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Abstract: This paper deals with the existence of multiple solutions for the quasilinear equation

−divA(x, ∇u) + |u|α(x)−2u = f(x, u) inℝN ,

which involves a general variable exponent elliptic operator A in divergence form. The problem corresponds
to double phase anisotropic phenomena, in the sense that the differential operator has various types of
behavior like |ξ|q(x)−2ξ for small |ξ| and like |ξ|p(x)−2ξ for large |ξ|, where 1 < α( ⋅ ) ≤ p( ⋅ ) < q( ⋅ ) < N. Our
aim is to approach variationally the problem by using the tools of critical points theory in generalized
Orlicz–Sobolev spaceswith variable exponent. Our results extend thepreviousworks [A.Azzollini, P. d’Avenia
and A. Pomponio, Quasilinear elliptic equations in ℝN via variational methods and Orlicz–Sobolev em-
beddings, Calc. Var. Partial Differential Equations 49 (2014), no. 1–2, 197–213] and [N. Chorfi and V. D.
Rădulescu, Standing wave solutions of a quasilinear degenerate Schrödinger equation with unbounded
potential, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Paper No. 37] from cases where the exponents p
and q are constant, to the case where p( ⋅ ) and q( ⋅ ) are functions. We also substantially weaken some of the
hypotheses in these papers and we overcome the lack of compactness by using the weighting method.

Keywords: Variable exponent elliptic operator, integral functionals, variable exponent Orlicz–Sobolev
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1 Introduction
In this paper, we deal with the following variable exponent elliptic equation:

−divA(x, ∇u) + |u|α(x)−2u = f(x, u) := λa(x)|u|δ(x)−2u + μw(x)g(x, u), (E)

where λ > 0 and μ ≥ 0 are parameters, A : ℝN × ℝN → ℝN admits a potential A , with respect to its second
variable ξ , satisfying the following assumption.
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(A1) The potentialA = A (x, ξ) is a continuous function inℝN × ℝN , with continuous derivativewith respect
to ξ , A = ∂ξA (x, ξ), and satisfies the following conditions:
(i) A (x, 0) = 0 and A (x, ξ) = A (x, −ξ) for all (x, ξ) ∈ ℝN × ℝN ,
(ii) A (x, ⋅ ) is strictly convex inℝN for all x ∈ ℝN ,
(iii) there exist constants C1, C2 > 0 and variable exponents p and q such that for all (x, ξ) ∈ ℝN × ℝN ,

C1|ξ|p(x) if |ξ| ≫ 1,
C1|ξ|q(x) if |ξ| ≪ 1,

} ≤ A(x, ξ) ⋅ ξ and |A(x, ξ)| ≤
{
{
{

C2|ξ|p(x)−1 if |ξ| ≫ 1,
C2|ξ|q(x)−1 if |ξ| ≪ 1,

(1.1)

(iv) 1 ≪ p( ⋅ ) ≪ q( ⋅ ) ≪ min{N, p∗( ⋅ )}, and p( ⋅ ), q( ⋅ ) are Lipschitz continuous inℝN ,
(v) A(x, ξ) ⋅ ξ ≤ s(x)A (x, ξ) for any (x, ξ) ∈ ℝ2N , where s is a Lipschitz continuous function and satis-

fies q( ⋅ ) ≤ s( ⋅ ) ≪ p∗( ⋅ ).
(A2) The potential A is uniformly convex, that is, for any ε ∈ (0, 1), there exists δ(ε) ∈ (0, 1) such that
|u − v| ≤ εmax{|u|, |v|} or A (x, u+v2 ) ≤

1
2 (1 − δ(ε))(A (x, u) +A (x, v)) for any x, u, v ∈ ℝ

N .
In this paper, for any v : ℝN → ℝ, we denote

v+ = ess sup
x∈ℝN

v(x), v− = ess inf
x∈ℝN

v(x),

and we denote by v1 ≪ v2 the fact that

ess inf
x∈ℝN
(v2(x) − v1(x)) > 0.

Remark 1. A typical example of A is

A(x, ∇u) =
{
{
{

|∇u|p(x)−2∇u if |∇u| > 1,
|∇u|q(x)−2∇u if |∇u| ≤ 1.

Then

−divA(x, ∇u) =
{
{
{

−div(|∇u|p(x)−2∇u) if |∇u| > 1,
−div(|∇u|q(x)−2∇u) if |∇u| ≤ 1,

and

A (x, ξ) =
{
{
{

1
p(x) |ξ|

p(x) + 1
q(x) −

1
p(x) if |ξ| > 1,

1
q(x) |ξ|

q(x) if |ξ| ≤ 1.

From [56, LemmaA.2 in Appendix A], it is clear that this typical potentialA satisfies assumptions (A1)–(A2),
1 < p− ≤ p+ < N and 1 < q− ≤ q+ < N.

It is well known that the main difficulty in studying the elliptic equations in ℝN is the lack of compactness.
To overcome this difficulty, many methods can be used. One type of methods is that under some additional
conditions the required compact embedding theorem holds, for example, the symmetrymethod, the coercive
coefficient method and the weighting method. In [4], the authors consider equation (E) with constant expo-
nent by the symmetrymethod to rebuild the required compact embedding theorem. In [56], in order to rebuild
the required compact embedding theorem, the authors consider equation (E) with coercive coefficient V(x)
of |u|α(x)−2u, namely, V(x) → +∞ as |x| → ∞. In this paper,wewill apply theweightingmethod, namely if the
coefficientsw and a satisfy some integrable conditions, thenwe can rebuild the required compact embedding
theorem.

We also make the following assumptions:
(H1

f ) The function g : ℝN × ℝ → ℝ satisfies the Carathéodory condition, 0 ≤ g(x, u)u = o(|u|α(x)) as u → 0,
and |g(x, u)| ≤ C(1 + |u|γ(x)−1), where γ( ⋅ ) is Lipschitz continuous and α ≤ γ( ⋅ ) ≪ p∗( ⋅ ).

(H2
f ) There exists a constant θ > s+ such that

0 < G(x, t) ≤ 1
θ
tg(x, t), t ∈ ℝ \ {0}, x ∈ ℝN ,

where G(x, t) = ∫t0 g(x, s) ds, and s( ⋅ ) is defined in (A1) (v).
(H3

f ) g(x, −u) = −g(x, u).
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(Hw) w ∈ Lr( ⋅ )(ℝN), w > 0 a.e. inℝN , 1 ≪ r(x) ≪ ∞, and

r󸀠(x) ≤ p
∗(x)
γ(x)

, x ∈ ℝN ,

where r󸀠(x) is the conjugate function of r(x), namely 1
r(x) +

1
r󸀠(x) = 1, and

p∗(x) =
{
{
{

Np(x)
N−p(x) if p(x) < N,
∞ if p(x) ≥ N.

(Ha) 1 ≪ δ(x) ≤ δ+ < α−, a ∈ Lr∗( ⋅ )(ℝN), a > 0 a.e. inℝN , 1 ≪ r∗(x) ≪ ∞, and
α(x) ≤ r∗(x)

r∗(x) − 1
δ(x) ≤ p∗(x), x ∈ ℝN .

This paper generalizes some results contained in [4] and [10] to the case of partial differential equations
with variable exponent. If p( ⋅ ) ≡ p, q( ⋅ ) ≡ q and α( ⋅ ) ≡ α are constants, then (E) becomes the usual constant
exponent differential equation in divergence formdiscussed in [10]. But if either p( ⋅ ) or q( ⋅ ) is a nonconstant
function, then (E) has a more complicated structure, due to its non-homogeneities and to the presence of
several nonlinear terms.

This paper was motivated by double phase nonlinear problems with variational structure, which have
been introduced byMarcellini [35] and developed by Baroni, Colombo andMingione [5, 12] in the framework
of non-homogeneous problems driven by a differential operator with variable growth described by noncon-
stant functions p(x) and q(x). In the case of two different materials that involve power hardening exponents
p( ⋅ ) and q( ⋅ ), the differential operator divA(x, ∇u) describes the geometry of a composite of these twomate-
rials. Compare hypothesis (1.1), the p( ⋅ )-material is present if |ξ| ≫ 1. In the opposite case, the q( ⋅ )-material
is the only one describing the composite.

In recent years, the study of differential equations and variational problems with variable exponent
growth conditions have been an interesting topic, which has the background in image processing, nonlin-
ear electrorheological fluids and elastic mechanics etc. We refer the reader to [1, 9, 27, 29, 44, 46, 58] and
the references therein for more background on applications. There are many reference papers related to the
study of variational problems with variable exponent growth conditions. Far from being complete, we refer
the readers to [2, 3, 6, 7, 14–31, 33–40, 43, 45, 47–56].

Our main results can be stated as follows.

Theorem 1.1. Assume that1 ≪ α ≤ p ≪ q ≪ min{N, p∗},1 ≪ α( ⋅ ) ≪ p∗( ⋅ ) q
󸀠( ⋅ )
p󸀠( ⋅ ) , μ > 0, λ is small enough, and

that hypotheses (A1)–(A2), (H1
f )–(H

2
f ), (Hw) and (Ha) hold. Then problem (E) has two pairs of nontrivial

nonnegative and nonpositive solution.

Theorem 1.2. Assume that 1 ≪ α ≤ p ≪ q ≪ min{N, p∗}, 1 ≪ α( ⋅ ) ≪ p∗( ⋅ ) q
󸀠( ⋅ )
p󸀠( ⋅ ) , μ > 0, and that hypotheses

(A1)–(A2), (H1
f )–(H

3
f ), (Hw) and (Ha) hold. Then problem (E) has infinitely many nontrivial solutions with

energy tending to +∞.

Theorem 1.3. Assume that 1 ≪ α ≤ p ≪ q ≪ min{N, p∗}, 1 ≪ α( ⋅ ) ≪ p∗( ⋅ ) q
󸀠( ⋅ )
p󸀠( ⋅ ) , μ = 0, and that hypotheses

(A1)–(A2), (Hw) and (Ha) hold. Then problem (E) has infinitely many nontrivial solutions with negative energy
tending to 0.

This paper is divided into five sections. Section 2 contains some properties of function spaces with variable
exponent. Section 3 includes several basic properties of Orlicz–Sobolev spaces. In Section 4 we establish
some qualitative properties of the operators involved in our analysis. In Section 5 we give the proofs of Theo-
rems 1.1–1.3. We refer to [11] for the basic analytic tools used in this paper.

2 Variable exponent spaces theory
Nonlinear problems with non-homogeneous structure are motivated by numerous models in the applied
sciences that are driven by partial differential equations with one or more variable exponents. In some cir-
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cumstances, the standard analysis based on the theory of usual Lebesgue and Sobolev function spaces,
Lp andW1,p, is not appropriate in the framework of materials that involve non-homogeneities. For instance,
both electrorheological “smart fluids” and phenomena arising in image processing are described in a cor-
rect way by nonlinear models in which the exponent p is not necessarily constant. The variable exponent
describes the geometry of a material which is allowed to change its hardening exponent according to the
point. This leads to the analysis of variable exponents Lebesgue and Sobolev function spaces (denoted
by Lp( ⋅ ) andW1,p( ⋅ )), where p is a real-valued (nonconstant) function.

Throughout this paper, the letters c, ci , C, Ci, i = 1, 2, . . . , denote positive constants which may vary
from line to line but are independent of the terms which will take part in any limit process.

In order to discuss problem (E), we need some theory of variable exponent Lebesgue spaces and Sobolev
spaces. In the sequel, we will give some properties of these variable exponent spaces. Let Ω ⊂ ℝN be an open
domain. Let S(Ω) be the set of all measurable real valued functions defined on Ω. Let

C+(Ω) = {v : v ∈ C(Ω), v(x) > 1 for x ∈ Ω},

Lp( ⋅ )(Ω) = {u ∈ S(Ω) : ∫
Ω

|u(x)|p(x) dx < ∞}.

The function space Lp( ⋅ )(Ω) is equipped with the Luxemburg norm

|u|Lp( ⋅ )(Ω) = inf{λ > 0 : ∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
u(x)
λ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p(x)
dx ≤ 1}.

Then (Lp( ⋅ )(Ω), | ⋅ |Lp( ⋅ )(Ω)) becomes a Banach space; we call it the variable exponent Lebesgue space. If
Ω = ℝN , we simply denote (Lp( ⋅ )(ℝN), | ⋅ |Lp( ⋅ )(ℝN )) as (Lp( ⋅ ), | ⋅ |Lp( ⋅ ) ).
Proposition 2.1 (see [22, Theorem 1.15]). The space (Lp( ⋅ )(Ω), |u|Lp( ⋅ )(Ω)) is a separable, uniformly convex
Banach space, and its conjugate space is Lp󸀠( ⋅ )(Ω), where 1

p(x) +
1

p󸀠(x) = 1. For any u ∈ Lp( ⋅ )(Ω)and v ∈ Lp󸀠( ⋅ )(Ω),
we have the following Hölder inequality:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

uv dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ (

1
p−
+

1
p󸀠− )
|u|Lp( ⋅ )(Ω)|v|Lp󸀠( ⋅ )(Ω).

Proposition 2.2 (see [22, Theorem 1.16]). If f : Ω × ℝ → ℝ is a Carathéodory function and satisfies

|f(x, s)| ≤ d(x) + b|s|p1(x)/p2(x) for any x ∈ Ω, s ∈ ℝ,

where p1, p2 ∈ C+(Ω), d(x) ∈ Lp2( ⋅ )(Ω), d(x) ≥ 0, b ≥ 0, then the Nemytsky operator from Lp1( ⋅ )(Ω) to Lp2( ⋅ )(Ω)
defined by (Nf u)(x) = f(x, u(x)) is a continuous and bounded operator.

Proposition 2.3 (see [22, Theorem 1.3]). If we denote

ρp( ⋅ )(u) = ∫
Ω

|u|p(x) dx, u ∈ Lp( ⋅ )(Ω),

then
(i) |u|Lp( ⋅ )(Ω) < 1(= 1;> 1) ⇔ ρp( ⋅ )(u) < 1(= 1;> 1),
(ii) |u|Lp( ⋅ )(Ω) > 1⇒ |u|p−Lp( ⋅ )(Ω) ≤ ρp( ⋅ )(u) ≤ |u|p+Lp( ⋅ )(Ω), |u|Lp( ⋅ )(Ω) < 1⇒ |u|p−Lp( ⋅ )(Ω) ≥ ρp( ⋅ )(u) ≥ |u|p+Lp( ⋅ )(Ω),
(iii) |u|Lp( ⋅ )(Ω) →∞⇔ ρp( ⋅ )(u) → ∞.

Proposition 2.4 (see [22, Theorem 1.14]). If u, un ∈ Lp( ⋅ )(Ω), n = 1, 2, . . . , then the following statements are
equivalent:
(1) limk→∞ |uk − u|Lp( ⋅ )(Ω) = 0,
(2) limk→∞ ρp( ⋅ )(uk − u) = 0,
(3) uk → u in measure in Ω and limk→∞ ρp( ⋅ )(uk) = ρp( ⋅ )(u).

The variable exponent Sobolev spaceW1,p( ⋅ )(Ω) is defined by

W1,p( ⋅ )(Ω) = {u ∈ Lp( ⋅ )(Ω) : ∇u ∈ [Lp( ⋅ )(Ω)]N}



X. Shi et al., Multiple solutions of double phase variational problems with variable exponent | 389

and it is equipped with the norm

‖u‖W1,p( ⋅ )(Ω) = |u|Lp( ⋅ )(Ω) + |∇u|Lp( ⋅ )(Ω), u ∈ W1,p( ⋅ )(Ω).

We denote byW1,p( ⋅ )
0 (Ω) the closure of C∞0 (Ω) inW1,p( ⋅ )(Ω).

The Lebesgue and Sobolev spaceswith variable exponents coincidewith the usual Lebesgue and Sobolev
spaces provided that p is constant. According to [44, pp. 8–9], these function spaces Lp( ⋅ ) and W1,p( ⋅ ) have
some non-usual properties, such as:
(i) Assuming that 1 < p− ≤ p+ < ∞ and p : Ω → [1,∞) is a smooth function, then the co-area formula

∫
Ω

|u(x)|p dx = p
∞

∫
0

tp−1 |{x ∈ Ω : |u(x)| > t}| dt

has no analogue in the framework of variable exponents.
(ii) The spaces Lp( ⋅ ) do not satisfy themean continuity property. More precisely, if p is nonconstant and con-

tinuous in an open ball B, then there is some u ∈ Lp( ⋅ )(B) such that u(x + h) ̸∈ Lp( ⋅ )(B) for every h ∈ ℝN
with arbitrary small norm.

(iii) Function spaces with variable exponent are never invariant with respect to translations. The convolution
is also limited. For instance, the classical Young inequality

|f ∗ g|p( ⋅ ) ≤ C |f|p( ⋅ ) ‖g‖L1

remains valid if and only if p is constant.
Conditions (A1) (i)–(ii) imply that

A (x, ξ) ≤ A(x, ξ) ⋅ ξ for all (x, ξ) ∈ ℝN × ℝN . (2.1)

Furthermore, (A1) (ii) is weaker than the assumption that A is uniformly convex, that is, for any ε ∈ (0, 1),
there exists a constant δ(ε) ∈ (0, 1) such that

A (x, ξ + η2 ) ≤ (1 − δ(ε))
A (x, ξ) +A (x, η)

2

for all x ∈ ℝN and (ξ, η) ∈ ℝN × ℝN satisfy |u − v| ≥ εmax{|u|, |v|}. By (A1) (i)–(iii), we have

A (x, ξ) =
1

∫
0

d
dt

A (x, tξ) dt =
1

∫
0

1
t
A(x, tξ) ⋅ tξ dt ≥

{
{
{

c1|ξ|p(x), |ξ| > 1,
c1|ξ|q(x), |ξ| ≤ 1.

This estimate in combination with (1.1) and (2.1) yields

c1|ξ|p(x), |ξ| > 1,
c1|ξ|q(x), |ξ| ≤ 1,

} ≤ A (x, ξ) ≤ A(x, ξ) ⋅ ξ ≤
{
{
{

c2|ξ|p(x), |ξ| > 1,
c2|ξ|q(x), |ξ| ≤ 1,

(x, ξ) ∈ ℝN × ℝN . (2.2)

Denote
Lϑ( ⋅ )w (Ω) = {u : ∫

Ω

w(x)|u(x)|ϑ(x) dx < ∞},

with the norm
|u|Lϑ( ⋅ )w (Ω) = inf {λ > 0 : ∫

Ω

w(x)|u(x)
λ
|ϑ(x) dx ≤ 1}.

If Ω = ℝN , we simply denote (Lϑ( ⋅ )w (ℝN), | ⋅ |Lϑ( ⋅ )w (ℝN )
) as (Lϑ( ⋅ )w , | ⋅ |Lϑ( ⋅ )w

).
From now on, we denote by BR the ball inℝN centered at the origin and of radius R > 0.

Lemma 2.5 (see [42, Lemma 2.2]). Assume that ϑ− > 1and ϑ+ < ∞. Then Lϑ( ⋅ )w is a separable uniformly convex
Banach space.
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Theorem 2.6 (see [56, Interpolation Theorem]). If p( ⋅ ) < α( ⋅ ) < q( ⋅ ), then for any u ∈ Lα( ⋅ )(Ω), there exists
a constant λ = λ(Ω, α, p, q, u) ∈ [ϑ−, ϑ+], where ϑ( ⋅ ) = p(q−α)α(q−p) , such that

|u|Lα( ⋅ )(Ω) ≤ 2|u|λLp( ⋅ )(Ω) ⋅ |u|1−λLq( ⋅ )(Ω).
Moreover, if ϑ− < ϑ+, then λ ∈ (ϑ−, ϑ+).

Proposition 2.7 (see [16, 23]). If Ω is a bounded domain, we have:
(i) W1,p( ⋅ )(Ω) and W1,p( ⋅ )

0 (Ω) are separable reflexive Banach spaces,
(ii) if ϑ ∈ C+(Ω) and ϑ(x) < p∗(x) for any x ∈ Ω, then the embedding from W1,p( ⋅ )(Ω) to Lϑ( ⋅ )(Ω) is compact

and continuous,
(iii) there is a constant C > 0 such that

|u|Lp( ⋅ )(Ω) ≤ C|∇u|Lp( ⋅ )(Ω), u ∈ W1,p( ⋅ )
0 (Ω).

3 Variable exponent Orlicz–Sobolev spaces theory
Let Ω ⊂ ℝN be an open domain.

Definition 3.1. We define the following real-valued linear space:

Lp( ⋅ )(Ω) + Lq( ⋅ )(Ω) = {u : u = v + w, v ∈ Lp( ⋅ )(Ω), w ∈ Lq( ⋅ )(Ω)},

which is endowed with the norm

|u|Lp( ⋅ )(Ω)+Lq( ⋅ )(Ω) = inf{|v|Lp( ⋅ )(Ω) + |w|Lq( ⋅ )(Ω) : v ∈ Lp( ⋅ )(Ω), w ∈ Lq( ⋅ )(Ω), v + w = u}. (3.1)

If Ω = ℝN , we simply denote (Lp( ⋅ )(Ω) + Lq( ⋅ )(Ω), | ⋅ |Lp( ⋅ )(Ω)+Lq( ⋅ )(Ω)) as (Lp( ⋅ ) + Lq( ⋅ ), | ⋅ |Lp( ⋅ )+Lq( ⋅ ) ).
We also define the linear space

Lp( ⋅ )(Ω) ∩ Lq( ⋅ )(Ω) = {u : u ∈ Lp( ⋅ )(Ω) and u ∈ Lq( ⋅ )(Ω)},

which is endowed with the norm

|u|Lp( ⋅ )(Ω)∩Lq( ⋅ )(Ω) = max {|u|Lp( ⋅ )(Ω), |u|Lq( ⋅ )(Ω)}.
Throughout this paper, we denote

Λu = {x ∈ Ω : |u(x)| > 1} and Λcu = {x ∈ Ω : |u(x)| ≤ 1}.

Proposition 3.2 (see [56, Proposition 3.2]). Assume (A1) (iv). Let Ω ⊂ ℝN and u ∈ Lp( ⋅ )(Ω) + Lq( ⋅ )(Ω). Then
the following properties hold:
(i) If Ω󸀠 ⊂ Ω is such that |Ω󸀠| < +∞, then u ∈ Lp( ⋅ )(Ω󸀠).
(ii) If Ω󸀠 ⊂ Ω is such that u ∈ L∞(Ω󸀠), then u ∈ Lq( ⋅ )(Ω󸀠).
(iii) |Λu| < +∞.
(iv) u ∈ Lp( ⋅ )(Λu) ∩ Lq( ⋅ )(Λcu).
(v) The infimum in (3.1) is attained.
(vi) If B ⊂ Ω, then |u|Lp( ⋅ )(Ω)+Lq( ⋅ )(Ω) ≤ |u|Lp( ⋅ )(B)+Lq( ⋅ )(B) + |u|Lp( ⋅ )(Ω\B)+Lq( ⋅ )(Ω\B).
(vii) We have

max{ 1

1 + 2|Λu|
1
p(ξ)− 1

q(ξ) |u|Lp( ⋅ )(Λu), cmin {|u|Lq( ⋅ )(Λcu), |u| q(ξ)p(ξ)
Lq( ⋅ )(Λcu)}} ≤ |u|Lp( ⋅ )(Ω)+Lq( ⋅ )(Ω)

≤ |u|Lp( ⋅ )(Λu) + |u|Lq( ⋅ )(Λcu),
where ξ ∈ ℝN and c is a small positive constant.
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Proposition 3.3 (see [32, Theorem 2]). If (X, ‖ ⋅ ‖) is a Banach space, then the following two statements are
equivalent:
(i) (X, ‖ ⋅ ‖) is reflexive.
(ii) Any bounded sequence of (X, ‖ ⋅ ‖) has a weak convergent subsequence.

Proposition 3.4 (see [56, Proposition 3.8]). Assume that hypothesis (A1) (iv) is fulfilled. Then

(Lp󸀠( ⋅ )(Ω) ∩ Lq󸀠( ⋅ )(Ω))󸀠 = Lp( ⋅ )(Ω) + Lq( ⋅ )(Ω).
Proposition 3.5 (see [56, Proposition 3.9]). Assume (A1) (iv). Then (Lp( ⋅ )(Ω) + Lq( ⋅ )(Ω), | ⋅ |Lp( ⋅ )(Ω)+Lq( ⋅ )(Ω)) is
a reflexive Banach space.

Define
X(Ω) = {u ∈ Lα( ⋅ )(Ω) : ∇u ∈ (Lp( ⋅ )(Ω) + Lq( ⋅ )(Ω))N}

with the norm
‖u‖Ω = |u|Lα( ⋅ )(Ω) + |∇u|Lp( ⋅ )(Ω)+Lq( ⋅ )(Ω).

If Ω = ℝN , we simply denote (X(Ω), ‖u‖Ω) as (X, ‖u‖).

Proposition 3.6 (see [56, Proposition 3.10]). Assume (A1) (iv). Then (X(Ω), ‖u‖Ω) is a Banach space.

Proposition 3.7 (see [56, Proposition 3.11]). Assume (A1) (iv). Then (X(Ω), ‖u‖Ω) is reflexive.

Theorem 3.8 (see [56, Theorem 3.12]). Assume (A1) (iv), 1 ≪ p∗( ⋅ ) q
󸀠( ⋅ )
p󸀠( ⋅ ) , α satisfies 1 ≪ α( ⋅ ) ≪ p∗( ⋅ )N−1N

and 1 ≪ α( ⋅ ) ≤ p∗( ⋅ ) q
󸀠( ⋅ )
p󸀠( ⋅ ) . Then the space X(Ω) is continuously embedded into Lp∗( ⋅ )(Ω).

Corollary 3.9 (see [56, Corollary 3.13]). Assume the conditions of Theorem 3.8. We have the following proper-
ties:
(i) For any u ∈ X(Ω), ψnu → u in X(Ω).
(ii) For any u ∈ X, we have uε = u ∗ jε → u in X (where jε(x) = ε−N j( xε ) and j : ℝ

N → ℝ+ is in C∞c (ℝN), a func-
tion inducing a probability measure).

(iii) For any u ∈ X, there exists a sequence {un} ⊂ C∞c (ℝN) such that un → u in X.

Theorem 3.10. Assume conditions of Theorem 3.8.
(i) For any α ≤ s ≤ p∗, the space X(Ω) is continuously embedded into Ls( ⋅ )(Ω).
(ii) For any bounded subset Ω ⊂ ℝN , there is a compact embedding X(Ω) 󳨅→ Ls( ⋅ )(Ω) for any 1 ≤ s ≤ p∗.
(iii) We also assume that ϑ( ⋅ ) ∈ C(ℝN) is Lipschitz continuous, w ∈ Lr( ⋅ ) and

α( ⋅ ) ≤ r󸀠( ⋅ )ϑ( ⋅ ) ≤ p∗( ⋅ ) inℝN .

Then there is a compact embedding X 󳨅→ Lϑ( ⋅ )w .

Proof. The proofs of (i) and (ii) are trivial from Proposition 2.7. We only need to prove (iii). Since X is
embedded into Lr󸀠( ⋅ )ϑ( ⋅ )(ℝN) for α( ⋅ ) ≤ r󸀠( ⋅ )ϑ( ⋅ ) ≪ p∗( ⋅ ), we may assume that un ⇀ u in X. Then {‖un‖} is
bounded and the continuous embedding X 󳨅→ Lr󸀠( ⋅ )ϑ( ⋅ )(ℝN) guarantees the boundedness of {|un|Lr󸀠( ⋅ )ϑ( ⋅ ) }. So,
there is a positive constant M such that

sup{󵄨󵄨󵄨󵄨|un|
ϑ(x)󵄨󵄨󵄨󵄨Lr󸀠( ⋅ ) , 󵄨󵄨󵄨󵄨|u|ϑ(x)󵄨󵄨󵄨󵄨Lr󸀠( ⋅ )} ≤ M.

Set Bk = {x ∈ ℝN : |x| < k}. If w ∈ Lr( ⋅ )(ℝN), then

|w|Lr( ⋅ )(ℝN\Bk) → 0 as k →∞.

For any ε > 0, we can find large enough k1 > 0 such that

|w|Lr( ⋅ )(ℝN\Bk) ≤ ε
8M for all k ≥ k1.

From (ii) of this theorem, there is a compact embedding X(Bk1 ) 󳨅→ Lr󸀠( ⋅ )ϑ( ⋅ )(Bk1 ), so un ⇀ u implies

∫
Bk1

|w(x)||un − u|ϑ(x) dx ≤ |w(x)|Lr( ⋅ )(Bk1 )󵄨󵄨󵄨󵄨|un − u|ϑ(x)󵄨󵄨󵄨󵄨Lr󸀠( ⋅ )(Bk1 ) → 0 as n → +∞.
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Thus, there exists n1 > 0 such that for all n ≥ n1 we have

∫
Bk1

|w(x)||un − u|ϑ(x) dx <
ε
2.

Therefore

∫

ℝN

|w(x)||un − u|ϑ(x) dx ≤ ∫
Bk1

|w(x)||un − u|ϑ(x) dx + ∫
ℝN\Bk1

|w(x)||un − u|ϑ(x) dx

≤
ε
2 + 2|w|L

r( ⋅ )(ℝN\Bk)󵄨󵄨󵄨󵄨|un − u|ϑ(x)󵄨󵄨󵄨󵄨Lr󸀠( ⋅ )(ℝN\Bk)
≤
ε
2 + 2|w|L

r( ⋅ )(ℝN\Bk){󵄨󵄨󵄨󵄨|un|ϑ(x)󵄨󵄨󵄨󵄨Lr󸀠( ⋅ )(ℝN\Bk) + 󵄨󵄨󵄨󵄨|u|ϑ(x)󵄨󵄨󵄨󵄨Lr󸀠( ⋅ )(ℝN\Bk)}
≤
ε
2 +

ε
2 = ε.

We conclude that un → u in Lϑ( ⋅ )w . This completes the proof.

4 Properties of functionals and operators
By (vii) of Proposition 3.2, we deduce that A (x, ∇u) is integrable on ℝN for all u ∈ X. Thus, ∫ℝN A (x, ∇u) dx
is well defined. For u ∈ X, it follows by (2.2) that

∫

ℝN

A(x, ∇u) ⋅ ∇u dx + ∫
ℝN

|u|α(x) dx ≥ c1( ∫
ℝN∩Λ∇u |∇u|

p(x) dx + ∫
ℝN∩Λc∇u
|∇u|q(x) dx + ∫

ℝN

|u|α(x) dx)

and

∫

ℝN

A(x, ∇u) ⋅ ∇u dx + ∫
ℝN

|u|α(x) dx ≤ c2( ∫
ℝN∩Λ∇u |∇u|

p(x) dx + ∫
ℝN∩Λc∇u
|∇u|q(x) dx + ∫

ℝN

|u|α(x) dx),

where c1 and c2 are positive constants. Similarly, using (2.2), we get for all u ∈ X,

∫

ℝN

A (x, ∇u) dx + ∫
ℝN

1
α(x)
|u|α(x) dx ≥ c1( ∫

ℝN∩Λ∇u |∇u|
p(x) dx + ∫

ℝN∩Λc∇u
|∇u|q(x) dx + ∫

ℝN

1
α(x)
|u|α(x) dx)

and

∫

ℝN

A (x, ∇u) dx + ∫
ℝN

1
α(x)
|u|α(x) dx ≤ c2( ∫

ℝN∩Λ∇u |∇u|
p(x) dx + ∫

ℝN∩Λc∇u
|∇u|q(x) dx + ∫

ℝN

1
α(x)
|u|α(x) dx).

From (H1
f ),wehave |g(x, u)| ≤ |u|

α(x)−1+C|u|γ(x)−1. Notice that α( ⋅ ) ≤ γ( ⋅ ) ≤ p
∗( ⋅ )
r󸀠( ⋅ ) . Combining (Hw) and (Ha),

it is easy to check that f(x, u)v and F(x, u) are integrable onℝN for all u, v ∈ X.
We say that u ∈ X is a solution of problem (E) if

∫

ℝN

A(x, ∇u) ⋅ ∇v dx + ∫
ℝN

|u|α(x)−2uv dx = ∫
ℝN

f(x, u)v dx, v ∈ X.

It follows that solutions of (E) correspond to the critical points of the Euler–Lagrange energy functional
Φ : X → ℝ, defined by

Φ = ∫
ℝN

A (x, ∇u) dx + ∫
ℝN

1
α(x)
|u|α(x) dx − ∫

ℝN

F(x, u) dx,

where F(x, u) = ∫u0 f(x, s) ds.
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Define the functionals ΦA , Φα , Φf : X → ℝ by

ΦA (u) = ∫
ℝN

A (x, ∇u) dx,

Φα(u) = ∫
ℝN

1
α(x)
|u|α(x) dx,

Φf (u) = ∫
ℝN

F(x, u) dx.

Lemma 4.1 (see [56, Lemma 4.1]). Assume the structure conditions (A1). Then the functionalΦA is convex, of
class C1, and sequentially weakly lower semicontinuous in X. Moreover, Φ󸀠A : X → X∗ is bounded.

Lemma 4.2 (see [56, Lemma 4.2]). Assume the structure conditions (A1) (iv). Then the functional Φα is con-
vex, of class C1 and sequentially weakly lower semicontinuous. Moreover, if un , u ∈ X and un ⇀ u in X, then
Φ󸀠α(un)

∗
⇀ Φ󸀠α(u) in X∗.

Lemma 4.3 (see [56, Lemma 4.3]). Assume (A1), (H1
f ), (Hw) and (Ha). ThenΦf is of class C1 and sequentially

weakly-strongly continuous, that is, if un ⇀ u in X, then Φf (un) → Φf (u) and Φ󸀠f (un) → Φ󸀠f (u) in X
∗.

Proof. Since X is embedded into Lγ( ⋅ )(ℝN) for α( ⋅ ) ≤ γ( ⋅ ) ≤ p
∗( ⋅ )
r󸀠( ⋅ ) , we deduce that F(x, u) is integrable onℝN ,

hence Φf (u) is well defined.
Now, let us prove that is Φf weakly-strongly continuous. Assume that un ⇀ u in X; then {un} is bounded

in X, hence {|un|Lr󸀠( ⋅ )α( ⋅ ) } and {|un|Lr󸀠( ⋅ )γ( ⋅ ) } are bounded. Since
|G(x, t)| ≤ 1

α(x)
|t|α(x) + c

γ(x)
|t|γ(x),

we have
w(x)|G(x, un) − G(x, u)| ≤ w(x){|u|α(x) + |un|α(x) + c|un|γ(x) + c|u|γ(x)}.

Therefore {w(x)|G(x, un) − G(x, u)|} is uniformly integrable inℝN . By Theorem 3.10, un → u a.e. inℝN . Thus,
by Vitali’s theorem, we have

lim
n→∞
∫

ℝN

w(x)|G(x, un) − G(x, u)| dx = ∫
ℝN

lim
n→∞

w(x)|G(x, un) − G(x, u)| dx = 0.

Similarly, we have

lim
n→∞
∫

ℝN

a(x)
δ(x)
󵄨󵄨󵄨󵄨|un|

δ(x) − |u|δ(x)󵄨󵄨󵄨󵄨 dx = ∫
ℝN

lim
n→∞

a(x)
δ(x)
󵄨󵄨󵄨󵄨|un|

δ(x) − |u|δ(x)󵄨󵄨󵄨󵄨 dx = 0.

We conclude that Φf (un) → Φf (u). In a similar way, we can obtain the weakly-strongly continuity of Φ󸀠f .

Lemma 4.4. Assume (A1), (H1
f ), (Hw) and (Ha). Then the functional Φ is of class C1 and sequentially weakly

lower semicontinuous in X, that is, if un ⇀ u0 in X, then

Φ(u0) ≤ lim inf
n→∞

Φ(un).

Proof. Invoking Lemmas 4.1–4.3, we obtain the C1-continuity of Φ. Next, wewill prove that Φ is the sequen-
tially weakly lower semicontinuous in X. By Lemma 4.3, Φf (u) is weakly continuous. Obviously,

lim inf
n→∞

Φ(un) ≥ lim inf
n→∞
(ΦA (un) + Φa(un)) − lim sup

n→∞
Φf (un)

≥ ΦA (u0) + Φα(u0) − Φf (u0)
= Φ(u0).

Thus, Φ is sequentially weakly lower semicontinuous in X.



394 | X. Shi et al., Multiple solutions of double phase variational problems with variable exponent

Lemma 4.5 (see [56, Lemma 4.6]). Suppose thatA satisfies (A1) and (A2) (namelyA (x, ⋅ ) : ℝN → ℝ is a uni-
formly convex function), that is, for any ε ∈ (0, 1) there exists δ(ε) ∈ (0, 1) such that

A (x, u + v2 ) ≤
(1 − δ(ε))

2 (A (x, u) +A (x, v))

for all x ∈ ℝN and all (u, v) ∈ ℝN with |u − v| ≤ εmax{|u|, |v|}. Then we have:
(i) ΦA ( ⋅ ) : X → ℝ is uniformly convex, that is, for any ε ∈ (0, 1) there exists δ(ε) ∈ (0, 1) such that for all

u, v ∈ X,

ΦA (
u − v
2 ) ≤ ε

ΦA (u) + ΦA (v)
2 or ΦA (

u + v
2 ) ≤ (1 − δ(ε))

ΦA (u) + ΦA (v)
2 .

(ii) If un ⇀ u in X and limn→∞(Φ󸀠A (un) − Φ
󸀠
A (u), un − u) ≤ 0, then

ΦA (un − u) → 0 and |∇un − ∇u|Lp( ⋅ )+Lq( ⋅ ) → 0.

Define ρ( ⋅ ) : X → ℝ as
ρ(u) = ∫

ℝN

A (x, ∇u) dx + ∫
ℝN

1
α(x)
|u|α(x) dx,

and we denote the derivative operator by L, that is, L = ρ󸀠 : X → X∗ with

(L(u), v) = ∫
ℝN

A(x, ∇u)∇v dx + ∫
ℝN

|u|α(x)−2uv dx, u, v ∈ X.

Lemma 4.6 (see [56, Lemma 4.7]). Under the structure conditions (A1), we have the following property:
(i) L : X → X∗ is a continuous, bounded and strictly monotone operator.
If (A2) is also satisfied, then we have:
(ii) L is amapping of type (S+), that is, if un ⇀ u in X and limn→∞(L(un) − L(u), un − u) ≤ 0, then un → u in X.
(iii) L : X → X∗ is a homeomorphism.

Lemma 4.7. We assume the structure conditions (A1)–(A2), (H1
f )–(H

2
f ), (Hw), (Ha), 1 ≪ α( ⋅ ) ≪ p∗( ⋅ ) q

󸀠( ⋅ )
p󸀠( ⋅ )

and α ≤ p. Then Φ satisfies the (PS) condition, that is, if {un} ⊂ X satisfies Φ(un) → c and ‖Φ󸀠(un)‖X∗ → 0,
then {un} has a convergent subsequence.

Proof. Assume that {un} is bounded. Then, up to a subsequence, un ⇀ u0. By Lemma 4.3, again up to
a subsequence, we have Φ󸀠f (un) → Φ󸀠f (u0) in X

∗. By Lemma 4.6, L−1 is continuous from X∗ to X, hence
un → L−1 ∘ Φ󸀠f (u0) in X. We only need to prove that {un} is bounded in X. We argue by contradiction. Suppose
not; then there exist c ∈ ℝ and {un} ⊂ X satisfying

Φ(un) → c, ‖Φ󸀠(un)‖X∗ → 0, ‖un‖ → +∞.

Since (Φ󸀠(un), 1θ un) → 0, we may assume that

c + ‖un‖ ≥ Φ(un) − (Φ󸀠(un), 1θ un)

= ∫

ℝN

A (x, ∇un) dx + ∫
ℝN

1
α(x)
|un|α(x) dx − ∫

ℝN

F(x, un) dx

− { ∫

ℝN

1
θ
A(x, ∇un)∇un dx + ∫

ℝN

1
θ
|un|α(x) dx − ∫

ℝN

1
θ
f(x, un)un dx}

≥ ∫

ℝN

(1 − s(x)θ )A (x, ∇un) dx + ∫
ℝN

(
1
α(x)
−
1
θ)
|un|α(x) dx + ∫

ℝN

{
1
θ
f(x, un)un − F(x, un)} dx.

It follows that

c + ‖un‖ ≥ Φ(un) − (Φ󸀠(un), 1θ un) ≥ c1 ∫
ℝN

A (x, ∇un) + |un|α(x) dx − ∫
ℝN

(
1
δ(x)
−
1
θ)
λa(x)|un|δ(x) dx

≥ c1‖un‖α
−
− C‖un‖δ

+
− C.

Notice that α− > δ+ > 1. Thus, we obtain a contradiction. The proof is complete.
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5 Proof of the theorems
In this section, we will give the proofs of Theorems 1.1–1.3.

5.1 Proof of Theorem 1.1

Let us consider the following auxiliary problem:

−divA(x, ∇u) + |u|α(x)−2u = f+(x, u), (E+)

where

f+(x, u) =
{
{
{

f(x, u) if f(x, u) ≥ 0,
0 if f(x, u) < 0.

The corresponding Euler–Lagrange functional is

Φ+(u) = ∫
ℝN

A (x, ∇u) dx + ∫
ℝN

1
α(x)
|u|α(x) dx − ∫

ℝN

F+(x, u) dx,

where F+(x, u) = ∫u0 f
+(x, t) dt. Similar to the proof of Lemma 4.7, we deduce that Φ+ satisfies the (PS) con-

dition.
Next, we prove that Φ+(u) satisfies the conditions of the mountain pass lemma. By assumption (H2

f ), we
have

g(x, tu)tu ≥ θG(x, tu) > 0, u ̸= 0, t ̸= 0, x ∈ ℝN ,

and
g(x, tu)u
G(x, tu) ≥

θ
t
> 0, u ̸= 0, t > 0, x ∈ ℝN .

Integrating with respect to t from 1 to t, we have

G(x, tu) ≥ |t|θG(x, u) ≥ 0, u ∈ ℝ, t ≥ 1, x ∈ ℝN , (5.1)

and
0 ≤ G(x, tu) ≤ |t|θG(x, u), u ∈ ℝ, t ∈ (0, 1], x ∈ ℝN .

Hence, if 0 < ‖u‖ ≤ 1, then

Φ+(u) ≥ 1
s+
‖u‖s+ − ‖u‖θ ∫

ℝN

μw(x)G+(x, u
‖u‖)

dx − ∫
ℝN

λ a(x)
δ(x)
|u|δ(x) dx

≥
1
s+
‖u‖s+ − c‖u‖θ − λ‖u‖δ(ξ) for some ξ ∈ ℝN .

Let ϵ > 0 and λ > 0 be small enough. Then

Φ(u) ≥ c > 0 for all ‖u‖ = ϵ. (5.2)

For 0 ≤ u ∈ X \ {0} and t > 1, we have

Φ+(tu) = ∫
ℝN

A (x, ∇tu) dx + ∫
ℝN

1
α(x)
|tu|α(x) dx − ∫

ℝN

F(x, tu) dx

≤ ts+ ∫
ℝN

A (x, ∇tu) dx + tα+ ∫
ℝN

1
α(x)
|tu|α(x) dx − tθ ∫

ℝN

μw(x)G(x, u) dx.

Since α+ ≤ s+ < θ, it follows that Φ(tw) → −∞ (t → +∞). Obviously, Φ+(0) = 0, hence Φ+ satisfies the con-
ditions of the mountain pass lemma.
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So, Φ+ admits at least one nontrivial critical point u1 that satisfies Φ+(u1) > 0. Thus (E+) has a solu-
tion u1, and it is easy to see that u1 ≥ 0, so u1 is a nonnegative solution u1 of (E) with Φ(u1) > 0. Similarly,
we can establish the existence of a nonpositive solution u2 of (E) with Φ(u2) > 0. Define h0 ∈ C0(B(x0, ε0))
as

h0(x) =
{
{
{

0, |x − x0| ≥ ε0,
ε0 − |x − x0|, |x − x0| < ε0.

Let ε0 > 0 be small enough. By (Ha), we have Φ+(th0) < 0 for small enough t > 0. Combining (5.2) and
Lemma 4.4, we deduce that Φ+ attains its infimum on {u ∈ X : ‖u‖ < ϵ}. Therefore, Φ+ admits at least one
nontrivial critical point u3 satisfying Φ+(u3) < 0. It is easy to see that u3 ≥ 0, so u3 is a nonnegative solu-
tion of (E) with Φ(u3) < 0. Similarly, we can establish the existence of a nonpositive solution u4 of (E) with
Φ(u4) < 0. The proof is complete.

5.2 Proof of Theorem 1.2

In order to prove Theorem1.2, we need to recall some preliminary results. Since X is a reflexive and separable
Banach space (see [57, Section 17, Theorems 2–3], there exist sequences {ej} ⊂ X and {e∗j } ⊂ X∗ such that

X = span{ej : j = 1, 2, . . . }, X∗ = spanw
∗
{e∗j : j = 1, 2, . . . },

and

⟨e∗j , ej⟩ =
{
{
{

1 if i = j,
0 if i ̸= j.

For convenience, we write

Xj = span{ej}, Yk =
k
⨁
j=1

Xj , Zk =
∞
⨁
j=k

Xj . (5.3)

Let
Θ(u) = |u|Lδ( ⋅ )a

+ |u|Lα( ⋅ )w
+ |u|Lγ( ⋅ )w

.
By Theorem3.10, similar to the proof of Lemma4.3,we deduce that Θ : X → ℝ is weakly-strongly continuous
and Θ(0) = 0.

Lemma 5.1 (see [42, Lemma 5.1]). Assume thatΘ : X → ℝ is weakly-strongly continuous andΘ(0) = 0, γ0 > 0
is a given number. Let

βk = βk(γ0) = sup {Θ(u) : ‖u‖ ≤ γ0, u ∈ Zk}.
Then βk → 0 as k →∞.

To complete the proof of Theorem 1.2, we recall the following critical point lemma (see, e.g., [59, Theo-
rem 4.7]).

Lemma 5.2. Suppose that Φ ∈ C1(X, R) is even and satisfies the (PS) condition. Let V+, V− ⊂ X be closed sub-
spaces of X with codim V+ + 1 = dim V−, and suppose that the following conditions are fulfilled:
(10) Φ(0) = 0.
(20) There exist τ > 0 and γ0 > 0 such that for all u ∈ V+, ‖u‖ = γ0 ⇒ Φ(u) ≥ τ.
(30) There exists ρ > 0 such that for all u ∈ V−, ‖u‖ ≥ ρ ⇒ Φ(u) ≤ 0.
Consider the following set:

Γ = {h ∈ C0(X, X) : h is odd, h(u) = u if u ∈ V− and ‖u‖ ≥ ρ}.

Then:
(a) For all δ0 > 0 and h ∈ Γ one has S+δ0 ∩ h(V

−) ̸= ⌀, where S+δ0 = {u ∈ V
+ : ‖u‖ = δ0}.

(b) The number ϖ := infh∈Γ supu∈V− Φ(h(u)) ≥ τ > 0 is a critical value for Φ.
Proof of Theorem 1.2. According to our assumptions, Φ is an even functional and it satisfies the (PS) com-
pactness condition. Let V+k = Zk, which is a closed linear subspace of X and V+k ⊕ Yk−1 = X.
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Set V−k = Xk. We will prove that there are infinitely many pairs of V+k and V−k such that φ satisfies the
conditions of Lemma 5.2. We also show that the corresponding critical value ϖk := infh∈Γ supu∈V−

k
Φ(h(u))

tends to +∞ as k →∞, which implies that there are infinitely many pairs of solutions to problem (E).
For any k = 1, 2, . . . , we prove that there exist ρk > τk > 0 and large enough k such that

(A1) bk := inf{Φ(u) : u ∈ V+k , ‖u‖ = τk} → +∞ as k → +∞,
(A2) ak := max{Φ(u)|u ∈ V−k , ‖u‖ = ρk} ≤ 0.

We first show that (A1) holds. Let σ ∈ (0, 1) be small enough. By (H1
f ), there exists C(σ) > 0 such that

G(x, u) ≤ σ|u|α(x) + C(σ)|u|γ(x), x ∈ ℝN , u ∈ ℝ.

By computation, for any u ∈ Zk with ‖u‖ = τk = (2C2 1
c1 β

δ+
k )

1
α−−γ+ , we have

Φ(u) = ∫
ℝN

A (x, ∇u) dx + ∫
ℝN

1
α(x)
|u|α(x) dx − ∫

ℝN

F(x, u) dx

≥ 2c1( ∫
ℝN∩Λ∇u |∇u|

p(x) dx + ∫
ℝN∩Λc∇u
|∇u|q(x) dx + ∫

ℝN

|u|α(x) dx)

− ∫

ℝN

λ a(x)
δ(x)
|u|δ(x) dx − σ ∫

ℝN

μw(x)|u|α(x) dx − C(σ) ∫
ℝN

μw(x)|u|γ(x) dx

≥ 2c1‖u‖α
−
− |u|δ(ξ1)

Lδ( ⋅ )a
− σ|u|α(ξ2)

Lα( ⋅ )w
− C(σ)|u|γ(ξ3)

Lγ( ⋅ )w
(where ξ1, ξ2, ξ3 ∈ ℝN)

≥ 2c1‖u‖α
−
− |u|δ+

Lδ( ⋅ )a
− σ|u|α+

Lα( ⋅ )w
− C(σ)|u|γ

+
Lγ( ⋅ )w
− C1

≥ 2c1‖u‖α
−
− βδ+k ‖u‖δ+ − σβα+k ‖u‖α+ − C(σ)βγ+k ‖u‖γ+ − C1

≥ c1‖u‖α
−
− C2βδ

+
k ‖u‖

γ+ − C3
= c1(2C2

1
c1
βδ+k ) α−

α−−γ+
− C2βδ

+
k (2C2

1
c1
βδ+k )

γ+
α−−γ+
− C3

=
c1
2 (2C2

1
c1
βγ

+
k )

α−
α−−γ+
− C3 → +∞ (as k →∞),

because 1 < δ+ < α− < γ+ and βk → 0+ as k →∞. Therefore, bk → +∞ as k →∞.
Now, we show that (A2) holds. By (H2

f ) and (5.1), we deduce that

Φ(tu) → −∞ as t → +∞ for all h ∈ V−k with ‖u‖ = 1,

which implies that (A2) holds.
We conclude that the proof of Theorem 1.2 is complete.

5.3 Proof of Theorem 1.3

We first prove that Φ is coercive on X. Note that μ = 0. Since 1 < δ+ < α−, we have

Φ(u) ≥ 1
q+
‖u‖α− − c‖u‖δ+ → +∞ as ‖u‖ → ∞.

By Lemma 4.4, Φ is weakly lower semicontinuous. Then Φ attains its minimum on X, which provides a solu-
tion of problem (E).

Since Φ is coercive, it follows that Φ satisfies the (PS) condition on X. By assumption (A1) (i), Φ is an
even functional. Denote by γ(A) the genus of A (see [8, p. 215]). Set

ℜ = {A ⊂ X \ {0} : A is compact and A = −A},
ℜk = {A ⊂ ℜ : γ(A) ≥ k},
ck = inf

A∈ℜk
sup
u∈A

Φ(u), k = 1, 2, . . . .
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We have
−∞ < c1 ≤ c2 ≤ ⋅ ⋅ ⋅ ≤ ck ≤ ck+1 ≤ ⋅ ⋅ ⋅ .

In what follows we prove that ck < 0 for every k.
For fixed k, we can choose a k-dimensional linear subspace Ek of X such that Ek ⊂ C∞0 (BR). Since the

norms on Ek are equivalent, for any given δ0 > 0, there exists ρk ∈ (0, 1) such that u ∈ Ek with ‖u‖ ≤ ρk
implies |u|L∞ ≤ δ0. Set

S(k)ρk = {u ∈ Ek : ‖u‖ = ρk}.

From the compactness of S(k)ρk , there exists θk > 0 such that

∫

ℝN

F(x, u) dx = ∫
ℝN

λa(x)|u|δ(x)

δ(x)
dx ≥ θk , u ∈ S(k)ρk .

For u ∈ S(k)ρk and t ∈ (0, 1), we have

Φ(tu) = ∫
ℝN

A (x, ∇tu) dx + ∫
ℝN

1
α(x)
|tu|α(x) dx − ∫

ℝN

λa(x)|tu|δ(x)

δ(x)
dx ≤ C1

tα−
α−
ρα−k − tδ+θk .

Since 1 < δ+ < α−, we can find tk ∈ (0, 1) and εk > 0 such that

Φ(tku) ≤ −εk < 0 for all u ∈ S(k)ρk ,

that is,
Φ(u) ≤ −εk < 0 for all u ∈ S(k)tkρk .

Obviously, γ(S(k)tkρk ) = k, so ck ≤ −εk < 0.
By the genus theory (see [8, p. 219, Theorem 3.3]), each ck is a critical value of Φ, hence there is

a sequence of solutions {±uk : k = 1, 2, . . . } such that Φ(±uk) < 0. It only remains to prove that ck → 0−
as k →∞. Since Φ is coercive, there exists a constant R > 0 such that Φ(u) > 0 when ‖u‖ ≥ R. Taking A ∈ ℜk
arbitrarily, we have γ(A) ≥ k. Let Yk and Zk be the subspaces of X as mentioned in (5.3). According to the
properties of genus, we know that A ∩ Zk ̸= ⌀. Let βk = sup{|Φf (u)| : u ∈ Zk , ‖u‖ ≤ R}. By Lemma 5.1, we
have βk → 0 as k →∞. For all u ∈ Zk with ‖u‖ ≤ R, we have

Φ(u) = ΦA (u) + Φα(u) − Φf (u) ≥ −Φf (u) ≥ −βk.

Hence supu∈A Φ(u) ≥ −βk, and thus ck ≥ −βk. We conclude that ck → 0− as k →∞.

6 Perspectives and open problems
We now address to the readers several comments, perspectives, and open problems.

(i) Hypothesis (A1) (iv) establishes that problem (E) is described in the subcritical setting. To the best of
our knowledge, there is no result in the literature corresponding to the following almost critical frame-
work described in what follows. Assume that condition q( ⋅ ) ≪ min{N, p∗( ⋅ )} in (A1) (iv) is replaced with
the following hypothesis: there exists a finite set A ⊂ ℝN such that q(a) = min{N, p∗(a)} for all a ∈ A and
q(x) < min{N, p∗(x)} for all x ∈ ℝN \ A.

Open problem. Study if Theorems 1.1–1.3 established in this paper still remain true in the above almost
critical abstract setting.

(ii) Another very interesting research direction is to extend the approach developed in this paper to the case
of double phase problems studied in [5, 12, 13]. This corresponds to the non-homogeneous potential

A (x, ξ) = a(x)
p(x)
|ξ|p(x) + b(x)

q(x)
|ξ|q(x),

where the coefficients a(x) and b(x) are nonnegative and at least one is strictly positive for all x ∈ ℝN . At
present, we do not know any multiplicity results for double phase problems of this type.
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We also refer to the pioneering papers by Marcellini [35, 36] on (p, q)-growth conditions, which involve
integral functionals of the type

W1,1 ∋ u 󳨃→ ∫
Ω

f(x, ∇u) dx,

where Ω ⊆ ℝN is an open set. The integrand f : Ω × ℝN → ℝ satisfies unbalanced polynomial growth condi-
tions of the type

|ξ|p ≲ f(x, ξ) ≲ |ξ|q + 1 with 1 < p < q

for every x ∈ Ω and ξ ∈ ℝN .

(iii) The differential operator A (x, ξ) considered in problem (E) falls in the realm of those related to the so-
called Musielak–Orlicz spaces (see [40, 41]), more generally, of the operators having non-standard growth
conditions (whicharewidely considered in the calculus of variations). These function spaces areOrlicz spaces
whose defining Young function exhibits an additional dependence on the x variable. Indeed, classical Orlicz
spaces LΦ are defined requiring that a member function f satisfies

∫
Ω

Φ(|f|) dx < ∞,

where Φ(t) is a Young function (convex, non-decreasing, Φ(0) = 0). In the new case of Musielak–Orlicz
spaces, the above condition becomes

∫
Ω

Φ(x, |f|) dx < ∞.

The problems considered in this paper are indeed driven by the function

Φ(x, |ξ|) :=
{
{
{

|ξ|p(x) if |ξ| ≤ 1,
|ξ|q(x) if |ξ| ≥ 1.

(6.1)

When p(x) = q(x), we find the so-called variable exponent spaces, which are defined by

Φ(x, |ξ|) := |ξ|p(x).

We conclude these comments by pointing out that the present paper is concerned with a double phase
variant of the operators stemming from the energy generated by the function defined in (6.1).

(iv) An interesting double phase-type operator considered in the papers of Baroni, Colombo and Mingione
[5, 12, 13] addresses functionals of the type

w 󳨃→ ∫
Ω

(|∇w|p + a(x)|∇w|q) dx, (6.2)

where a(x) ≥ 0. The meaning of this functional is also to give a sharper version of the energy

w 󳨃→ ∫
Ω

|∇w|p(x) dx,

thereby describing sharper phase transitions. Composite materials with locally different hardening expo-
nents p and q can be described using the energy defined in (6.2). Problems of this type were also motivated
by applications to elasticity, homogenization, modelling of strongly anisotropic materials, Lavrentiev phe-
nomenon, etc.

Accordingly, a new double phase model can be given by

Φd(x, |ξ|) :=
{
{
{

|ξ|p + a(x)|ξ|q if |ξ| ≤ 1,
|ξ|p1 + a(x)|ξ|q1 if |ξ| ≥ 1,

with a(x) ≥ 0.
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