}) such that ‖ψ1−ψ‖ < ε. Then, combining with

(3.23), we arrive at the conclusion of Proposition 3.5 �

The next result sets forth that the functional I fits with the geometry of mountain-pass
theorem.

Lemma 3.6. If the conditions (c1), (c2), (c5) hold and λ∈ (0,�) with the number � in (c2),
then for the positive number ρ given in Lemma 3.3 there exists e ∈ E such that ‖e‖ > ρ and
I(e) < 0.

Proof. Fix the element wa ∈ E in Proposition 3.5 for some a > 0. We have ‖wa‖L2(RN ) = 1.
Using the notation d(N) entering the formula of wa, we introduce

D(N) := 4
(
d(N)

)−2
∫
RN
e−2|x|2|x|2+αdx. (3.31)

We find

∥∥wa

∥∥2
α =

∫
RN
|x|α∣∣∇wa(x)

∣∣2
dx

= 4a(N+4)/2(d(N)
)−2

ωN

∫ +∞

0
rN+α+1e−2ar2

dr

= a1−α/2D(N).

(3.32)

Recalling that 0 < α < 2 and making use of the assumption λ∈ (0,�), we choose

a∈
(

0,
(
�− λ
D(N)

)2/(2−α)
)
. (3.33)

One obtains

∥∥wa

∥∥2
α < �− λ. (3.34)

Since twa(x)→ +∞ as t→ +∞ and, by (c2),

lim
u→+∞

F(x,u)
u2

= �

2
, (3.35)

it follows that

lim
t→+∞

F
(
x, twa(x)

)
t2

= �

2
w2
a(x) (3.36)
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for a.e. x ∈RN . Using Fatou’s lemma (see, e.g., [4]), we get

limsup
t→+∞

I
(
twa

)
t2

= 1
2

∥∥wa

∥∥2
α +

λ

2

∥∥wa

∥∥2
L2(RN )− liminf

t→+∞

∫
RN

F
(
x, twa(x)

)
t2

dx

≤ 1
2

∥∥wa

∥∥2
α +

λ

2
−
∫
RN

lim
t→+∞

F
(
x, twa(x)

)
t2

dx

= 1
2

∥∥wa

∥∥2
α−

�− λ
2

< 0.

(3.37)

In particular, we obtain I(twa)→−∞ as t→ +∞. If t0 > 0 is large enough and e = t0wa,
then we achieve the conclusion of Lemma 3.6 with e = t0wa. �

4. Proof of Theorem 2.6

Arguing on the space E described in Section 2, we set

Γ := {γ ∈ C([0,1],E
)
; γ(0)= 0, γ(1)= e}, (4.1)

where e ∈ E is determined by Lemma 3.6, and

c := inf
γ∈Γ

max
t∈[0,1]

I
(
γ(t)

)
. (4.2)

According to Lemma 3.6 we know that ‖e‖ > ρ, so every path γ ∈ Γ intersects the sphere
‖x‖ = ρ. Then Lemma 3.3 implies

c ≥ inf
‖u‖=ρ

I(u)≥ a, (4.3)

with the constant a > 0 in Lemma 3.3, thus c > 0.
By the mountain-pass theorem (see, e.g., [6]), we obtain a sequence {un} ⊂ E such

that

I
(
un
)−→ c, I′

(
un
)−→ 0. (4.4)

We claim that {un} is bounded in E. Indeed, from the first convergence in (4.4) we have

I
(
un
)= 1

2

∥∥un∥∥2−
∫
RN
F
(
x,un

)
dx = c+ o(1). (4.5)

We note that

∥∥un∥∥2−
∫
RN

f
(
x,un

)
u2
ndx =

〈
I′
(
un
)
,un
〉
. (4.6)

By (c4) there exist constants C > 0 and M > 0 such that

f (x, t)t2− 2F(x, t)≥ Ctr ∀t ≥M, x ∈RN . (4.7)

Corresponding to the number M > 0 in (4.7), by (c3) there exists some constant θ > 0
such that

F(x, t)≤ 1
2 + θ

f (x, t)t2 ∀t ∈ (0,M). (4.8)
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Using (4.5) and (4.6), we find

(
1
2
− 1

2 + θ

)∥∥un∥∥2−
∫
RN

[
F
(
x,un

)− 1
2 + θ

f
(
x,un

)
u2
n

]
dx = c− 1

2 + θ

〈
I′
(
un
)
,un
〉

+ o(1).

(4.9)

This estimate, together with (4.8) and Remark 2.3, yields

θ

2(2 + θ)

∥∥un∥∥2 = c+
{∫

{x;|un|≥M}
+
∫
{x;|un|<M}

}[
F
(
x,un

)− 1
2 + θ

f
(
x,un

)
u2
n

]
dx

− 1
2 + θ

〈
I′
(
un
)
,un
〉

+ o(1)

≤ c+
θ

2(2 + θ)

∫
{x;|un|≥M}

f
(
x,un

)
u2
ndx+

1
2 + θ

∣∣〈I′(un),un〉∣∣+ o(1).

(4.10)

On the other hand, it follows from (4.5) and (4.6) that

∫
RN

[
f
(
x,un

)
u2
n− 2F

(
x,un

)]
dx = 2c− 〈I′(un),un〉+ o(1). (4.11)

Then, from (4.7) and Remark 2.3, we have

∥∥I′(un)∥∥∥∥un∥∥+ 2c+ o(1)

≥
∫
{x;|un|≥M}

[
f
(
x,un

)
u2
n− 2F

(
x,un

)]
dx ≥ C

∫
{x;|un|≥M}

∣∣un∣∣rdx. (4.12)

Thus, for a constant C0 > 0, we infer that

∫
{x;|un|≥M}

∣∣un∣∣rdx ≤ C0
[
1 +

∥∥I′(un)∥∥∥∥un∥∥]. (4.13)

Relations (3.19) and (4.10) ensure

θ

2(2 + θ)

∥∥un∥∥2

≤ c+
θ

2(2 + θ)

∫
{x;|un|≥M}

(
ε
∣∣un∣∣2

+Dε
∣∣un∣∣2+σ

)
dx+

1
2 + θ

∥∥I′(un)∥∥∥∥un∥∥+ o(1)

≤ c+ ε
∫
RN

∣∣un∣∣2
dx+Dε

∫
{x;|un|≥M}

∣∣un∣∣1+σ∣∣un∣∣dx+
1

2 + θ

∥∥I′(un)∥∥∥∥un∥∥+ o(1).

(4.14)

Notice from the expressions of 2∗α and σ in (3.19) that

1 + σ
r

= 1− 1
2∗α

< 1. (4.15)
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Then, using the Hölder inequality, Lemma 2.1, and (4.13), we obtain that there exist a
constant D′ε > 0 depending on ε and a constant C > 0 such that

θ

2(2 + θ)

∥∥un∥∥2 ≤ c+ ε
∥∥un∥∥2

L2(RN ) +Dε

(∫
{x;|un|≥M}

∣∣un∣∣rdx
)(1+σ)/r(∫

RN

∣∣un∣∣2∗α dx
)1/2∗α

+
1

2 + θ

∥∥I′(un)∥∥∥∥un∥∥+ o(1)

≤ c+ ε
∥∥un∥∥2

L2(RN ) +D′ε
[
1 +

∥∥I′(un)∥∥∥∥un∥∥](1+σ)/r∥∥un∥∥
+

1
2 + θ

∥∥I′(un)∥∥∥∥un∥∥+ o(1)

≤ c+ εC
∥∥un∥∥2

+D′ε
[
1 +

∥∥I′(un)∥∥∥∥un∥∥]∥∥un∥∥+
1

2 + θ

∥∥I′(un)∥∥∥∥un∥∥+ o(1).

(4.16)

Fix

ε ∈
(

0,
θ

2C(2 + θ)

)
. (4.17)

Recalling that ‖I′(un)‖ → 0 (cf. the second relation in (4.4)), the above inequality shows
that {un} is bounded. Thus there exist u0 ∈ E and a subsequence of {un} converging
weakly to u0 in E. Consequently, Lemma 3.1 and (4.4) imply that u0 is a weak solution of
problem (2.8).

To complete the proof of Theorem 2.6 it remains to show that u0 is nontrivial. By (4.4)
and (4.6) we see that

c = lim
n→∞I

(
un
)= lim

n→∞

[
1
2

〈
I′
(
un
)
,un
〉
E +

∫
RN

(
1
2
f
(
x,un

)
u2
n−F

(
x,un

))
dx
]
. (4.18)

Then using the boundedness of the sequence {un} and the second relation in (4.4), we
find

c = lim
n→∞

∫
RN

(
1
2
f
(
x,un

)
u2
n−F

(
x,un

))
dx. (4.19)

We justify that here Fatou’s lemma can be applied. To this end, we notice that assumptions
(c1), (c2), and (c5) ensure the existence of a (sufficiently large) constant c0 > 0 such that

∣∣ f (x, t)
∣∣≤ c0|t|τ ,

∣∣F(x, t)
∣∣≤ c0|t|τ+2 ∀(x, t)∈RN ×R. (4.20)

By Remark 2.3 it is known that the space E is continuously embedded in �1,2
α (RN ). Ap-

plying [11, Proposition 3.4], it follows that E is compactly embedded in Lτ+2(RN ) because
2 < τ + 2 < 2∗α . Consequently, up to a subsequence, we may suppose that {un} converges
to u0 strongly in Lτ+2(RN ) and a.e. in RN , and there is a function h∈ Lτ+2(RN ) such that
|un(x)| ≤ h(x) for almost all x ∈RN . Therefore

1
2
f
(
x,un

)
u2
n−F

(
x,un

)−→ 1
2
f
(
x,u0

)
u2

0−F
(
x,u0

)
for a.e. x ∈RN ,∣∣∣∣1

2
f
(
x,un(x)

)
un(x)2−F(x,un(x)

)∣∣∣∣≤ 3
2
c0h(x)τ+2 for a.e. x ∈RN .

(4.21)
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Thus one may apply Fatou’s lemma to the sequence {(1/2) f (x,un)u2
n − F(x,un)}. Using

also that u0 solves problem (2.8), we then obtain

c ≤
∫
RN

limsup
n→∞

[
1
2
f
(
x,un

)
u2
n−F

(
x,un

)]
dx

=
∫
RN

[
1
2
f
(
x,u0

)
u2

0−F
(
x,u0

)]
dx

= I(u0
)− 1

2

〈
I′
(
u0
)
,u0
〉
E = I

(
u0
)
.

(4.22)

Since c ≤ I(u0) and c > 0 (as remarked at the beginning of this section), we conclude that
u0 �≡ 0.

5. Proof of Theorem 2.9

We first state a minimax-type lemma which will be used in the sequel. A version of this
result under the Palais-Smale condition has been given in [20]. Applications to different
classes of variational bifurcation problems can be found in [8, 19] and in [21, Chapter 9].

Lemma 5.1. Let E be a real Banach space, let a function G : E×R→ R be of class C1, and
let two positive numbers ρ < r be such that the following condition is fulfilled:

inf
v∈E

G(v,ρ) >max
{
G(0,0),G(0,r)

}
. (5.1)

Denoting

c := inf
γ∈Γ

max
t∈[0,1]

G
(
γ(t)

)
, (5.2)

with

Γ= {γ ∈ C([0,1],E×R) : γ(0)= (0,0), γ(1)= (0,r)
}

, (5.3)

then there exists a sequence {un} ⊂ E×R such that G(un)→ c and G′(un)→ 0.

Proof. We apply [6, Theorem 1] for X = E×R, K∗ = {(0,0),(0,r)}, p∗ being the identity
map onK∗, andK equal to the closed segment joining in E×R the points (0,0) and (0,r).
It is possible to apply this result because the imposed assumption ensures that for every
p ∈ C(K ,X) with p = p∗ on K∗ one has maxξ∈K G(p(ξ)) >maxξ∈K∗G(p∗(ξ)). Then the
desired conclusion follows. �

We proceed with the proof of Theorem 2.9. Choose positive numbers ρ < r and a func-
tion β ∈ C1(R) with the properties

β(0)= β(r)= 0, (5.4)

ρ ≥ √pa2, β(ρ) >
pa1

2
, (5.5)

β(t)−→ +∞ as |t| −→ +∞, (5.6)

β′(t) < 0⇐⇒ t < 0 or ρ < t < r. (5.7)
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Considering the Hilbert space E introduced in Section 2 and the function J in problem
(2.31), we define G : E×R→R by

G(u, t)= 1
p
t2‖u‖p +

2
p
β(t)− J(u) +

ν

2
‖u‖2 ∀(u, t)∈ E×R, (5.8)

where ‖ · ‖ is the norm on E given in Section 2 and ν > 0 is the number prescribed in
the statement of Theorem 2.9. Since E is a Hilbert space and J ∈ C1(E,R), it is clear that
G∈ C1(E×R) and its partial gradients have the expressions

Gu(u, t)= t2‖u‖p−2u−∇J(u) + νu ∀(u, t)∈ E×R,

Gt(u, t)= 2
p

(
t‖u‖p +β′(t)

) ∀(u, t)∈ E×R. (5.9)

It follows readily from (5.8), (5.4), and the first relation in (2.27) that

G(0,0)= 2
p
β(0)− J(0)≤ 0,

G(0,r)= 2
p
β(r)− J(0)≤ 0.

(5.10)

Moreover, from (5.8), (2.28), and (5.5), we get the estimate

G(u,ρ)≥
(

1
p
ρ2− a2

)
‖u‖p +

2
p
β(ρ)− a1 ≥ 2

p
β(ρ)− a1 > 0 ∀u∈ E. (5.11)

Therefore the requirement in Lemma 5.1 is fulfilled. Applying Lemma 5.1 provides a se-
quence {(vn, tn)} ⊂ E×R such that G(vn, tn)→ c, Gu(vn, tn)→ 0 in E and Gt(vn, tn)→ 0 in
R. Taking into account relations (5.8), (5.9), these convergences read as

1
p
t2n
∥∥vn∥∥p +

2
p
β
(
tn
)− J(vn)+

ν

2

∥∥vn∥∥2 −→ c, (5.12)

t2n
∥∥vn∥∥p−2

vn−∇J
(
vn
)

+ νvn −→ 0, (5.13)

tn
∥∥vn∥∥p +β′

(
tn
)−→ 0. (5.14)

By (5.12) and (2.28) we see that

c+ o(1)= 1
p
t2n
∥∥vn∥∥p +

2
p
β
(
tn
)− J(vn)+

ν

2

∥∥vn∥∥2

≥
(

1
p
t2n− a2

)∥∥vn∥∥p +
2
p
β
(
tn
)− a1.

(5.15)

Then (5.6) enables us to deduce that the sequence {tn} is bounded in R. Thus there is
t ∈R such that along a relabelled subsequence we may suppose

tn −→ t in R as n−→∞. (5.16)
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We claim that

{
vn
}

is bounded in E. (5.17)

In order to prove (5.17), we first consider the case t �= 0. In this situation, for n sufficiently
large, writing (5.14) in the form

∥∥vn∥∥p = 1
tn

(
o(1)−β′(tn)), (5.18)

it results that assertion (5.17) is verified because {tn} is bounded away from zero.
Assume now that t = 0. Then (5.14) and (5.4) ensure that tn‖vn‖p → 0. In view of

(5.16), we then have t2n‖vn‖p → 0. It turns out from (5.12) that

−J(vn)+
ν

2

∥∥vn∥∥2 −→ c. (5.19)

On the other hand, from tn‖vn‖p → 0 we deduce

∣∣tn∣∣(p−1)/p∥∥vn∥∥p−1 =
(∣∣tn∣∣∥∥vn∥∥p)(p−1)/p −→ 0, (5.20)

which in turn, using (5.16), yields t2n‖vn‖p−1 → 0. Combining with (5.13) implies

−∇J(vn)+ νvn −→ 0. (5.21)

By relations (5.19), (5.21) and assumption (2.29), we may write

c+ o(1) +
1
γ

∥∥vn∥∥≥ ν

(
1
2
− 1
γ

)∥∥vn∥∥2
+

1
γ

〈∇J(vn),vn〉E− J(vn)

≥
[

ν

(
1
2
− 1
γ

)
− b2

]∥∥vn∥∥2− b1,

(5.22)

if n is sufficiently large. Since

b2 < ν
(

1
2
− 1
γ

)
, (5.23)

we arrive at the conclusion (5.17) in the situation t = 0, too. The verification of the claim
in (5.17) is complete.

On the basis of (5.17) we know that there is u∈ E such that along a relabelled subse-
quence one has vn⇀ u in E. According to (5.13), we note

〈
ηnvn−∇J

(
vn
)
,ϕ
〉
E −→ 0 (5.24)
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for all ϕ∈ C∞c (RN \ {0}), where

ηn = ν + t2n
∥∥vn∥∥p−2

. (5.25)

Passing eventually to a subsequence, from (5.17) we may assume that there exists θ :=
limn→∞‖vn‖ and

‖u‖ ≤ liminf
n→∞

∥∥vn∥∥≤ θ. (5.26)

Letting n→∞ in (5.24) and (5.25), and using (2.30) and (5.16), we obtain

〈
u−µ∇J(u),ϕ

〉
E = 0, ∀ϕ∈ C∞c

(
RN \ {0}), (5.27)

with

µ= 1
ν + tθp−2 . (5.28)

Taking into account the definition of the inner product on the space E, it is clear that
equality (5.27) is just (2.31) with the eigenvalue µ in (5.28).

In addition, from (5.14), (5.16) and the definition of θ, we obtain the equality

tθp +β′(t)= 0. (5.29)

This implies that

tβ′(t)≤ 0. (5.30)

Notice that t �= 0. Indeed, if t = 0, then (5.28) yields that 1/ν is an eigenvalue of (2.31),
which contradicts (2.32). Further, we observe from (5.26), in conjunction with the as-
sumption∇J(0) �= 0 in (2.27) and relation (5.27), that θ �= 0. Since t �= 0, we deduce from
(5.30) and (5.7) that ρ ≤ t ≤ r. Knowing by (5.7) that β′(ρ) = β′(r) = 0, it follows from
(5.29) that the inequality ρ ≤ t ≤ r can be sharpened to

ρ < t < r. (5.31)

Thus (5.28) and (5.31) allow us to write

1
ν + r2θp−2 < µ <

1
ν + ρ2θp−2 . (5.32)

For p = 2, (5.32) represents just (2.34). For p > 2, the relations (5.26) and (5.32) entail
(2.33). This completes the proof.
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