DE GRUYTER Adv. Calc. Var. 2020; 13(3): 385-401

Research Article

Xiayang Shi, Vicentiu D. Radulescu*, Dusan D. Repovs and Qihu Zhang

Multiple solutions of double phase variational
problems with variable exponent

https://doi.org/10.1515/acv-2018-0003
Received January 16, 2018; accepted March 7, 2018

Abstract: This paper deals with the existence of multiple solutions for the quasilinear equation
—divA(x, Vu) + [ul®®2u = fix,u) inRY,

which involves a general variable exponent elliptic operator A in divergence form. The problem corresponds
to double phase anisotropic phenomena, in the sense that the differential operator has various types of
behavior like |£]99-2¢ for small |¢] and like [§PW~2¢ for large |&], where 1 < a(-) < p(-) < q(-) < N. Our
aim is to approach variationally the problem by using the tools of critical points theory in generalized
Orlicz—Sobolev spaces with variable exponent. Our results extend the previous works [A. Azzollini, P. d’Avenia
and A. Pomponio, Quasilinear elliptic equations in R" via variational methods and Orlicz-Sobolev em-
beddings, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 197-213] and [N. Chorfi and V. D.
Radulescu, Standing wave solutions of a quasilinear degenerate Schrédinger equation with unbounded
potential, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Paper No. 37] from cases where the exponents p
and g are constant, to the case where p(-) and q(-) are functions. We also substantially weaken some of the
hypotheses in these papers and we overcome the lack of compactness by using the weighting method.

Keywords: Variable exponent elliptic operator, integral functionals, variable exponent Orlicz-Sobolev
spaces, critical point
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1 Introduction

In this paper, we deal with the following variable exponent elliptic equation:
—divA(x, Vi) + [u]*®2y = f(x, u) := Aa()|u®P2u + pw(x)g(x, u), &)

where A > 0 and y > 0 are parameters, A : RV x R¥ — RY admits a potential <7, with respect to its second
variable &, satisfying the following assumption.
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(A1) The potential o7 = o7 (x, {) is a continuous function in R¥ x RY, with continuous derivative with respect
to &, A = 0:47(x, &), and satisfies the following conditions:
(i) «/(x,0)=0and .« (x, &) = o/ (x, =& forall (x, &) € RN x RV,
(ii) «7(x,-)is strictly convex in RY for all x € RY,
(iii) there exist constants C1, C, > 0 and variable exponents p and g such that for all (x, &) € RN x RV,

C11EP™ i ] > 1,
C11819%if 18] < 1,

ColgP-tif 18] > 1,

(1.1)
Col&1901 if 18 « 1,

} <A(x, 8¢ and |A(x, &) < {
(iv) 1 < p(-) < q(-) < min{N, p*(-)}, and p(-), q(-) are Lipschitz continuous in RV,
(V) A(x, &) - & <s(x)(x, &) for any (x, &) € R*N, where s is a Lipschitz continuous function and satis-
fies q(+) <s(-) < p*(+).
(A2) The potential <7 is uniformly convex, that is, for any € € (0, 1), there exists 6(¢) € (0, 1) such that
|lu —v| < emax{lul, |v|} or o (x, ¥¥) < %(1 - 8(e))( (x, u) + </ (x, v)) for any x, u, v € RV,
In this paper, for any v : R¥Y — R, we denote

vt =esssupv(x), Vv =essinfv(x),
XeRN xeRN

and we denote by v; < v, the fact that

essinf(vo(x) — v1(x)) > 0.
XeRN

Remark 1. A typical example of A is

A, V) VuPO-2vy i [Vul > 1,
x, Vu) =
IVu99-2vy f [Vu| < 1.
Then
div A(x, Vu) —div(IVulP®=2vu) if [Vul > 1,
—divA(x, Vu) =
—div(|Vul?™2vy) if |[Vu| < 1,
and
A oygpx) . 11
I ol i (e
ﬁlﬂqo‘) if |§] < 1.

From [56, Lemma A.2 in Appendix A], it is clear that this typical potential . satisfies assumptions (A1)—(A,),
l<p <p"<Nandl<gq <q*<N.

It is well known that the main difficulty in studying the elliptic equations in RY is the lack of compactness.
To overcome this difficulty, many methods can be used. One type of methods is that under some additional
conditions the required compact embedding theorem holds, for example, the symmetry method, the coercive
coefficient method and the weighting method. In [4], the authors consider equation (€) with constant expo-
nent by the symmetry method to rebuild the required compact embedding theorem. In [56], in order to rebuild
the required compact embedding theorem, the authors consider equation (&) with coercive coefficient V(x)
of [u|*®~2y, namely, V(x) — +ooas |x| — oo. In this paper, we will apply the weighting method, namely if the
coefficients w and a satisfy some integrable conditions, then we can rebuild the required compact embedding
theorem.

We also make the following assumptions:
(3{}) The function g : RY x R — R satisfies the Carathéodory condition, 0 < g(x, u)u = o(ju|*®) as u — 0,

and |g(x, u)| < C(1 + |u|™~1), where y(-) is Lipschitz continuous and a < y(-) <« p*(-).

(ﬂ-ffz) There exists a constant 0 > s* such that

0<G(x,t) < %tg(x, t), teR\{0}, xeRY,

where G(x, t) = jot g(x, s)ds, and s(-) is defined in (A1) (v).
(H) glx, -u) = -glx, w).
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(Hy) we L'O@YN), w>0ae. inRY, 1 < r(x) < 0o, and
p*(x)
y()

where r'(x) is the conjugate function of r(x), namely ;% + ﬁ =1, and

2700 = Al,%fz) if p(x) < N,
00 if p(x) > N.

r'(x) < e RY,

(Hy) 1< 8(x)<bt<a,ael@N),a>0ae. inRY,1«r,(x) < oo, and
r4(X)
r.(x)—-1

This paper generalizes some results contained in [4] and [10] to the case of partial differential equations
with variable exponent. If p(-) = p, q(-) = gand a(-) = a are constants, then (€) becomes the usual constant
exponent differential equation in divergence form discussed in [10]. But if either p(- ) or g( - ) is a nonconstant
function, then () has a more complicated structure, due to its non-homogeneities and to the presence of
several nonlinear terms.

This paper was motivated by double phase nonlinear problems with variational structure, which have
been introduced by Marcellini [35] and developed by Baroni, Colombo and Mingione [5, 12] in the framework
of non-homogeneous problems driven by a differential operator with variable growth described by noncon-
stant functions p(x) and g(x). In the case of two different materials that involve power hardening exponents
p(-)and q(-), the differential operator div A(x, Vu) describes the geometry of a composite of these two mate-
rials. Compare hypothesis (1.1), the p(-)-material is present if |¢] > 1. In the opposite case, the g( - )-material
is the only one describing the composite.

In recent years, the study of differential equations and variational problems with variable exponent
growth conditions have been an interesting topic, which has the background in image processing, nonlin-
ear electrorheological fluids and elastic mechanics etc. We refer the reader to [1, 9, 27, 29, 44, 46, 58] and
the references therein for more background on applications. There are many reference papers related to the
study of variational problems with variable exponent growth conditions. Far from being complete, we refer
the readers to [2, 3, 6, 7, 14-31, 33-40, 43, 45, 47-56].

Our main results can be stated as follows.

a(x) < 8(x) <p*(x), xeRV,

Theorem 1.1. Assumethatl <« a <p < g < min{N,p*},1 < a(-) < p*(- )%,y > 0, Ais small enough, and
that hypotheses (A1)—(A>), (J{})—(J{f), (#y) and (H,) hold. Then problem (€) has two pairs of nontrivial
nonnegative and nonpositive solution.

Theorem 1.2. Assume that1 <« a <p <« g < min{N,p*}, 1 < a(-) <« p*(-)%, u > 0, and that hypotheses
(AD-(Ay), (}C})—(}C;), (Hy) and (H,) hold. Then problem (&) has infinitely many nontrivial solutions with

energy tending to +oco.

Theorem 1.3. Assume that 1 <« a < p < ¢ < min{N, p*}, 1 < a(-) <« p*(-)%, U =0, and that hypotheses
(A1)—-(A2), (Hy) and (H,) hold. Then problem (&) has infinitely many nontrivial solutions with negative energy
tending to 0.

This paper is divided into five sections. Section 2 contains some properties of function spaces with variable
exponent. Section 3 includes several basic properties of Orlicz-Sobolev spaces. In Section 4 we establish
some qualitative properties of the operators involved in our analysis. In Section 5 we give the proofs of Theo-
rems 1.1-1.3. We refer to [11] for the basic analytic tools used in this paper.

2 Variable exponent spaces theory

Nonlinear problems with non-homogeneous structure are motivated by numerous models in the applied
sciences that are driven by partial differential equations with one or more variable exponents. In some cir-
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cumstances, the standard analysis based on the theory of usual Lebesgue and Sobolev function spaces,
LP and WP, is not appropriate in the framework of materials that involve non-homogeneities. For instance,
both electrorheological “smart fluids” and phenomena arising in image processing are described in a cor-
rect way by nonlinear models in which the exponent p is not necessarily constant. The variable exponent
describes the geometry of a material which is allowed to change its hardening exponent according to the
point. This leads to the analysis of variable exponents Lebesgue and Sobolev function spaces (denoted
by LP() and W1-P(")), where p is a real-valued (nonconstant) function.

Throughout this paper, the letters c, c;, C, C;, i =1, 2, ..., denote positive constants which may vary
from line to line but are independent of the terms which will take part in any limit process.

In order to discuss problem (&), we need some theory of variable exponent Lebesgue spaces and Sobolev
spaces. In the sequel, we will give some properties of these variable exponent spaces. Let Q ¢ RN be an open
domain. Let S(Q) be the set of all measurable real valued functions defined on Q. Let

C.(Q) = {vive C(Q), v(x) > 1forx € 5},

Q) = {u €S(Q): Jlu(x)lp(") dx < oo}.
Q

The function space LP()(Q) is equipped with the Luxemburg norm

p(x)
dx <1¢t.

Then (LPC)(Q), | - [Lr)(q)) becomes a Banach space; we call it the variable exponent Lebesgue space. If
Q = RY, we simply denote (LPC)(RN), | - |pocr(ryy) @s (LPC), | - o).

|U|Lp<~)(Q) = il’lf{/\ >0: ”#
Q

Proposition 2.1 (see [22, Theorem 1.15]). The space (LPC(Q), [ulrecrq)) is a separable, uniformly convex

Banach space, and its conjugate spaceis LP'")(Q), where % +—A— = 1.Foranyu € LP)(Q)andv € LV'()(Q),

P p'o)
we have the following Holder inequality:

“uvdx
Q

Proposition 2.2 (see [22, Theorem 1.16]). Iff: Q x R — R is a Carathéodory function and satisfies

— + —= JIUILrO@Q) VI ) Q).
pp ((OLE 7 4I()

If(x, s)| < d(x) + b|s|IPr'P2X) foranyx € Q, s € R,

where p1, p2 € C.(Q), d(x) € LP>()(Q), d(x) = 0, b > 0, then the Nemytsky operator from LP()(Q) to LP>()(Q)
defined by (Nru)(x) = f(x, u(x)) is a continuous and bounded operator.

Proposition 2.3 (see [22, Theorem 1.3]). If we denote

por(@) = [P dx, we PO (@),
Q
then
@) lulpo) < 1(=1;> 1) e ppHw) < 1(= 1;+> 1), i .
(D) [ulirorq) > 1= Ul q) < Pp()W) < UGy gy Ul < 1= U0 g 2 Ppe) @) = 1l 0,
(iii) Iule«)(Q) — 00 & pp(.)(u) — 00.

Proposition 2.4 (see [22, Theorem 1.14]). Ifu, u, € LP)(Q),n =1, 2, ..., then the following statements are
equivalent:

(1) limg_eo [uk — Ulpper(q) = 0,

(2) limg—eo pp(.)(uk —u) =0,

(3) ux — uinmeasure in Q and limy_,co Pp(.)(Uk) = Pp(.)(W).

The variable exponent Sobolev space W'()(Q) is defined by
WhPCI(Q) = {u € LP(Q) : Vu € [P (Q)]N}
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and it is equipped with the norm
lullwrseray = lulpoay + [Vulpo ), u € WHPE(Q).

We denote by WP (Q) the closure of C3(Q) in WP()(Q).

The Lebesgue and Sobolev spaces with variable exponents coincide with the usual Lebesgue and Sobolev
spaces provided that p is constant. According to [44, pp. 8-9], these function spaces LP(*) and W'P() have
some non-usual properties, such as:

(i) Assumingthat1 < p~ <p* <ocoandp: Q — [1, 00) is a smooth function, then the co-area formula

j (P dx = p j 21 x e Q: uo)| > B dt
Q 0

has no analogue in the framework of variable exponents.

(ii) The spaces LP(*) do not satisfy the mean continuity property. More precisely, if p is nonconstant and con-
tinuous in an open ball B, then there is some u € LP(")(B) such that u(x + h) ¢ LP()(B) for every h ¢ RY
with arbitrary small norm.

(iii) Function spaces with variable exponent are never invariant with respect to translations. The convolution
is also limited. For instance, the classical Young inequality

If = glp(y < Clflpcy gl

remains valid if and only if p is constant.
Conditions (A1) (i)—(ii) imply that

o (x, &) <Ax, &) -& forall (x,&) e RN xRV, (2.1)

Furthermore, (A1) (ii) is weaker than the assumption that .2 is uniformly convex, that is, for any € € (0, 1),

there exists a constant §(¢) € (0, 1) such that

&+ o (x, &) + o (x,n)
2 2

w(;(, ) <(1-6(e)
forall x ¢ RN and (&, ) € RY x RY satisfy |u — v| > e max{|ul, |v|}. By (4,) (i)-(iii), we have

cllgP®, 18> 1,
g9, ¢ < 1.

~|

1 1
A, 8 = J %,;zf(x, t8) dt = j Ax, t8) - tEdt > «l
0 [0}

This estimate in combination with (1.1) and (2.1) yields

c1lEP™, 18> 1,
a1, ¢ <1,

calEP™, 18> 1,

(x, &) e RN xRV, (2.2)
281, ¢ <1,

]»s;z%(x,{)sA(x,{)-{s{

Denote
39 = {u : Jw(x)lu(x)ls(") dx < oo},
Q

with the norm

. ux) g
lul o) g, = inf {)l >0: Jw(x)|T| ) dx < 1}.
Q

. (- 9(-
If Q = RN, we simply denote (LW( )(IRN), | - |L$'>(1RN)) as (Lw( ), | - |L§f'))-
From now on, we denote by By the ball in RN centered at the origin and of radius R > 0.

Lemma 2.5 (see [42, Lemma 2.2]). Assumethat9~ > 1 and 9% < co. Then L‘Z,( Jis a separable uniformly convex
Banach space.
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Theorem 2.6 (see [56, Interpolation Theorem]). If p(-) < a(-) < q(-), then for any u € L*)(Q), there exists

aconstantA = A(Q, a, p, q, u) € [97, 9], where 9(-) = ﬁgg:g;, such that

A 1-A
IulLa«)(Q) < 2|u|L,,(.)(Q) . IuILq(,)(Q).

Moreover, if 9~ < 9%, then A € (97, 9%).

Proposition 2.7 (see [16, 23]). If Q is a bounded domain, we have:

@ wrPC)(Q) and Wé P ')(Q) are separable reflexive Banach spaces,

(ii) if 9 € C,(Q) and I(x) < p*(x) for any x € Q, then the embedding from W1-()(Q) to L9)(Q) is compact
and continuous,

(iii) thereis a constant C > O such that

|u|Lp(-)(Q) < C|Vu|Lp(»)(Q), ue Wé’p(.)(Q).

3 Variable exponent Orlicz-Sobolev spaces theory

Let Q ¢ RY be an open domain.

Definition 3.1. We define the following real-valued linear space:
LPOQ) + LIQ) = {u:u=v+w,vePQ), we L1OQ),
which is endowed with the norm
[ulzror @)z @) = Inf{[Vipserq) + IWlLaoq) : v € LPCOI(Q), w e LICN(Q), v+ w = u}. (3.1)

If O = RY, we simply denote (LP()(Q) + LI()(Q), | - lLr()(Q)+La¢)(q)) @S (LPC) + LIC) | - | o pa).
We also define the linear space

PO NLIQ) = {u: ue IPY(Q)and u € LIC)(Q)},
which is endowed with the norm

|u|Lp(-)(Q)qu(«)(Q) = max{IuILp(-)(g), IuILq«)(Q)}.
Throughout this paper, we denote
Ay={xeQ:lux)|>1} and A{={xeQ:u)<1}.

Proposition 3.2 (see [56, Proposition 3.2]). Assume (A1) (iv). Let Q c RN and u € LP()(Q) + L9)(Q). Then
the following properties hold:

@) IfQ' c Qissuch that|Q'| < +oco, then u € LPC)(Q").

(i) IfQ' c Qissuchthatu € L°(Q'), thenu e L10)(Q").

(iii) Ayl < +0o.

(iv) ue LPC(Ay) nLIGI(AS).

(v) Theinfimumin (3.1) is attained.

(Vi) IfB C Q, then |u|Lp(-)(Q)+Lq(~)(Q) < |u|LI’(')(B)+Lq<‘)(B) + |u|LP<-)(Q\B)+Lq(~)(Q\B).

(vii) We have

1 . o)

max{ 11 |u|L‘”<"(Au)’ ¢min {IulLﬂH(Aﬁ)a |u|fq(.)(A§)} < |u|Lp<~>(Q)+Lq(»)(Q)
1+ 2|Ay|PO 4@

< lulpeera,) + [UlLaoag),

where ¢ € RN and c is a small positive constant.
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Proposition 3.3 (see [32, Theorem 2]). If (X, | - ||) is a Banach space, then the following two statements are
equivalent:

@ X, 1I-1) is reflexive.

(ii) Any bounded sequence of (X, | - ||) has a weak convergent subsequence.

Proposition 3.4 (see [56, Proposition 3.8]). Assume that hypothesis (A1) (iv) is fulfilled. Then
(P Q) nLTC(Q)) = LPO)(Q) + LIO(Q).

Proposition 3.5 (see [56, Proposition 3.9]). Assume (A1) (iv). Then (LP()(Q) + LIC)(Q), | - 1oy Lacr@)) 1S
a reflexive Banach space.

Define
X(Q) = {u e L*)(Q) : Vu € (LP)(Q) + LI ()N}

with the norm
lulla = lulracrq) + IVulpro @yrra @) -
If Q = RN, we simply denote (X(Q), [ullq) as (X, ul).

Proposition 3.6 (see [56, Proposition 3.10]). Assume (A1) (iv). Then (X(Q), |ullq) is a Banach space.
Proposition 3.7 (see [56, Proposition 3.11]). Assume (A1) (iv). Then (X(Q), |ullq) is reflexive.

Theorem 3.8 (see [56, ,Theorem 3.12]). Assume (A1) (iv), 1 < p*(-)%, a satisfies 1 < a(+) < p*(~)%

and1 < a(-) < p*(- )%. Then the space X(Q) is continuously embedded into LP" (") (Q).

Corollary 3.9 (see [56, Corollary 3.13]). Assume the conditions of Theorem 3.8. We have the following proper-

ties:

(i) Foranyu € X(Q), Ypu — uin X(Q).

(ii) Foranyu € X, we have ug = u = jo — uin X (where j¢(x) = e ¥j(¥) andj : RN — R* isin CX(RN), a func-
tion inducing a probability measure).

(iii) For any u € X, there exists a sequence {uy} c C‘g"(IRN) such that u, — uinX.

Theorem 3.10. Assume conditions of Theorem 3.8.

(i) Forany a <s < p*, the space X(Q) is continuously embedded into L5)(Q).

(ii) For any bounded subset Q c RY, there is a compact embedding X(Q) — L5 )(Q) forany 1 < s < p*.
(iii) We also assume that 9(-) € C(RN) is Lipschitz continuous, w € L'") and

a(-) <r'()9(-)<p () inRV.
Then there is a compact embedding X — Lfv(').

Proof. The proofs of (i) and (ii) are trivial from Proposition 2.7. We only need to prove (iii). Since X is
embedded into L" )9 (RN) for a(-) < r'(-)9(-) < p*(-), we may assume that u, — u in X. Then {|u,|} is
bounded and the continuous embedding X < L"()9)(RN) guarantees the boundedness of {|un|; (s }- SO,
there is a positive constant M such that

ey, P

sup{||un o) < M.
Set By = {x e RN : |x| < k}. If w € L"C)(RY), then

WL wmp,) — 0 ask — oo.
For any € > 0, we can find large enough k; > 0 such that

£
[WlLro)mm\By) < FYYi forall k > kj.

From (ii) of this theorem, there is a compact embedding X(By,) < L"()9)(By,), so u, — u implies

I (WO |up — ul? dx < WOl By, ) |1tn — u| %) L'O@E,) — 0 asn— +oo.

By,
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Thus, there exists n; > 0 such that for all n > n; we have

I WOl — ul?® dx < ;

B,
Therefore
[ weotun ™ ax < [ ool - w dxs [ Gl - ™ dx
RN By, RN\By,
€ 9
< E + 2|W|Lr(-)(]RN\Bk)||un - uI (X)lL"(‘)(]RN\Bk)
€ 9 9
< 5 + 2wl @y {|lunl Plpro@nsy + PP L0 gy}
<E + £ £
S5ty =€
We conclude that u, — uin L‘Zf 7). This completes the proof. O

4 Properties of functionals and operators

By (vii) of Proposition 3.2, we deduce that <7 (x, Vu) is integrable on RY for all u € X. Thus, j]RN a7 (x, Vu) dx
is well defined. For u € X, it follows by (2.2) that

j A(x, Vu) - Vu dx + J [u|®X dx > c1< J [VulP® dx + J [Vul9® dx + j |2 dx)
RN RN RNNAy, RNNAS, RN
and
j A(x, Vu) - Vudx + J [u|®® dx < cz( J [VulP® dx + J [Vu|9® dx + J || 2% dx),
RN RN R¥NNAyy RNNAG, RN
where c; and ¢, are positive constants. Similarly, using (2.2), we get for all u € X,

1 e P () 1 ew
o (x,Vu)dx + | —|u|**Y dx = c; [VulP™ dx + [Vu|? dx + | —|u|*"™ dx
a(x) a(x)

RN RN RNVNAyy RNNAS, RN
and

J o (x, Vu) dx + J ilul“(") dx < c; I IVulP® dx + J Va9 dx + j ilul“(x) dx ).
a(x) a(x)
]RN

RN RN RNNAyy RNNAS,

From (3}), we have |g(x, u)] < |u|*®~1+ Clu|/*)~!. Notice thata(-) < y(-) < ij((j)) . Combining (H,,) and (Hy),
it is easy to check that f(x, u)v and F(x, u) are integrable on RY for all u, v € X.

We say that u € X is a solution of problem (&) if

j A(x,Vu)-Vvdx + J [u|*O=2yy dx = jf(x, uyvdx, velX.
RN RY RN

It follows that solutions of (£) correspond to the critical points of the Euler-Lagrange energy functional
@ : X - R, defined by

O = J /(x, Vu) dx + j Llul“(x) dx — J F(x, u) dx,
a(x)
RV RY RN

where F(x, u) = I; f(x, s) ds.
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Define the functionals ®,, @4, @5 : X - Rby

D (u) = J o (x, Vu) dx,
]RN
DO,4(u) = J ilul“(") dx
a a(X) ’
RN
Dr(u) = J F(x, u) dx.
]RN
Lemma 4.1 (see [56, Lemma 4.1]). Assume the structure conditions (A1). Then the functional @ ., is convex, of
class C', and sequentially weakly lower semicontinuous in X. Moreover, (D"w : X — X* is bounded.

Lemma 4.2 (see [56, Lemma 4.2]). Assume the structure conditions (A1) (iv). Then the functional ®, is con-
vex, of class C' and sequentially weakly lower semicontinuous. Moreover, if u,, u € X and u, — u in X, then
@/ (un) — Ol (u) in X*.

Lemma 4.3 (see [56, Lemma 4.3]). Assume (A4), (ﬂ{fl), (Hw) and (Hq). Then @y is of class C* and sequentially
weakly-strongly continuous, that is, if u, — u in X, then ®¢(u,) — ®f(u) and (D}(un) — (I)ji(u) inX*.

Proof. Since X is embedded into LY(")(RN) fora(-) < y(-) < %, we deduce that F(x, u) is integrable on RV,
hence @ (u) is well defined.

Now, let us prove that is @y weakly-strongly continuous. Assume that u, — u in X; then {u,} is bounded
in X, hence {|unl; (. a» } and {lunl;r v} are bounded. Since

|G(x, t)| < L|t|“(") ¥ Lmy(x),

a(x) y(x)

we have
WOO)IG (X, Un) — GO, w)] < wOO{ul®™ + un %X + clun V™ + clu™}.

Therefore {w(x)|G(x, un) — G(x, u)|} is uniformly integrable in R¥. By Theorem 3.10, u, — ua.e.in RY. Thus,
by Vitali’s theorem, we have
lim J w()|G(x, up) — G(x, u)| dx = J lim w(x)|G(x, uy) — G(x, u)| dx = 0.
n—-oo n—oo
RNV RV

Similarly, we have

lim j @||un|5<X>-|u|5<X>|dx= j lim @||un|5<X>—|u|5<X>|dx:o.
n—oo 6()() —0o0 O(x

RN RV
We conclude that @f(u,) — ®@f(u). In a similar way, we can obtain the weakly-strongly continuity of (13}. O

Lemma 4.4. Assume (A1), (9—(}), (Hy) and (H,). Then the functional @ is of class C* and sequentially weakly
lower semicontinuous in X, that is, if u, — ug in X, then

D (up) < liminf ®(uy).
n—oo

Proof. Invoking Lemmas 4.1-4.3, we obtain the C!-continuity of @. Next, we will prove that @ is the sequen-
tially weakly lower semicontinuous in X. By Lemma 4.3, ®f(u) is weakly continuous. Obviously,

li)p inf ®(uy) > lirpl inf (Do (un) + Py (un)) - limsup Of(uy)
—00 —00 n—oo

> @ (up) + @yu(uo) — @r(uo)
= CD(uo).

Thus, @ is sequentially weakly lower semicontinuous in X. O
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Lemma 4.5 (see [56, Lemma 4.6]). Suppose that <7 satisfies (A1) and (A,) (namely <7 (x,-) : RN — Ris a uni-
formly convex function), that is, for any € € (0, 1) there exists 6(¢) € (0, 1) such that

;zf(x, U ; V) L _26(‘9)) (o (x, 1) + (X, V)

forall x € RN and all (u, v) € RN with |u - v| < e max{|ul, |v|}. Then we have:

(i) ®4(-):X — Ris uniformly convex, that is, for any € € (0, 1) there exists 6(¢) € (0, 1) such that for all
u,velX,

D (u) + Doy (v)

q;,%#) < (1- (o)=L 20,

cl)d<u ; v) < g@%(u);d)ﬂ(v)

(i) Ifup, — uinXand Hn_m(db"d(un) - @' (u), up —u) <0, then

Dy (up—u) >0 and |Vup — Vulpee)orar — O.
Definep(-) : X - Ras 1
a(x)

p(u) = I </ (x, Vu) dx + I u|®® dx,

RN RN
and we denote the derivative operator by L, thatis, L = p’ : X — X* with

(L(u),v) = J A(x, Vu)Vvdx + J [u®®=2yvdx, u,veX.
RV RN
Lemma 4.6 (see [56, Lemma 4.7]). Under the structure conditions (A1), we have the following property:
(i) L:X — X*is a continuous, bounded and strictly monotone operator.
If (A>) is also satisfied, then we have:
(i) L isa mapping oftype (S,), thatis, ifup, — uin X and lim,_,co(L(un) — L(u), un — u) < 0, then u, — uin X.
(iii) L : X — X* is a homeomorphism.

Lemma 4.7. We assume the structure conditions (A1)—(A5), (9—(})—(3—(}%), (Hy), (Ha), 1 < a(+) < p*(- )f%
and a < p. Then @ satisfies the (PS) condition, that is, if {u,} c X satisfies ®(u,) — ¢ and | D' (up)|x- — O,

then {u,} has a convergent subsequence.

~

Proof. Assume that {u,} is bounded. Then, up to a subsequence, u, — ug. By Lemma 4.3, again up to
a subsequence, we have d)}(un) — (Dj’c(uo) in X*. By Lemma 4.6, L' is continuous from X* to X, hence
up - L 1o @}(uo) in X. We only need to prove that {u,} is bounded in X. We argue by contradiction. Suppose
not; then there exist ¢ € R and {u,} ¢ X satisfying

@(up) — ¢, D' (un)lx- =0, lunll - +oo.
Since (D' (uy), éun) — 0, we may assume that
¢+ lunll = ®un) - (' (un), gun)

= J o (x, Vuy) dx + J ilunl"‘(’() dx - J F(x, uy) dx

a(x)
IRN ]RN ]RN
1 1 ax) 1
- J EA(X, Vu,)Vuy, dx + j Elunl dx - J af(x, Up)Up dx
]RN IRN IRN
_sk) E SR VT J 1 _
> J (1 0 )W(X,Vun)dx+ J (a(x) 9>|un| dx + {ef(x, Up)uy — F(x, un)} dx.
RN RN RN
It follows that
€+l > D) = (' un), hun) > €1 [ 7t Vo) + a7 i~ [ (505 = 5 a0l dx

]RN IRN
> C_ Cllunll® - C
> cqllunl lunl .

Notice that @~ > 6* > 1. Thus, we obtain a contradiction. The proof is complete. O
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5 Proof of the theorems

In this section, we will give the proofs of Theorems 1.1-1.3.

5.1 Proof of Theorem 1.1

Let us consider the following auxiliary problem:
—divA(x, Vu) + [u|“2y = f+(x, u), (&)

where

. fix,u) iffix,u) >0,
frxu) = i
0 if f(x, u) < 0.

The corresponding Euler-Lagrange functional is
1
O (u) = j o (x,Vu) dx + j mlul“(") dx - J F*(x, u) dx,
RY RN x RN

where F*(x, u) = I: f*(x, t) dt. Similar to the proof of Lemma 4.7, we deduce that ®* satisfies the (PS) con-
dition.

Next, we prove that ®* (u) satisfies the conditions of the mountain pass lemma. By assumption (.‘Hf), we
have

g(x, tu)tu > 0G(x, tu) >0, u+0, t+0, xeRY,

and
>0, u#0,t>0, xeRV,

\%

gix,tuw)u 6
G(x, tu) t
Integrating with respect to t from 1 to ¢, we have

G(x, tu) > |t1°G(x,u) =0, ueR,t>1, xeRV, (5.1)

and
0<Gx, tu) < |t1°G(x,u), ueR, te(0,1], xeRN.

Hence, if O < |u| < 1, then

1 + u ax), s
Otw) = —ul® - ul? J w(x G*(x,—)dx— J A= u|%%) ax
( s [l lull” | pw(x) Tl 6(x)| |
]RN ]RN
> iuunS* —cllul® - Au)®®  for some & € RY.
S+
Let € > 0 and A > O be small enough. Then
D) >c>0 forallul =€. (5.2)

ForO<u e X\ {0O}and t > 1, we have

O (tu) = J o/ (x, Vtu) dx + J %Itul“(") dx - I F(x, tu) dx
RY RN ax RN
<t J o (x, Vtu) dx + t« J thul"‘(") dx - t° J uw(x)G(x, u) dx.

a(x)
RN RN RN

Since a* < s* < 0, it follows that ®(tw) — —oo (t — +00). Obviously, ®*(0) = 0, hence ®* satisfies the con-
ditions of the mountain pass lemma.
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So, ®* admits at least one nontrivial critical point u; that satisfies ®*(u1) > 0. Thus (€*) has a solu-
tion us, and it is easy to see that u; > 0, so u; is a nonnegative solution u; of (£) with ®(u1) > 0. Similarly,
we can establish the existence of a nonpositive solution u» of (£) with ®(u») > 0. Define hg € Co(B(xo, £0))

as
0, |x = xol| = €0,
ho(x) =
£ —|x-Xol, Ix—Xxol < &o.

Let £y > 0 be small enough. By (H,), we have ®*(thg) < O for small enough t > 0. Combining (5.2) and
Lemma 4.4, we deduce that @ attains its infimum on {u € X : |u| < €}. Therefore, ®* admits at least one
nontrivial critical point us satisfying ®*(us3) < 0. It is easy to see that us > 0, so u3 is a nonnegative solu-
tion of (&) with ®(u3) < 0. Similarly, we can establish the existence of a nonpositive solution u, of (&) with
®(uy) < 0. The proof is complete.

5.2 Proof of Theorem 1.2

In order to prove Theorem 1.2, we need to recall some preliminary results. Since X is a reflexive and separable
Banach space (see [57, Section 17, Theorems 2-3], there exist sequences {e;} ¢ X and {e;‘ } ¢ X* such that

X =5pan{ej:j=1,2,...}, X*:spanw*{e]f‘:jzl,z,...},

) 1 ifi=j,
(ej,ej) =

and

0 ifi#j.

For convenience, we write

k 00
Xj=spanfej}, Yi=@PX;, Z=Px;. (5.3)
j=1 j=k
Let
OW) = [ulpse) + fulpac) + |ulpye.
By Theorem 3.10, similar to the proof of Lemma 4.3, we deduce that © : X — Ris weakly-strongly continuous
and ©(0) = 0.

Lemma 5.1 (see [42, Lemma 5.1]). Assumethat© : X — R isweakly-strongly continuous and ©(0) = 0,y > 0
is a given number. Let

B = Bi(yo) = sup{®) : llull < yo, u € Zi}.
Then By — 0 as k — co.

To complete the proof of Theorem 1.2, we recall the following critical point lemma (see, e.g., [59, Theo-
rem 4.7]).

Lemma 5.2. Suppose that ® € C1(X, R) is even and satisfies the (PS) condition. Let V*, V~ c X be closed sub-
spaces of X with codim V* + 1 = dim V~, and suppose that the following conditions are fulfilled:

(1% ®(0) = 0.

(2°) There exist T > 0 and yo > O such that for allu € V*, |u| = yo = ®(u) > 1.

(3°) There exists p > 0 such that forallu € V-, |lu| = p = ®(u) <O.

Consider the following set:

['={heC’X,X): hisodd, h(u) = uifu € V™ and |ul > p}.

Then:
(a) Forall 6o > 0and h € T one has Sgo Nh(V™) + @, where Sgo ={ueV*:|u| = b0}
(b) The number @ := infper sup,cy- @(h(u)) = T > 0is a critical value for ©.

Proof of Theorem 1.2. According to our assumptions, @ is an even functional and it satisfies the (PS) com-
pactness condition. Let V;, = Z, which is a closed linear subspace of X and V| & Y1 = X.



DE GRUYTER X. Shi et al., Multiple solutions of double phase variational problems with variable exponent =— 397

Set V,_ = Xx. We will prove that there are infinitely many pairs of V| and V, such that ¢ satisfies the
conditions of Lemma 5.2. We also show that the corresponding critical value @y := infpcr SUPyey; O (h(u))
tends to +co as k — oo, which implies that there are infinitely many pairs of solutions to problem (&).

Forany k =1, 2, ..., we prove that there exist px > 7 > 0 and large enough k such that
(A1) by :=inf{®u) : u € V;, |ul = 7x} — +o0 as k — +oo,

(A2) ay := max{®w)|u € V, |ull = px} < 0.
We first show that (A1) holds. Let 0 € (0, 1) be small enough. By (.'H}), there exists C(o) > 0 such that

G(x, u) < olul*™ + C(o)|u™, xeRN, ueR.
By computation, for any u € Zy with |Ju]| = 7 = (2C2 Bk ) yF = , we have

D(u) = I o/ (x, Vu) dx + I —Iul"‘(") dx - I F(x, u) dx

a(x)
RN RV RN
> 2c1< J [VulP™ dx + J [Vul7%) dx + J || ) dx)
RNNAvy RVNAS, RV
a(x) 5(x) a(x) €9
J B(x )I ul®® dx - ¢ J uw()|u|* dx - C(o) J Hw()|u"™ dx
RV RN RN

oe) _ olulafﬁ) C(O)Iulyf?)) (where &1, &, &5 € RY)

W

6t
> 2cq flull™ —IulLﬁ(‘)—olulga() co)ul’,
a w

>2cqul® - Iul

Ly()
- + + + + +

> 2cul® ~ BY ul® ~ B Iul® ~ C(@)B) lul’ - C:
- 5+ +

> ciflul® - Capfy Ilully -G

+

+\ a” 1 + :J(‘yﬁ
_C1<2C2— 6 ) y —Czﬁk (2C2c—1ﬁk ) ! —C3

=%<2C2 Bk+)a B —C3—>+OO (ask—>oo),

because 1 < 6" < a~ < y* and Bx — 0* as k — co. Therefore, by — +co0 as k — co.
Now, we show that (A2) holds. By (9{]3) and (5.1), we deduce that

D(tu) » —ooast — +oo forall h € V; with [lul =1,

which implies that (A2) holds.
We conclude that the proof of Theorem 1.2 is complete. O

5.3 Proof of Theorem 1.3

We first prove that @ is coercive on X. Note that = 0. Since 1 < §* < a~, we have
1 - +
D(u) > q—+||u||“ —clul® - +00 as ul — .

By Lemma 4.4, @ is weakly lower semicontinuous. Then @ attains its minimum on X, which provides a solu-
tion of problem (&).

Since @ is coercive, it follows that @ satisfies the (PS) condition on X. By assumption (A1) (i), @ is an
even functional. Denote by y(A) the genus of A (see [8, p. 215]). Set

={A c X\ {0} : Ais compactand A = -A},
R ={AcCR:y(A) =k},
cx = inf sup®(u), k=

A€Rk yeA
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We have
—00<(C1<Cp < SCk<SCi41 <000

In what follows we prove that cx < 0 for every k.

For fixed k, we can choose a k-dimensional linear subspace Ejy of X such that Ex ¢ C3°(Bg). Since the
norms on Ej are equivalent, for any given &y > 0, there exists pyx € (0, 1) such that u € E; with |Ju| < px
implies |u|;~ < §p. Set

k
Soy = {u € Ex: Jull = pil.
k)

From the compactness of Sl(7k , there exists 0y > 0 such that

Aa(x)|u|°™ )
JF(x,u)dx= J dezek, uesS, .

RN RN
Foru € 51(7]? and t € (0, 1), we have

Aa(x)|tu|5™

.
D(tu) = J o (x, Vtu) dx + J thul"‘(x) dx - J dx < Clt—_pgf - t976y.
a(x) o

6(x)
RN RN RN
Since 1 < 6% < a~, we can find tx € (0, 1) and & > 0 such that
O(tru) < —€ <0 forallu e S,(,l;),

that is,
(k)

O(u) <-€r<0 forallue Stpe:

Obviously, y(Sﬁlk‘l)Jk) =k,socy < —&¢ <O.

By the genus theory (see [8, p.219, Theorem 3.3]), each ¢y is a critical value of @, hence there is
a sequence of solutions {+uy : k=1, 2, ...} such that ®(+uy) < 0. It only remains to prove that ¢y — 0~
as k — oo. Since @ is coercive, there exists a constant R > 0 such that ®(u) > 0 when |Ju| > R. Taking A € Ry
arbitrarily, we have y(A) > k. Let Yy and Zy be the subspaces of X as mentioned in (5.3). According to the
properties of genus, we know that A N Zy #+ @. Let By = sup{|®s(u)| : u € Z, |lul|l < R}. By Lemma 5.1, we
have By — 0 as k — oo. For all u € Zy with |Ju| < R, we have

D) = Dy (u) + Pg(u) - Op(u) = ~Dp(u) = —Pi.

Hence sup,c4 ®(u) = —Bx, and thus cx > —fx. We conclude that cxy — 0™ as k — co.

6 Perspectives and open problems

We now address to the readers several comments, perspectives, and open problems.

(i) Hypothesis (A;) (iv) establishes that problem (€) is described in the subcritical setting. To the best of
our knowledge, there is no result in the literature corresponding to the following almost critical frame-
work described in what follows. Assume that condition g(-) < min{N, p*(-)} in (A1) (iv) is replaced with
the following hypothesis: there exists a finite set A ¢ RY such that q(a) = min{N, p*(a)} for all a € A and
q(x) < min{N, p*(x)} forall x ¢ RN \ A.

Open problem. Study if Theorems 1.1-1.3 established in this paper still remain true in the above almost
critical abstract setting.

(ii) Another very interesting research direction is to extend the approach developed in this paper to the case
of double phase problems studied in [5, 12, 13]. This corresponds to the non-homogeneous potential

a(x) b(x)
(X, &) = ——|&gPY 4 222190
D= 500 g
where the coefficients a(x) and b(x) are nonnegative and at least one is strictly positive for all x € RY. At

present, we do not know any multiplicity results for double phase problems of this type.
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We also refer to the pioneering papers by Marcellini [35, 36] on (p, q)-growth conditions, which involve

integral functionals of the type
whlsue Jf(x, vu) dx,
Q
where Q ¢ RN is an open set. The integrand f : Q x R¥Y — R satisfies unbalanced polynomial growth condi-
tions of the type
IEP < flx, &) <1é19+1 withl<p<gq

for every x € Q and & € RV,
(iii) The differential operator .7 (x, &) considered in problem (€) falls in the realm of those related to the so-
called Musielak—-Orlicz spaces (see [40, 41]), more generally, of the operators having non-standard growth
conditions (which are widely considered in the calculus of variations). These function spaces are Orlicz spaces

whose defining Young function exhibits an additional dependence on the x variable. Indeed, classical Orlicz
spaces L? are defined requiring that a member function f satisfies

jdmmdx<m,

Q

where @(t) is a Young function (convex, non-decreasing, ®(0) = 0). In the new case of Musielak-Orlicz
spaces, the above condition becomes

JCD(X, Ifl) dx < oo.
Q

The problems considered in this paper are indeed driven by the function

EPif 18] < 1,

6.
€190 if 8] > 1. ©

D(x, |&]) := {

When p(x) = g(x), we find the so-called variable exponent spaces, which are defined by

D(x, |&]) := [EPW,

We conclude these comments by pointing out that the present paper is concerned with a double phase
variant of the operators stemming from the energy generated by the function defined in (6.1).

(iv) An interesting double phase-type operator considered in the papers of Baroni, Colombo and Mingione
[5, 12, 13] addresses functionals of the type

= J(le|p +a(x)|vw|?) dx, (6.2)
Q

where a(x) > 0. The meaning of this functional is also to give a sharper version of the energy

W - J [Vw[PY dx,
Q
thereby describing sharper phase transitions. Composite materials with locally different hardening expo-
nents p and g can be described using the energy defined in (6.2). Problems of this type were also motivated
by applications to elasticity, homogenization, modelling of strongly anisotropic materials, Lavrentiev phe-
nomenon, etc.
Accordingly, a new double phase model can be given by

1EP +a(0)|é?  ifél <1,

D, 18) =
‘ {MM+mmM% if141 > 1,

with a(x) > 0.



400 —— X.Shietal., Multiple solutions of double phase variational problems with variable exponent DE GRUYTER

Funding: Vicentiu D. Radulescu and DuSan D. Repovs were supported by the Slovenian Research Agency,
grants P1-0292,J1-8131, J1-7025, N1-0064, and N1-0083.

References

(1]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech.
Anal. 156 (2001), no. 2, 121-140.

C. 0. Alves and S. Liu, On superlinear p(x)-Laplacian equations in RY, Nonlinear Anal. 73 (2010), no. 8, 2566—2579.

S. Antontsev and S. Shmarey, Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness
and localization properties of solutions, Nonlinear Anal. 65 (2006), no. 4, 728-761.

A. Azzollini, P. d’Avenia and A. Pomponio, Quasilinear elliptic equations in R via variational methods and Orlicz—Sobolev
embeddings, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2,197-213.

P. Baroni, M. Colombo and G. Mingione, Nonautonomous functionals, borderline cases and related function classes,
Algebra i Analiz 27 (2015), no. 3, 6-50.

M.-M. Boureanu and V. D. Radulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear
Anal. 75 (2012), no. 12, 4471-4482.

J. Chabrowski and Y. Fu, Existence of solutions for p(x)-Laplacian problems on a bounded domain, J. Math. Anal. Appl. 306
(2005), no. 2, 604-618.

K. C. Chang, Critical Point Theory and Applications (in Chinese), Shanghai Scientific and Technology Press, Shanghai,
1986.

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66
(2006), no. 4, 1383-1406.

N. Chorfi and V. D. Radulescu, Standing wave solutions of a quasilinear degenerate Schrodinger equation with unbounded
potential, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Paper No. 37.

P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013.

M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218
(2015), no. 1,219-273.

M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015),
no. 2, 443-496.

A. Coscia and G. Mingione, Holder continuity of the gradient of p(x)-harmonic mappings, C. R. Acad. Sci. Paris Sér. |
Math. 328 (1999), no. 4, 363-368.

L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces LP¢) and WkP0),
Math. Nachr. 268 (2004), no. 1, 31-43.

L. Diening, P. Harjulehto, P. Hast6 and M. RGZicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes
in Math. 2017, Springer, Heidelberg, 2011.

D. E. Edmunds and J. Rakosnik, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), no. 3, 267-293.
A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl. 300 (2004),
no. 1, 30-42.

X. Fan, Global C*“ regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235
(2007), no. 2, 397-417.

X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces W*P®(Q), J. Math. Anal. Appl. 262 (2001), no. 2,
749-760.

X. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), no. 2,
306-317.

X. Fan and D. Zhao, On the spaces LP®(Q) and W™PX(Q), J. Math. Anal. Appl. 263 (2001), no. 2, 424—446.

X.-L. Fan and Q.-H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), no. 8,
1843-1852.

Y. Fu, The principle of concentration compactness in LP® spaces and its application, Nonlinear Anal. 71 (2009), no. 5-6,
1876-1892.

Y. Fu and Y. Shan, On the removability of isolated singular points for elliptic equations involving variable exponent,

Adv. Nonlinear Anal. 5 (2016), no. 2, 121-132.

P. Harjulehto, P. Hast6 and V. Latvala, Harnack’s inequality for p(-)-harmonic functions with unbounded exponent p,

J. Math. Anal. Appl. 352 (2009), no. 1, 345-359.

P. Harjulehto, P. Hdstd, V. Latvala and O. Toivanen, Critical variable exponent functionals in image restoration, Appl. Math.
Lett. 26 (2013), no. 1, 56-60.

P. Harjulehto, P. Hast6, U. V. Lé and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear
Anal. 72 (2010), no. 12, 4551-4574.



DE GRUYTER X. Shi et al., Multiple solutions of double phase variational problems with variable exponent =— 401

[29]

(30]

[31]

[32]
(33]

[34]
[35]

[36]
(37]
(38]
(39]
[40]
[41]

[42]

[43]
[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

(52]

(53]

[54]

(55]

[56]

[57]
(58]

[59]

P. Harjulehto, V. Latvala and O. Toivanen, A variant of the Geman—-McClure model for image restoration, J. Math. Anal.
Appl. 399 (2013), no. 2, 676-681.

H. Hudzik, On density of C°°(Q) in Orlicz-Sobolev space W,’.‘,,(Q) for every open set Q c R", Funct. Approx. Comment.
Math. 5 (1977), 113-128.

H. Hudzik, On imbedding theorems of Orlicz-Sobolev space W,"V,(Q) into C™(Q) for open, bounded, and starlike Q ¢ R”",
Comment. Math. Prace Mat. 20 (1977/78), no. 2, 341-363.

R. C. James, Reflexivity and the sup of linear functionals, Israel ). Math. 13 (1972), no. 3-4, 289-300.

T. Kopaliani, Interpolation theorems for variable exponent Lebesgue spaces, J. Funct. Anal. 257 (2009), no. 11,
3541-3551.

0. Kovatik and ). Rakosnik, On spaces LP®)(Q) and W*PX)(Q), Czechoslovak Math. J. 41 (1991), no. 4, 592-618.

P. Marcellini, Regularity and existence of solutions of elliptic equations with p, g-growth conditions, J. Differential
Equations 90 (1991), no. 1, 1-30.

P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Sc. Norm. Super. Pisa Cl.
Sci. (4) 23 (1996), no. 1, 1-25.

M. Mihdilescu and V. Radulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable
exponent, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2929-2937.

M. Mihailescu and V. Radulescu, Neumann problems associated to nonhomogeneous differential operators in
Orlicz-Sobolev spaces, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2087-2111.

M. Mihailescu, V. Radulescu and D. Repovs, On a non-homogeneous eigenvalue problem involving a potential: An
Orlicz-Sobolev space setting, J. Math. Pures Appl. (9) 93 (2010), no. 2, 132-148.

J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983.

W. Orlicz, Uber konjugierte Exponentenfolgen, Studia Math. 3 (1931), no. 1, 200-211.

P. Pucci and Q. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential
Equations 257 (2014), no. 5, 1529-1566.

V. D. Radulescu, Nonlinear elliptic equations with variable exponent: Old and new, Nonlinear Anal. 121 (2015), 336-369.
V. D. Radulescu and D. D. Repovs, Partial Differential Equations with Variable Exponents, Monogr. Res. Notes Math.,

CRC Press, Boca Raton, 2015.

D. Repovs, Stationary waves of Schrédinger-type equations with variable exponent, Anal. Appl. (Singap.) 13 (2015),

no. 6, 645-661.

M. RGZicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. 1748, Springer,
Berlin, 2000.

S. G. Samko, Density of Cg°(R”) in the generalized Sobolev spaces wm-PX) (R™), Dokl. Akad. Nauk 369 (1999), no. 4,
451-454,

X. Wang and J. Yao, Compact embeddings between variable exponent spaces with unbounded underlying domain,
Nonlinear Anal. 70 (2009), no. 10, 3472-3482.

X. Wang, J. Yao and D. Liu, High energy solutions to p(x)-Laplace equations of Schrédinger type, Electron. J. Differential
Equations 136 (2015), 1-17.

J. Yao, Solutions for Neumann boundary value problems involving p(x)-Laplace operators, Nonlinear Anal. 68 (2008),
no.5,1271-1283.

J. Yao and X. Wang, On an open problem involving the p(x)-Laplacian—a further study on the multiplicity of weak solutions
to p(x)-Laplacian equations, Nonlinear Anal. 69 (2008), no. 4, 1445-1453.

L.Yin, J. Yao, Q. Zhang and C. Zhao, Multiplicity of strong solutions for a class of elliptic problems without the
Ambrosetti—Rabinowitz condition in RV, preprint (2016), https://arxiv.org/abs/1607.00581.

L.Yin, ). Yao, Q. H. Zhang and C. S. Zhao, Multiple solutions with constant sign of a Dirichlet problem for a class of
elliptic systems with variable exponent growth, Discrete Contin. Dyn. Syst. 37 (2017), no. 4, 2207-2226.

N. Yoshida, Picone identities for half-linear elliptic operators with p(x)-Laplacians and applications to Sturmian
comparison theory, Nonlinear Anal. 74 (2011), no. 16, 5631-5642.

Q. Zhang, A strong maximum principle for differential equations with nonstandard p(x)-growth conditions, J. Math. Anal.
Appl. 312 (2005), no. 1, 24-32.

Q. H. Zhang and V. D. Radulescu, Double phase anisotropic variational problems and combined effects of reaction and
absorption terms, J. Math. Pures Appl. (9), to appear.

J. . Zhao, Structure Theory of Banach Spaces (in Chinese), Wuhan University, Wuhan, 1991.

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv. 29 (1987), no. 1,
33-36.

C. K. Zhong, X. L. Fan and W. Y. Chen, Introduction to Nonlinear Functional Analysis, Lanzhou University, Lanzhou, 1998.


https://arxiv.org/abs/1607.00581

	Multiple solutions of double phase variational problems with variable exponent
	1 Introduction
	2 Variable exponent spaces theory
	3 Variable exponent Orlicz–Sobolev spaces theory
	4 Properties of functionals and operators
	5 Proof of the theorems
	5.1 Proof of Theorem 1.1
	5.2 Proof of Theorem 1.2
	5.3 Proof of Theorem 1.3

	6 Perspectives and open problems


