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Abstract: We consider a nonlinear Dirichlet problem driven by the p-Laplace differential operator with
a reaction which has a subcritical growth restriction only from above. We prove two multiplicity theorems
producing three nontrivial solutions, two of constant sign and the third nodal. The twomultiplicity theorems
differ on the geometry near the origin. In the semilinear case (that is, p = 2), using Morse theory (critical
groups), we produce a second nodal solution for a total of four nontrivial solutions. As an illustration, we
show that our results incorporate and significantly extend the multiplicity results existing for a class of
parametric, coercive Dirichlet problems.
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1 Introduction
Let Ω ⊆ ℝN be a bounded domain with a C2-boundary ∂Ω. In this paper, we study the following nonlinear
Dirichlet problem:

{
−∆pu(z) = f(z, u(z)) in Ω,

u = 0 on ∂Ω.
(1.1)

Here, ∆p denotes the p-Laplace differential operator defined by

∆pu = div(|Du|p−2Du) for all u ∈ W1,p
0 (Ω), 1 < p < ∞.

Usually such problems are examined under the assumption that the reaction f(z, ⋅ ) exhibits subcritical
growth from above and below. In contrast, we assume here that f(z, ⋅ ) is subcritical only from above, while
from below no growth restriction is imposed on f(z, ⋅ ). In this setting, we prove a multiplicity theorem pro-
ducing at least three nontrivial solutions, two of constant sign (one positive and one negative) and the third
nodal (that is, sign-changing). Ourmultiplicity result compareswith thoseprovedbyLiu andLiu [14], Liu [15]
and Papageorgiou and Papageorgiou [17] who proved three solutions theorems for certain classes of coer-
cive p-Laplacian equations. We also refer to Papageorgiou, Rădulescu and Repovš [19, 20] for multiplicity
properties in the context of Robin problems with superlinear reaction and super-diffusive mixed problems.
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In all the aforementioned works, the reaction has bilateral subcritical growth and no nodal solutions are
produced. In addition, in the present work, for the semilinear problem (p = 2), using Morse theory (critical
groups), we produce a second nodal solution, for a total of four nontrivial solutions. Finally, we mention
the works of Villegas [23] and Filippakis, Gasinski and Papageorgiou [8] who proved existence theorems
for unilaterally restricted scalar problems (that is, N = 1). Villegas [23] studied semilinear (that is, p = 2)
Neumann problems and Filippakis, Gasinski and Papageorgiou [8] considered nonlinear (that is, 1 < p < ∞)
periodic problems with a nonsmooth potential.

2 Mathematical background
Let X be a Banach space, let X∗ be its topological dual and let ⟨⋅ , ⋅⟩ denote the duality brackets for the pair
(X∗, X). We say that a function φ ∈ C1(X) satisfies the Palais–Smale condition (PS-condition, for short), if the
following property holds.

Property 1. Every sequence {un}n≥1 ⊆ X such that {φ(un)}n≥1 ⊆ X is bounded and

φ󸀠(un) → 0 in X∗ as n →∞,

admits a strongly convergent subsequence.

This is a compactness-type condition on the functional φ, which leads to a deformation theorem fromwhich
one can derive the minimax theory of the critical values of φ. A basic result in this theory is the so-called
“mountain pass theorem”, due to Ambrosetti and Rabinowitz [4].

Theorem 2.1. Assume that X is a Banach space, φ ∈ C1(X) and it satisfies the PS-condition, u0, u1 ∈ X,
‖u1 − u0‖ > ρ > 0,

max{φ(u0), φ(u1)} < inf{φ(u) : ‖u − u0‖ = ρ} = mρ

and c = infγ∈Γmax0≤t≤1 φ(γ(t)), where Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}. Then c ≥ mρ and c is a crit-
ical value of φ.

In the study of problem (1.1), we will use the Sobolev spaceW1,p
0 (Ω) (when p = 2, we will write H

1
0(Ω)) and

the ordered Banach space C10(Ω) = {u ∈ C1(Ω) : u|∂Ω= 0}, with the order cone

C+ = {u ∈ C10(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

int C+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω,
∂u
∂n
< 0 on ∂Ω}.

Here we denote the outward unit normal on ∂Ω by n( ⋅ ).
Let f0 : Ω × ℝ → ℝ be a Carathéodory function such that

|f0(z, x)| ≤ a(z)(1 + |x|r−1) for almost all z ∈ Ω and all x ∈ ℝ,

with a ∈ L∞(Ω) and

1 < r < p∗ =
{{
{{
{

Np
N − p

if p < N,

+∞ if p ≥ N
(the critical Sobolev exponent).

We set F0(z, x) = ∫
x
0 f0(z, s) ds and consider the C

1-functional φ0 : W1,p
0 (Ω) → ℝ defined by

φ0(u) =
1
p
‖Du‖pp − ∫

Ω

F0(z, u(z)) dz for all u ∈ W1,p
0 (Ω).

From Garcia Azorero, Manfredi and Peral Alonso [10], we recall the following result.
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Proposition 2.2. Assume that u0 ∈ W1,p
0 (Ω) is a local C

1
0(Ω)-minimizer of φ0, that is, there exists ρ0 > 0 such

that
φ0(u0) ≤ φ0(u0 + h) for all h ∈ C10(Ω) with ‖h‖C10(Ω) ≤ ρ0.

Then u0 ∈ C1,α0 (Ω) for some α ∈ (0, 1) and u0 is also a local W
1,p
0 (Ω)-minimizer of φ0, that is, there exists ρ1 > 0

such that
φ0(u0) ≤ φ0(u0 + h) for all h ∈ W1,p

0 (Ω) with ‖h‖ ≤ ρ1.

Hereafter, we denote the norm of the Sobolev spaceW1,p
0 (Ω) by ‖ ⋅ ‖. By the Poincaré inequality we have

‖u‖ = ‖Du‖p for all u ∈ W1,p
0 (Ω).

We will also use some basic facts about the spectrum of (−∆p ,W1,p
0 (Ω)). So, we consider the following

nonlinear eigenvalue problem:

− ∆pu(z) = λ̂|u(z)|p−2u(z) in Ω, u|∂Ω= 0. (2.1)

We say that λ̂ is an eigenvalue of (−∆p ,W1,p
0 (Ω)) if problem (2.1) admits a nontrivial solution û ∈ W1,p

0 (Ω),
which is an eigenfunction corresponding to the eigenvalue λ̂. We know that there is a smallest eigenvalue
λ̂1 > 0 which is simple, isolated and admits the following variational characterization:

λ̂1 = inf{
‖Du‖pp
‖u‖pp

: u ∈ W1,p
0 (Ω), u ̸= 0}. (2.2)

The infimum in (2.2) is realized on the corresponding one-dimensional eigenspace (recall that λ̂1 > 0
is simple). It is clear from (2.2) that the elements of this eigenspace do not change sign. Let û1 be the
Lp-normalized, positive eigenfunction corresponding to λ̂1 > 0. From the nonlinear regularity theory and
the nonlinear maximum principle (see, for example, [11, pp. 737–738]), we have û1 ∈ int C+. From the
Ljusternik–Schnirelmann minimax scheme we can obtain a whole strictly increasing sequence {λ̂k}k≥1 of
eigenvalues such that λ̂k → +∞. We do not know if this sequence exhausts the spectrum of (−∆p ,W1,p

0 (Ω)).
This is the case if p = 2 (linear eigenvalue problem) or N = 1 (scalar eigenvalue problem). Since λ̂1 is isolated,
the second eigenvalue λ̂∗2 > λ̂1 is well-defined by

λ̂∗2 = inf{λ̂ : λ̂ > λ̂1, λ̂ is an eigenvalue of (−∆p ,W
1,p
0 (Ω))}.

Weknow that λ̂∗2 = λ̂2, that is, the second eigenvalue and the secondLjusternik–Schnirelmanneigenvalue
coincide. For λ̂2 we have the followingminimax characterization due to Cuesta, de Figueiredo and Gossez [6].

Proposition 2.3. We have
λ̂2 = inf

γ̂∈Γ̂
max
−1≤t≤1
‖Dγ̂(t)‖pp ,

where
Γ̂ = {γ̂ ∈ C([−1, 1],M) : γ̂(−1) = −û1, γ̂(1) = û1}

with
M = W1,p

0 (Ω) ∩ ∂B
Lp
1 and ∂BLp1 = {u ∈ L

p(Ω) : ‖u‖p = 1}.

As we already said, in the case p = 2 (linear eigenvalue problem), the spectrum of (−∆, H1
0(Ω)) consists of

a sequence {λ̂k}k≥1 of eigenvalues such that λ̂k → +∞ as k → +∞. We denote the corresponding eigenspace
by E(λ̂k). We have

H1
0(Ω) =⨁

k≥1
E(λ̂k).

In this case, we have nice variational characterizations for all the eigenvalues. Namely, we have

λ̂1 = inf{
‖Du‖22
‖u‖22

: u ∈ H1
0(Ω), u ̸= 0} (see (2.2)), (2.3)
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and for k ≥ 2,

λ̂k = inf{
‖Du‖22
‖u‖22

: u ∈ Ĥk =⨁
n≥k

E(λ̂n), u ̸= 0} = sup{
‖Du‖22
‖u‖22

: u ∈ H̄k =
k
⨁
n=1

E(λ̂n), u ̸= 0}. (2.4)

Both the infimum and the supremum in (2.4) are realized on the corresponding eigenspace E(λ̂k). Every
such space has the so-called “unique continuation property” (UCP for short), which means that if u ∈ E(λ̂k)
and u vanishes on a set of positivemeasure, then u ≡ 0.Note that by standard regularity theory, E(λ̂k) ⊆ C10(Ω)
and E(λ̂k) is finite-dimensional. Invoking (2.3), (2.4) and the UCP, we have the following property.

Proposition 2.4. (a) If ξ ∈ L∞(Ω) with ξ(z) ≥ λ̂k for almost all z ∈ Ω with strict inequality on a set of positive
measure, then

‖Du‖22 − ∫
Ω

ξ(z)u2 dz ≤ −ĉ‖u‖2 for all u ∈ H̄k =
k
⨁
n=1

E(λ̂k).

(b) If ξ ∈ L∞(Ω)with ξ(z) ≤ λ̂k for almost all z ∈ Ω with strict inequality on a set of positivemeasure, then there
exists c̃ > 0 such that

‖Du‖22 − ∫
Ω

ξ(z)u2 dz ≥ c̃‖u‖2 for all u ∈⨁
n≥k

E(λ̂k).

In what follows, we denote by

A : W1,p
0 (Ω) → W−1,p󸀠 (Ω) = W1,p

0 (Ω)
∗ (

1
p
+

1
p󸀠
= 1)

the nonlinear map corresponding to the p-Laplace differential operator and defined by

⟨A(u), v⟩ = ∫
Ω

|Du|p−2(Du, Dv)ℝN dz for all u, v ∈ W1,p
0 (Ω). (2.5)

From Papageorgiou and Kyritsi [18, p. 314], we have the following proposition.

Proposition 2.5. The operator A : W1,p
0 (Ω) → W−1,p󸀠 (Ω) defined by (2.5) is continuous, strictly monotone

(hence maximal monotone, too) and of type (S)+, that is,

un
w
󳨀→ u in W1,p

0 (Ω) and lim sup
n→∞
⟨A(un), un − u⟩ ≤ 0,

implying
un → u in W1,p

0 (Ω)

As before, let X be a Banach space, let φ ∈ C1(X) and let c ∈ ℝ. We introduce the following sets:

Kφ = {u ∈ X : φ󸀠(u) = 0}, Kcφ = {u ∈ Kφ : φ(u) = c}, φc = {u ∈ X : φ(u) ≤ c}.

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X, and let k be a nonnegative integer. We denote by
Hk(Y1, Y2) the kth-relative singular homology group of the topological pair (Y1, Y2)with integer coefficients.
The critical groups of φ at an isolated u ∈ Kcφ are defined by

Ck(φ, u) = Hk(φc ∩ U, φc ∩ U \ {u}) for all k,

with U being a neighborhood of u such that Kφ ∩ φc ∩ U = {u}. The excision property of singular homology
implies that the above definition of critical groups is independent of the choice of the neighborhood U of u.

Suppose that φ satisfies the PS-condition and −∞ < inf φ(Kφ). Let c < inf φ(Kφ). The critical groups of φ
at infinity are defined by

Ck(φ,∞) = Hk(X, φc) for all k.

The second deformation theorem (see, for example, [11, p. 628]) implies that the above definition of
critical groups at infinity is independent of the choice of the level c < inf φ(Kφ).
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Suppose that φ ∈ C1(X) satisfies the PS-condition and Kφ is finite. We define

M(t, u) = ∑
k≥0

rank Ck(φ, u)tk for all t ∈ ℝ, u ∈ Kφ ,

P(t,∞) = ∑
k≥0

rank Ck(φ,∞)tk for all t ∈ ℝ.

The Morse relation says that

∑
u∈Kφ

M(t, u) = P(t,∞) + (1 + t)Q(t), (2.6)

where Q(t) = ∑k≥0 βk tk is a formal series in t ∈ ℝ with nonnegative integer coefficients.
Finally, if x ∈ ℝ, we set x± = max{±x, 0}. Then for u ∈ W1,p

0 (Ω) we set u±( ⋅ ) = u( ⋅ )±. We know that

u± ∈ W1,p
0 (Ω), u = u+ − u−, |u| = u+ + u−.

Also, if h : Ω × ℝ → ℝ is a measurable function (for example, a Carathéodory function), then we define

Nh(u)( ⋅ ) = h( ⋅ , u( ⋅ )) for all u ∈ W1,p
0 (Ω)

(the Nemytskii map corresponding to h). Note that z 󳨃→ Nh(u)(z) is measurable. We denote by | ⋅ |N the
Lebesgue measure onℝN .

3 The nonlinear equation (1 < p < ∞)
In this section, we deal with the general equation (1.1) and prove two multiplicity theorems producing three
nontrivial solutions, all with sign information. The two multiplicity theorems differ in the geometry near the
origin. In the first one, the reaction is (p − 1)-sublinear near zero, while in the second it is (p − 1)-superlinear
(we have the presence of a concave term).

For the first multiplicity theorem, we start with the following hypotheses on the reaction f(z, x). Using
them, we will generate two nontrivial constant sign solutions.

(H1): f : Ω × ℝ → ℝ is a measurable function such that for almost all z ∈ Ω one has f(z, 0) = 0, f(z, ⋅ ) is
locally α-Hölder continuous with α ∈ (0, 1] and local Hölder constant k ∈ L∞(Ω)+ and the following asser-
tions hold:
(i) For every ρ > 0, there exists aρ ∈ L∞(Ω) such that

|f(z, x)| ≤ aρ(z) for almost all z ∈ Ω and all |x| ≤ ρ.

(ii) One has

lim sup
x→±∞

f(z, x)
|x|p−2x

≤ ξ < λ̂1 uniformly for almost all z ∈ Ω.

(iii) There exists a function η ∈ L∞(Ω) such that η(z) ≥ λ̂1 for almost all z ∈ Ω, the inequality is strict on a set
of positive measure and

lim inf
x→0

f(z, x)
|x|p−2x

≥ η(z) uniformly for almost all z ∈ Ω.

(iv) There exists M0 > 0 such that for almost all z ∈ Ω,

x 󳨃→ f(z, x)
xp−1

is nondecreasing on [M0, +∞),

x 󳨃→ f(z, x)
|x|p−2x

is nonincreasing on (−∞, −M0].
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Remark 3.1. We stress that the above conditions do not impose any global growth condition from below on
the reaction f(z, ⋅ ).

Hypothesis (H1) (ii) implies that we can find ξ1 ∈ (ξ, λ̂1) and M ≥ M0 such that

f(z, x)x ≤ ξ1|x|p for almost all z ∈ Ω and all |x| ≥ M. (3.1)

Also, let β ∈ L∞(Ω)+ such that

β(z) ≥ aM(z) + 1 for almost all z ∈ Ω (see hypothesis (H1) (i)). (3.2)

Let {tn}n≥1 ⊆ [1, +∞) and assume that tn → +∞. We define

hn(z) =
{
{
{

λ̂1(tn û1(z))p−1 if z ∈ {tn û1 > M},

tp−1n β(z) if z ∈ {tn û1 ≤ M}.

Evidently, hn ∈ L∞(Ω) for all n ≥ 1. Recall that û1 ∈ int C+. Hence {tn û1 ≤ M} ↓ 0 as n →∞. So, for every
r ∈ [1,∞) we have

󵄩󵄩󵄩󵄩󵄩󵄩
hn
tp−1n
− λ̂1û

p−1
1
󵄩󵄩󵄩󵄩󵄩󵄩r → 0 as n →∞. (3.3)

On the other hand, by [7, p. 477] we know that

󵄩󵄩󵄩󵄩󵄩󵄩
hn
tp−1n
− λ̂1û

p−1
1
󵄩󵄩󵄩󵄩󵄩󵄩r →
󵄩󵄩󵄩󵄩󵄩󵄩
hn
tp−1n
− λ̂1û

p−1
1
󵄩󵄩󵄩󵄩󵄩󵄩∞ as r →∞, for every n ≥ 1. (3.4)

Then from (3.4) we see that, given ϵ > 0, we can find r0 = r0(ϵ) ∈ ℕ such that

󵄩󵄩󵄩󵄩󵄩󵄩
hn
tp−1n
− λ̂1û

p−1
1
󵄩󵄩󵄩󵄩󵄩󵄩∞ ≤
󵄩󵄩󵄩󵄩󵄩󵄩
hn
tp−1n
− λ̂1û

p−1
1
󵄩󵄩󵄩󵄩󵄩󵄩r +

ϵ
2 for all r ≥ r0. (3.5)

Fix r ≥ r0. From (3.3) we see that we can find n0 = n0(ϵ) ∈ ℕ such that

󵄩󵄩󵄩󵄩󵄩󵄩
hn
tp−1n
− λ̂1û

p−1
1
󵄩󵄩󵄩󵄩󵄩󵄩r ≤

ϵ
2 for all n ≥ n0. (3.6)

For the fixed r ≥ r0, using (3.6) in (3.5), we obtain

󵄩󵄩󵄩󵄩󵄩󵄩
hn
tp−1n
− λ̂1û

p−1
1
󵄩󵄩󵄩󵄩󵄩󵄩∞ ≤ ϵ for all n ≥ n0,

which implies
hn
tp−1n
→ λ̂1û

p−1
1 in L∞(Ω) as n →∞. (3.7)

Then for every n ≥ 1 we consider the following auxiliary Dirichlet problem

−∆pun(z) = hn(z) in Ω, un|∂Ω= 0.

This problem has a unique solution un ∈ W1,p
0 (Ω), un ≥ 0. The nonlinear regularity theory and the non-

linearmaximumprinciple (see [11, pp. 737–738]) imply that un ∈ int C+ for all n ≥ 1. Let vn = untn for all n ≥ 1.
We have

−∆pvn(z) =
hn(z)
tp−1n

in Ω, vn|∂Ω= 0.

From [11, p. 738] we know that we can find θ ∈ (0, 1) and M1 > 0 such that

vn ∈ C1,θ0 (Ω) and ‖vn‖C1,θ0 (Ω)
≤ M1 for all n ≥ 1. (3.8)

Exploiting the compact embedding of C1,θ0 (Ω) into C
1
0(Ω) and using (3.7), we can infer from (3.8) that

vn → û1 in C10(Ω) as n →∞. (3.9)
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Hence, by (3.9) we can find n1 ∈ ℕ such that

ξ1vn(z)p−1 ≤ λ̂1û1(z)p−1 for all z ∈ Ω, n ≥ n1, (3.10)

and if tn û1(z) > M, then tnvn(z) > M for all n ≥ n1.
Also, by (3.9) and our hypothesis on f(z, ⋅ ) we can find n2 ∈ ℕ such that

|f(z, û1(z)) − f(z, vn(z))| ≤ ‖k‖∞‖û1 − vn‖α∞ ≤ 1 for all z ∈ Ω, n ≥ n2. (3.11)

Let n0 = max{n1, n2}. Then for n ≥ n0 we have the following assertions:
∙ If z ∈ {tn û1 > M}, then

−∆p(tnvn)(z) = λ̂1(tnun(z))p−1 ≥ ξ1(tnvn(z))p−1 ≥ f(z, tnvn(z)) (see (3.1) and (3.10)),

which implies −∆pvn(z) ≥ f(z, vn(z)) (see hypotheses (H1) (iv) and recall that tn ≥ 1).
∙ If z ∈ {tn û1 ≤ M}, then

−∆pvn(z) =
h(z)
tp−1n
= β(z) ≥ f(z, û1(z)) + 1 ≥ f(z, vn(z)) (see (3.2) and (3.11)).

So, fixing n ≥ n0 and setting ū = vn ∈ int C+, we have

− ∆p ū(z) ≥ f(z, ū(z)) for almost all z ∈ Ω. (3.12)

In a similar fashion, we produce v̄ ∈ − int C+ such that

− ∆p v̄(z) ≤ f(z, v̄(z)) for almost all z ∈ Ω. (3.13)

Now, we are ready to produce nontrivial constant sign solutions for problem (1.1).

Proposition 3.2. Assume that hypotheses (H1) hold. Then problem (1.1) admits at least two constant sign
solutions

u0 ∈ [0, ū] ∩ int C+ and v0 ∈ [v̄, 0] ∩ (− int C+),

where

[0, ū] = {u ∈ W1,p
0 (Ω) : 0 ≤ u(z) ≤ ū(z) for almost all z ∈ Ω},

[v̄, 0] = {u ∈ W1,p
0 (Ω) : v̄(z) ≤ u(z) ≤ 0 for almost all z ∈ Ω}.

Proof. First, we produce the positive solution. To this end, we consider the following truncation of f(z, ⋅ ):

̂f+(z, x) =
{{{
{{{
{

0 if x < 0,
f(z, x) if 0 ≤ x ≤ ū(z),
f(z, ū(z)) if ū(z) < x.

(3.14)

This is a Carathéodory function. We set

F̂+(z, x) =
x

∫
0

̂f+(z, s) ds

and consider the C1-functional φ̂+ : W1,p
0 (Ω) → ℝ defined by

φ̂+(u) =
1
p
‖Du‖pp − ∫

Ω

F̂+(z, u(z)) dz for all u ∈ W1,p
0 (Ω).

From (3.14) it is clear that φ̂+ is coercive. Also, using the Sobolev embedding theorem, we can easily
check that φ̂+ is sequentially weakly lower semicontinuous. So, by the Weierstrass theorem, we can find
u0 ∈ W

1,p
0 (Ω) such that

φ̂+(u0) = inf{φ̂+(u) : u ∈ W1,p
0 (Ω)} = m̂+. (3.15)
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By virtue of hypothesis (H1) (iii), given ϵ > 0, we can find δ = δ(ϵ) > 0 such that

F(z, x) ≥ 1
p
(η(z) − ϵ)xp for almost all z ∈ Ω and all x ∈ [0, δ]. (3.16)

Here,

F(z, x) =
x

∫
0

f(z, s) ds.

Since û1 ∈ int C+, we can find t ∈ (0, 1) small enough so that tû1(z) ∈ [0, δ] for all z ∈ Ω. We have

φ̂+(tû1) ≤
tp

p
λ̂1‖û1‖

p
p −

tp

p ∫
Ω

η(z)ûp1 dz +
tp

p
ϵ (recall that ‖û1‖p = 1 and see (3.16))

=
tp

p [∫
Ω

(λ̂1 − η(z))û
p
1 dz + ϵ]. (3.17)

Note that
ξ0 = ∫

Ω

(η(z) − λ̂1)û
p
1 dz > 0.

So, if we choose ϵ ∈ (0, ξ0), then from (3.17) we see that φ̂+(tû1) < 0, which implies (see (3.15))

φ̂+(u0) < 0 = φ̂+(0),

and hence u0 ̸= 0.
From (3.15) we have φ̂󸀠+(u0) = 0, implying

A(u0) = N ̂f+ (u0). (3.18)

On (3.18)wefirst actwith−u−0 ∈ W
1,p
0 (Ω).We obtain ‖Du−0‖

p
p = 0 (see (3.14)), implying u0 ≥ 0 and u0 ̸= 0.

Then we act on (3.18) with (u0 − ū)+ ∈ W1,p
0 (Ω). We have

⟨A(u0), (u0 − ū)+⟩ = ∫
Ω

̂f+(z, u0)(u0 − ū)+ dz

= ∫
Ω

f(z, ū)(u0 − ū)+ dz (see (3.14))

≤ ⟨A(ū), (u0 − ū)+⟩ (see (3.12)),

implying
∫
{u0>ū}

(|Du0|p−2Du0 − |Dū|p−2Dū, Du0 − Dū)ℝN dz ≤ 0.

This implies |{u0 > ū}|N = 0, and hence u0 ≤ ū.
So, we have proved that

u0 ∈ [0, ū] and u0 ̸= 0. (3.19)

Then (3.18) becomes A(u0) = Nf (u0) (see (3.14) and (3.19)), implying

− ∆pu0(z) = f(z, u0(z)) for almost all z ∈ Ω, u0|∂Ω= 0. (3.20)

The nonlinear regularity theory (see [11, pp. 737–738]) now implies that u0 ∈ C+ \ {0}. Let ρ = ‖u0‖∞.
Hypotheses (H1) (i) and (iii) imply that we can find ̂ξρ > 0 such that

f(z, x) + ̂ξρxp−1 ≥ 0 for almost all z ∈ Ω and all x ∈ [0, ρ]. (3.21)

Then from (3.20) and (3.21) we have ∆pu0(z) ≤ ̂ξρu0(z)p−1 for almost all z ∈ Ω, implying u0 ∈ int C+ by
the nonlinear maximum principle (see [10, p. 738]).

Brought to you by | National & University Library Ljubljana
Authenticated | dusan.repovs@guest.arnes.si author's copy

Download Date | 3/4/19 11:49 AM



N. S. Papageorgiou et al., Nonlinear Dirichlet problems with unilateral growth | 327

Similarly, for the negative solution we introduce the truncation

̂f−(z, x) =
{{{
{{{
{

f(z, v̄(z)) if x < v̄(z),
f(z, x) if v̄(z) ≤ x ≤ 0,
0 if 0 < x.

This is a Carathéodory function. We set

F̂−(z, x) =
x

∫
0

̂f−(z, s) ds

and consider the C1-functional φ̂− : W1,p
0 (Ω) → ℝ defined by

φ̂−(u) =
1
p
‖Du‖pp − ∫

Ω

F̂−(z, u(z)) dz for all u ∈ W1,p
0 (Ω).

Working with φ̂− as above, via the direct method and using (3.13), we produce a negative solution

v0 ∈ [v̄, 0] ∩ (− int C+).

The proof is now complete.

In fact, we can produce extremal constant sign solutions, that is, a smallest positive and a biggest negative
solution. These extremal solutions will be helpful in obtaining nodal ones.

Proposition 3.3. Assume that hypotheses (H1) hold. Then problem (1.1) admits a smallest positive solution
u∗ ∈ int C+ and a biggest negative solution v∗ ∈ − int C+.

Proof. First, we produce the smallest positive solution. Let S+ be the set of positive solutions of problem (1.1).
FromProposition 3.2 and its proof we know that S+ ∩ [0, ū] ̸= 0 and S+ ⊆ int C+. ByHu and Papageorgiou [12,
p. 178], we know that we can find {un}n≥1 ⊆ S+ ∩ [0, ū] such that

inf S+ = infn≥1
un .

We have
A(un) = Nf (un), un ≤ ū for all n ≥ 1, (3.22)

implying that {un}n≥1 ⊆ W1,p
0 (Ω) is bounded (see hypothesis (H1) (i)).

So, we may assume that

un
w
󳨀→ u∗ inW1,p

0 (Ω) and un → u∗ in Lp(Ω).

On (3.22) we act with un − u∗ ∈ W1,p
0 (Ω), pass to the limit as n →∞ and use (3.18). Then

lim
n→∞
⟨A(un), un − u∗⟩ = 0,

implying
un → u∗ inW1,p

0 (Ω) (see Proposition 2.5). (3.23)

So, if in (3.22) we pass to the limit as n →∞ and use (3.23), then (nonlinear regularity theory, see [10,
p. 738]) A(u∗) = Nf (u∗), implying that u∗ is a nonnegative solution of (1.1) and u∗ ∈ C+.

Weneed to show that u∗ ̸= 0.Owing to hypotheses (H1) (i) and (iii), given ϵ > 0,we canfind c1 = c1(ϵ) > 0
such that

f(z, x)x ≥ (η(z) − ϵ)|x|p − c1|x|r for almost all z ∈ Ω and all |x| ≤ ρ, (3.24)

with r > p and ρ = max{‖ū‖∞, ‖v̄‖∞}. We introduce the following Carathéodory functions:

g+(z, x) =
{{{
{{{
{

0 if x < 0,
(η(z) − ϵ)xp−1 − c1xr−1 if 0 ≤ x ≤ ū(z),
(η(z) − ϵ)ū(z)p−1 − c1ū(z)r−1 if ū(z) < x,

(3.25)
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and

g−(z, x) =
{{{
{{{
{

(η(z) − ϵ)|v̄(z)|p−2 v̄(z) − c1|v̄(z)|r−2 v̄(z) if x < v̄(z),
(η(z) − ϵ)|x|p−2x − c1|x|r−2x if v̄(z) ≤ x ≤ 0,
0 if 0 < x.

We consider the following auxiliary Dirichlet problems:

−∆pu(z) = g+(z, u(z)) in Ω, u|∂Ω= 0, (3.26)
−∆pv(z) = g−(z, v(z)) in Ω, v|∂Ω= 0. (3.27)

Claim 1. Problem (3.26) (resp. problem (3.27)) for ϵ > 0 small admits a unique positive solution ũ ∈ int C+
(resp. a unique negative solution ṽ ∈ − int C+).

First, we deal with problem (3.26). So, let ψ+ : W1,p
0 (Ω) → ℝ be the C1-functional defined by

ψ+(u) =
1
p
‖Du‖pp − ∫

Ω

G+(z, u(z)) dz for all u ∈ W1,p
0 (Ω),

where

G+(z, x) =
x

∫
0

g+(z, s) ds.

From (3.25) it is clear that ψ+ is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can
find ũ ∈ W1,p

0 (Ω) such that
ψ+(ũ) = inf{ψ+(u) : u ∈ W1,p

0 (Ω)}. (3.28)

Let t ∈ (0, 1) be small such that tû1 ≤ ū (recall that ū ∈ int C+ and use [9, Lemma 3.3]). We have

ψ+(tû1) ≤
tp

p
λ̂1 +

c1
r
tr‖û1‖rr −

tp

p ∫
Ω

(η(z) − ϵ)ûp1 dz (see (3.25))

=
tp

p [∫
Ω

(λ̂1 − (η(z) − ϵ))û
p
1 dz] +

c1
r
tr‖û1‖rr .

Note that β = ∫Ω(η(z) − λ̂1)û
p
1 dz > 0. So, choosing ϵ ∈ (0, β), we obtain

ψ+(tû1) ≤ −
tp

p
c2 +

tr

r
c1‖û1‖rr for some c2 > 0.

Since r > p, by choosing t ∈ (0, 1) even smaller if necessary, we obtain ψ+(tû1) < 0, which implies
ψ+(ũ) < 0 = ψ+(0) (see (3.28)), and hence ũ ̸= 0.

From (3.28) we have ψ󸀠+(ũ) = 0, implying

A(ũ) = Ng+ (ũ). (3.29)

On (3.29) we first act with −ũ− ∈ W1,p
0 (Ω). Then ‖Dũ−‖

p
p = 0 (see (3.25)), implying ũ ≥ 0 and ũ ̸= 0.

Also, we act on (3.29) with (ũ − ū)+ ∈ W1,p
0 (Ω). Then

⟨A(ũ), (ũ − ū)+⟩ = ∫
Ω

[(η(z) − ϵ)ūp−1 − c1ūr−1](ũ − ū)+ dz (see (3.25))

≤ ∫
Ω

f(z, ū)(ũ − ū)+ dz (see (3.24))

≤ ⟨A(ū), (ũ − ū)+⟩ (see (3.12)),

which implies
∫
{ũ>ū}

(|Dũ|p−2Dũ − |Dū|p−2Dū, Dũ − Dū)ℝN dz ≤ 0.

Therefore, |{ũ > ū}|N = 0, and hence ũ ≤ ū.
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So, we have proved that
ũ ∈ [0, ū] and ũ ̸= 0. (3.30)

By (3.25) and (3.30), equation (3.29) becomes

A(ũ) = (η( ⋅ ) − ϵ)ũp−1 − c1ũr−1,

implying that ũ is a positive solution of (3.26).
The nonlinear regularity theory and the nonlinear maximum principle (see [11, pp. 737–738]) imply

ũ ∈ int C+.

Now we show that ũ is the unique positive solution of (3.26). To this end, let ỹ be another positive
solution of (3.26). As we did for ũ, we can show that ỹ ∈ [0, ū] ∩ int C+. Note that we can find c3 > 0 such
that for almost all z ∈ Ω the function x 󳨃→ (η(z) + c3 − ϵ)xp−1 − c1xr−1 is nondecreasing on [0, ρ] (recall that
ρ = max{‖ū‖∞, ‖v̄‖∞}). Let t > 0 be the biggest positive real such that

tỹ ≤ ũ (see [9, Lemma 3.3]).

Suppose t ∈ (0, 1). We have

−∆p(tỹ) + c3(tỹ)p−1 = tp−1[−∆p ỹ + c3 ỹp−1]
= tp−1[(η(z) + c3 − ϵ)ỹp−1 − c1 ỹr−1]
< (η(z) − ϵ)(tỹ)p−1 − c1(tỹ)r−1 + c3(tỹ)p−1 (since r > p, t ∈ (0, 1))
≤ (η(z) − ϵ)ũp−1 − c1ũr−1 + c3ũp−1 (since tỹ ≤ ũ and by the choice of c3)
= −∆p ũ + c3ũp−1 (since ũ ∈ int C+ is a solution of (3.26)),

thus implying
ũ − tỹ ∈ int C+ (see [5, Proposition 2.6]).

This contradicts the maximality of t > 0. Therefore t ≥ 1, and so

ỹ ≤ ũ.

If in the above argument we interchange the roles of ỹ and ũ, we also have ũ ≤ ỹ, implying ũ = ỹ.
This proves the uniqueness of the solution ũ ∈ int C+ of problem (3.26).
Similarly, using the C1-functional ψ− : W1,p

0 (Ω) → ℝ defined by

ψ−(u) =
1
p
‖Du‖pp − ∫

Ω

G−(z, u(z)) dz for all u ∈ W1,p
0 (Ω),

where G−(z, x) = ∫
x
0 g−(z, s) ds and reasoning as above, we show that problem (3.27) has a unique solution

ṽ ∈ − int C+. This proves Claim 1.

Claim 2. ũ ≤ u for all u ∈ S+ ∩ [0, ū].

Let u ∈ S+ ∩ [0, ū] ⊆ [0, ū] ∩ int C+ and consider the Carathéodory function

k+(z, x) =
{{{
{{{
{

0 if x < 0,
(η(z) − ϵ)xp−1 − c1xr−1 if 0 ≤ x ≤ u(z),
(η(z) − ϵ)u(z)p−1 − c1u(z)r−1 if u(z) < x.

(3.31)

Let K+(z, x) = ∫
x
0 k+(z, s) ds and consider the C

1-functional σ+ : W1,p
0 (Ω) → ℝ defined by

σ+(u) =
1
p
‖Du‖pp − ∫

Ω

K+(z, u(z)) dz for all u ∈ W1,p
0 (Ω).
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From (3.31) we see that σ+ is coercive. Also, it is sequentially weakly continuous. So, we can find
ũ∗ ∈ W

1,p
0 (Ω) such that

σ+(ũ∗) = inf{σ+(u) : u ∈ W1,p
0 (Ω)}. (3.32)

As in the proof of Claim 1, we can show that for t ∈ (0, 1) small (at least such that tû1 ≤ u ∈ int C+) we
have

σ+(tû1) < 0 = σ+(0).

This implies σ+(ũ∗) < 0 = σ+(0) (see (3.32)), and hence ũ∗ ̸= 0.
As before, we can check that

Kσ+ ⊆ [0, u] ⊆ [0, ū],
which implies ũ∗ ∈ [0, u] \ {0} (see (3.32)). Therefore, ũ∗ = ũ ∈ int C+ (see Claim 1 and (3.31)), and hence

ũ ≤ u for all u ∈ C+ ∩ [0, ū].

This proves Claim 2.
Because of Claim 2, we have

ũ ≤ un for all n ≥ 1,

implying ũ ≤ u∗ (see (3.23)), and hence u∗ ̸= 0.
Hence we have

u∗ ∈ S+ and u∗ = inf S+.

Similarly, if S− is the set of negative solutions of (1.1), we produce v∗ ∈ − int C+, the biggest element of S−.
In this case, by Claim 2 we have v ≤ ṽ for all v ∈ S− ∩ [v̄, 0] with S− ⊆ − int C+.

As we have already mentioned, we will use these extremal solutions to produce a nodal solution. To do this,
we need to strengthen the condition on f(z, ⋅ ) near zero. Note that hypothesis (H1) (iii) permits that f(z, ⋅ )
near zero is either (p − 1)-linear or (p − 1)-superlinear.We consider both cases and for bothwe produce nodal
solutions.

First, we deal with the (p − 1)-linear case. We impose the following conditions on the reaction f(z, x).
(H2): f : Ω × ℝ → ℝ is a measurable function such that for almost all z ∈ Ω one has f(z, 0) = 0, f(z, ⋅ ) is

locally α-Hölder continuous with α ∈ (0, 1] and local Hölder constant k ∈ L∞(Ω)+ and the following asser-
tions hold:
(i) For every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

|f(z, x)| ≤ aρ(z) for almost all z ∈ Ω and all |x| ≤ ρ.

(ii) One has
lim sup
x→±∞

f(z, x)
|x|p−2x

≤ ξ < λ̂1 uniformly for almost all z ∈ Ω.

(iii) There exist ξ∗ ≥ ξ0 > λ̂2 such that

ξ0 ≤ lim inf
x→0

f(z, x)
|x|p−2x

≤ lim sup
x→0

f(z, x)
|x|p−2x

≤ ξ∗ uniformly for almost all z ∈ Ω.

(iv) There exists M0 > 0 such that for almost all z ∈ Ω,

x 󳨃→ f(z, x)
xp−1

is nondecreasing on [M0, +∞),

x 󳨃→ f(z, x)
|x|p−2x

is nonincreasing on (−∞, −M0].

Proposition 3.4. If hypotheses (H2) hold, then problem (1.1) admits a nodal solution y0 ∈ [v∗, u∗] ∩ C10(Ω)
(here [v∗, u∗] = {u ∈ W1,p

0 (Ω) : v∗(z) ≤ u(z) ≤ u∗(z) for almost all z ∈ Ω} with u∗ ∈ int C+ and v∗ ∈ − int C+
being the extremal constant sign solutions produced in Proposition 3.3).

Brought to you by | National & University Library Ljubljana
Authenticated | dusan.repovs@guest.arnes.si author's copy

Download Date | 3/4/19 11:49 AM



N. S. Papageorgiou et al., Nonlinear Dirichlet problems with unilateral growth | 331

Proof. We consider the following Carathéodory function

h(z, x) =
{{{
{{{
{

f(z, v∗(z)) if x < v∗(z),
f(z, x) if v∗(z) ≤ x ≤ u∗(z),
f(z, u∗(z)) if u∗(z) < x.

(3.33)

We set H(z, x) = ∫x0 h(z, s) ds and consider the C
1-functional β : W1,p

0 (Ω) → ℝ defined by

β(u) = 1
p
‖Du‖pp − ∫

Ω

H(z, u(z)) dz for all u ∈ W1,p
0 (Ω).

We also consider the positive and negative truncations of h(z, ⋅ ), namely the Carathéodory functions

h±(z, x) = h(z, ±x±).

We set H±(z, x) = ∫
x
0 h±(z, s) ds and consider the C

1-functionals β± : W1,p
0 (Ω) → ℝ defined by

β±(u) =
1
p
‖Du‖pp − ∫

Ω

H±(z, u(z)) dz for all u ∈ W1,p
0 (Ω).

Claim 3. Kβ ⊆ [v∗, u∗], Kβ+ = {0, u∗} and Kβ− = {0, v∗}.
Let u ∈ Kβ. Then

A(u) = Nf (u) (3.34)

On (3.34), we first act with (u − u∗)+ ∈ W1,p
0 (Ω). Then

⟨A(u), (u − u∗)+⟩ = ∫
Ω

f(z, u∗)(u − u∗)+ dz (see (3.33))

= ⟨A(u∗), (u − u∗)+⟩ (since u∗ ∈ S+),

which implies
∫
{u>u∗}(|Du|

p−2Du − |Du∗|p−2Du∗, Du − Du∗)ℝN dz = 0.

Therefore, |{u > u∗}|N = 0, and hence u ≤ u∗.
Similarly, acting on (3.34) with (v∗ − u)+ ∈ W1,p

0 (Ω), we obtain v∗ ≤ u. So, we have u ∈ [v∗, u∗], implying
Kβ ⊆ [v∗, u∗].

In a similar fashion, we show that

Kβ+ ⊆ [0, u∗] and Kβ− ⊆ [v∗, 0].
The extremality of the solutions u∗ ∈ int C+ and v∗ ∈ − int C+ (see Proposition 3.3) implies that

Kβ+ = {0, u∗} and Kβ− = {0, v∗}.
This proves Claim 3.

Claim 4. u∗ ∈ int C+ and v∗ ∈ − int C+ are local minimizers of β.

From (3.33) it is clear that β+ is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can
find û∗ ∈ W1,p

0 (Ω) such that
β+(û∗) = inf{β+(u) : u ∈ W1,p

0 (Ω)}. (3.35)

As before, by virtue of hypothesis (H2) (iii), we have β+(û∗) < 0 = β+(0), implying

û∗ ̸= 0. (3.36)
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From (3.35) and Claim 1 we have û∗ ∈ Kβ+ = {0, u∗}, implying

û∗ = u∗ ∈ int C+ (see (3.36)). (3.37)

Note that β|C+= β+|C+ . Then from (3.37) we see that u∗ is a local C10(Ω)-minimizer of β, implying that u∗
is a localW1,p

0 (Ω)-minimizer of β (see Proposition 2.2).
We handle v∗ ∈ − int C+ similarly, using this time the functional β−.
This proves Claim 4.
Because of Claim 1, we may assume that Kβ is finite (otherwise we already have an infinity of nodal

solutions, see (3.33) and recall the extremality of u∗ ∈ int C+ and of v∗ ∈ − int C+). Also, without any loss of
generality, we may assume that

β(v∗) ≤ β(u∗).

The reasoning is similar if the opposite inequality holds. Because of Claim 2, we can find ρ ∈ (0, 1) small
such that (see [1, proof of Proposition 29])

β(v∗) ≤ β(u∗) < inf{β(u) : ‖u − u∗‖ = ρ} = mρ , ‖v∗ − u∗‖ > ρ. (3.38)

Since β( ⋅ ) is coercive (see (3.33)), it satisfies the PS-condition. This fact and (3.38) permit the use of Theo-
rem 2.1 (the mountain pass theorem). So, we can find y0 ∈ W1,p

0 (Ω) such that

mρ ≤ β(y0) and y0 ∈ Kβ ⊆ [v∗, u∗] (see Claim 1). (3.39)

From (3.38) and (3.39), it follows that
y0 ∉ {u∗, v∗}.

So, if we can show that y0 ̸= 0, then y0 will be nodal (see (3.39)). By the mountain pass theorem (see
Theorem 2.1), we have

β(y0) = inf
γ∈Γ

max
0≤t≤1

β(γ(t)), (3.40)

with Γ = {γ ∈ C([0, 1],W1,p
0 (Ω)) : γ(0) = v∗, γ(1) = u∗}. According to (3.40), in order to show the nontrivial-

ity of y0 it suffices to construct a path γ∗ ∈ Γ such that β|γ∗< 0 = β(0).
To this end, note that hypothesis (H2) (iii) implies that we can find ξ1 ∈ (λ̂2, ξ0) and δ > 0 such that

F(z, x) ≥ 1
p
ξ1|x|p for almost all z ∈ Ω and all |x| ≤ δ. (3.41)

Let
∂BLp1 = {u ∈ L

p(Ω) : ‖u‖p = 1}, M̂ = W1,p
0 (Ω) ∩ ∂B

Lp
1 M̂c = M̂ ∩ C10(Ω).

We introduce the following sets of paths:

Γ̂ = {γ̂ ∈ C([−1, 1], M̂) : γ̂(−1) = −û1, γ̂(1) = û1},

Γ̂c = {γ̂ ∈ C([−1, 1], M̂c) : γ̂(−1) = −û1, γ̂(1) = û1}.

Claim 5. Γ̂c is dense in Γ̂ for the C([−1, 1],W1,p
0 (Ω))-topology.

Let γ̂ ∈ Γ̂. For every n ≥ 1 we consider the multifunction Tn : [−1, 1] → 2C10(Ω) defined by

Tn(t) =
{{{{
{{{{
{

{−û1} if t = −1,

{u ∈ C10(Ω) : ‖u − γ̂(t)‖ <
1
n }

if t ∈ (−1, 1),

{û1} if t = 1.

Evidently, Tn( ⋅ ) has nonempty convex values, which are open sets if t ∈ (−1, 1). Also, by Papageorgiou
and Kyritsi [18, pp. 458–463], we have that Tn( ⋅ ) is a lower semicontinuous multifunction. So, we can

Brought to you by | National & University Library Ljubljana
Authenticated | dusan.repovs@guest.arnes.si author's copy

Download Date | 3/4/19 11:49 AM



N. S. Papageorgiou et al., Nonlinear Dirichlet problems with unilateral growth | 333

apply [16, Theorem 3.1’’’] (see also [12, p. 97]) and find a continuous map τn : [−1, 1] → C10(Ω) such that
τn(t) ∈ Tn(t) for all t ∈ [−1, 1] and all n ≥ 1. We have

‖τn(t) − γ̂(t)‖ <
1
n

for all t ∈ [−1, 1] and all n ≥ 1, (3.42)

which implies
‖τn(t)‖p → ‖γ̂(t)‖p uniformly in t ∈ [−1, 1] as n →∞.

So, for n ≥ 1 big enough, we can define

γ̂n(t) =
τn(t)
‖τn(t)‖p

for all t ∈ [−1, 1] (recall that γ̂(t) ∈ ∂BLp1 for all t ∈ [−1, 1]).

Then we have

‖γ̂n(t) − γ̂(t)‖ ≤ ‖γ̂n(t) − τn(t)‖ + ‖τn(t) − γ̂(t)‖

≤ |1 − ‖τn(t)‖p|
‖τn(t)‖
‖τn(t)‖p

+
1
n

for all t ∈ [−1, 1], n ≥ 1 (see (3.42)). (3.43)

Also, since ‖γ̂(t)‖p = 1 for all t ∈ [−1, 1], we can write

|1 − ‖τn(t)‖p| = |‖γ̂(t)‖p − ‖τn(t)‖p|
≤ ‖γ̂(t) − τn(t)‖p
≤ c4‖γ̂(t) − τn(t)‖ for some c4 > 0 and all t ∈ [−1, 1], n ≥ 1,

which implies
max
−1≤t≤1
|1 − ‖τn(t)‖p| ≤ c4

1
n

for all n ≥ 1 (see (3.42)). (3.44)

Returning to (3.43) and using (3.44), we obtain

max
−1≤t≤1
‖γ̂n(t) − γ̂(t)‖ → 0 as n →∞.

Evidently, γ̂n ∈ Γ̂c for all n ≥ 1. So, we have proved Claim 5.
Using Claim 5 and Proposition 2.3, given η ∈ (0, ξ1 − λ̂2), we can find γ̄0 ∈ Γ̂c such that

‖Dγ̄0(t)‖
p
p ≤ λ̂2 + η for all t ∈ [−1, 1]. (3.45)

The set γ̄0([−1, 1]) is compact in C10(Ω). Also, u∗ ∈ int C+ and v∗ ∈ − int C+ (see Proposition 3.3). So, using
also [9, Lemma 3.3], we can find ϑ ∈ (0, 1) small such that (see (3.41))

ϑγ̄0(t) ∈ [v∗, u∗] for all t ∈ [−1, 1] and |ϑγ̄0(t)(z)| ≤ δ for all t ∈ [−1, 1], z ∈ Ω (3.46)

Let γ̂0 = ϑγ̄0. Then γ̂0 is a path inW1,p
0 (Ω) connecting −ϑû1 and ϑû1, and we have

β(γ̂0(t)) =
1
p
‖Dγ̂0(t)‖

p
p − ∫

Ω

F(z, γ̂0(t)) dz (see (3.33) and (3.46))

≤
1
p [
λ̂2 + η − ξ1]‖γ̂0(t)‖

p
p for all t ∈ [−1, 1] (see (3.41), (3.45) and (3.46))

< 0 for all t ∈ [−1, 1] (recall that 0 < η < ξ1 − λ̂2),

which implies
β|γ̂0< 0. (3.47)

Next, we produce a path inW1,p
0 (Ω) connecting ϑû1 and u∗ and along which β is negative.

To this end, let a = β+(u∗). From the proof of Claim 4we know that a < 0, and because of Claim 3, we see
that

Kaβ+ = {u∗}. (3.48)
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Applying the second deformation theorem (see, for example, [11, p. 628]), we can find a deformation
h : [0, 1] × (β0+ \ {0}) → β0+ such that

h(0, u) = u for all u ∈ β0+ \ {0}, (3.49)
h(1, u) = u∗ for all u ∈ β0+ \ {0} (see (3.48)), (3.50)

β+(h(t, u)) ≤ β+(h, (s, u)) for all t, s ∈ [0, 1], s < t, and all u ∈ β0+ \ {0}. (3.51)

We define
γ̂+(t) = h(t, ϑû1)+ for all t ∈ [0, 1].

Evidently, this is a path inW1,p
0 (Ω) and

γ̂+(0) = ϑû1 (see (3.49) and recall that ϑû1 ∈ int C+),
γ̂+(1) = u∗ (see (3.50) and recall that u∗ ∈ int C+).

Also, since γ̂+(t)(z) ≥ 0 for all z ∈ Ω and all t ∈ [0, 1], we have

β(γ̂+(t)) = β+(γ̂(t)) ≤ β+(ϑû1) = β(ϑû1) < 0 for all t ∈ [0, 1] (see (3.47) and (3.51)),

which implies
β|γ̂+< 0. (3.52)

In a similar way, we can produce a path γ̂− inW1,p
0 (Ω) which connects −ϑû1 and v∗ and such that

β|γ̂−< 0. (3.53)

We concatenate γ̂−, γ̂0, γ̂+ and generate a path γ∗ ∈ Γ such that β|γ∗< 0 (see (3.47), (3.52) and (3.53)).
This implies y0 ̸= 0, and hence y0 ∈ C10(Ω) (nonlinear regularity) is a nodal solution of (1.1).

So, we can state our first multiplicity theorem.

Theorem 3.5. If hypotheses (H2) hold, then problem (1.1) admits at least three nontrivial solutions

u0 ∈ int C+, v0 ∈ − int C+, y0 ∈ [v0, u0] ∩ C10(Ω) nodal.

Next, we change the geometry near the origin by introducing a concave term. So, now the hypotheses on the
reaction f(z, x) are the following.

(H3): f : Ω × ℝ → ℝ is a measurable function such that for almost all z ∈ Ω one has f(z, 0) = 0, f(z, ⋅ ) is
locally α-Hölder continuous with α ∈ (0, 1] and local Hölder constant k ∈ L∞(Ω)+ and the following asser-
tions hold:
(i) For every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

|f(z, x)| ≤ aρ(z) for almost all z ∈ Ω and all |x| ≤ ρ.

(ii) One has
lim sup
x→±∞

f(z, x)
|x|p−2x

≤ ξ < λ̂1 uniformly for almost all z ∈ Ω.

(iii) There exist q ∈ (1, p) and δ > 0 such that

0 < f(z, x)x ≤ qF(z, x) for almost all z ∈ Ω and all 0 < |x| ≤ δ,
0 < ess inf

Ω
F( ⋅ , ±δ),

where F(z, x) = ∫x0 f(z, s) ds.
(iv) There exists M0 > 0 such that for almost all z ∈ Ω,

x 󳨃→ f(z, x)
xp−1

is nondecreasing on [M0, +∞),

x 󳨃→ f(z, x)
|x|p−2x

is nonincreasing on (−∞, −M0].
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Remark 3.6. For example, we can think of a reaction of the form

f(z, x) = k0(z)|x|q−2x + f0(z, x),

with 1 < q < 2, k0 ∈ L∞(Ω) and f0(z, x) being a measurable function such that for almost all z ∈ Ω the func-
tion f0(z, ⋅ ) is locally α-Hölder continuous with α ∈ (0, 1) and local Hölder constant k ∈ L∞(Ω)+, and

lim sup
x→±∞

f0(z, x)
|x|p−2x

≤ ξ1 < λ̂1 and lim
x→0

f0(z, x)
|x|p−2x

= 0 uniformly for almost all z ∈ Ω.

We are ready to state and prove our second multiplicity theorem.

Theorem 3.7. If hypotheses (H3) hold, then problem (1.1) admits at least three nontrivial solutions

u0 ∈ int C+, v0 ∈ − int C+, y0 ∈ [v0, u0] ∩ C10(Ω) nodal.

Proof. The two constant sign solutions come from Proposition 3.2.
Let u∗ ∈ int C+ and v∗ ∈ − int C+ be the two extremal constant sign solutions produced in Proposition 3.3.

Using them and reasoning as in the first part of the proof of Proposition 3.4, via the functional β and the
mountain pass theorem (see Theorem 2.1), we obtain a third solution

y0 ∈ [v∗, u∗] ∩ C10(Ω).

Since y0 is a critical point of mountain pass type for the functional β, we have

C1(β, y0) ̸= 0. (3.54)

On the other hand it is well-known that hypothesis (H3) (iii) implies that

Ck(β, 0) = 0 for all k ≥ 0. (3.55)

Comparing (3.54) and (3.55), we infer that y0 ̸= 0. This means that y0 ∈ [v∗, u∗] ∩ C10(Ω) is a nodal solu-
tion of problem (1.1).

4 The semilinear equation (p = 2)
In this section, we focus on the semilinear equation (that is, p = 2). So, the problem under consideration is
the following:

− ∆u(z) = f(z, u(z)) in Ω, u|∂Ω= 0. (4.1)

By improving the regularity on the reaction f(z, ⋅ ), we can produce a second nodal solution for a total of
four nontrivial solutions for problem (4.1).

The hypotheses on the reaction f(z, x) are the following.
(H4): f : Ω × ℝ → ℝ is a measurable function such that for almost all z ∈ Ω one has that f(z, 0) = 0,

f(z, ⋅ ) ∈ C1(ℝ) and the following assertions hold:
(i) For every ρ > 0, there exists aρ ∈ L∞(Ω) such that

|f 󸀠x(z, x)| ≤ aρ(z) for almost all z ∈ Ω and all |x| ≤ ρ.

(ii) One has

lim sup
x→±∞

f(z, x)
x
≤ ξ < λ̂1 uniformly for almost all z ∈ Ω.

(iii) One has

f 󸀠x(z, 0) = limx→0
f(z, x)
x

uniformly for almost all z ∈ Ω,
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and there exists an integer m ≥ 2 such that

λ̂m ≤ f 󸀠x(z, 0) ≤ λ̂m+1 for almost all z ∈ Ω,

with the first inequality being strict on a set of positive measure and for F(z, x) = ∫x0 f(z, s) ds we have

F(z, x) ≤ λ̂m+12 x2 for almost all z ∈ Ω and all x ∈ ℝ.

(iv) There exists M0 > 0 such that for almost all z ∈ Ω,

x 󳨃→ f(z, x)
xp−1

is nondecreasing on [M0, +∞),

x 󳨃→ f(z, x)
|x|p−2x

is nonincreasing on (−∞, −M0].

Remark 4.1. The differentiability of f(z, ⋅ ) and hypothesis (H4) (i) imply that f(z, ⋅ ) is locally Lipschitz with
locally Lipschitz constant in L∞(Ω)+.

From Proposition 3.3 we know that we have extremal constant sign solutions

u∗ ∈ int C+ and v∗ ∈ − int C+.

Using these extremal constant sign solutions, we consider the functional β : H1
0(Ω) → ℝ introduced in

the proof of Proposition 3.4 (now p = 2). We have β ∈ C2−0(H1
0(Ω)) (that is, β is in C1(H

1
0(Ω)) with locally

Lipschitz derivative).

Proposition 4.2. If hypotheses (H4) hold, then Ck(β, 0) = δk,dmℤ for all k ≥ 0 with dm = dim⨁
m
k=1 E(λ̂k) ≥ 2.

Proof. If in hypothesis (H4) (iii) the inequality f 󸀠x(z, 0) ≤ λ̂m+1 is also strict on a set (not necessarily the same)
of positive measure, then u = 0 is a nondegenerate critical point of β, and so from [13] we have

Ck(β, 0) = δk,dmℤ for all k ≥ 0.

So, suppose that f 󸀠x(z, 0) = λ̂m+1 for almost all z ∈ Ω. Using hypothesis (H4) (iii) and (2.4), we have

β(u) ≥ 12 ‖Du‖
2
2 −

λ̂m+1
2 ‖u‖

2 ≥ 0 for all u ∈ Ĥm+1 = ⨁
k≥m+1

E(λ̂k). (4.2)

On the other hand, given ϵ > 0, we can find δ = δ(ϵ) > 0 such that

F(z, x) ≥ 12 (f
󸀠
x(z, 0) − ϵ)x2 for almost all z ∈ Ω and all x ∈ [−δ, δ]. (4.3)

Since H̄m = ⨁m
k=1 E(λ̂k) is finite-dimensional, all norms are equivalent, and so we can find ρ > 0 small

enough such that if B̄ρ = {u ∈ H1
0(Ω) : ‖u‖ ≤ ρ}, then u ∈ H̄m ∩ Bρ, implying

|u(z)| ≤ δ for all z ∈ Ω and u ∈ [v∗, u∗]. (4.4)

Let u ∈ H̄m ∩ Bρ. Then we have

β(u) ≤ 12 ‖Du‖
2
2 −

1
2 ∫

Ω

f 󸀠x(z, 0)u2 dz +
ϵ
2 ‖u‖

2
2 (see (3.33), (4.3) and (4.4))

≤ −
c5 − ϵ
2 ‖u‖

2 for some c5 > 0 (see Proposition 2.4).

Choosing ϵ ∈ (0, c5), we infer that

β(u) ≤ 0 for all u ∈ H̄m ∩ B̄ρ . (4.5)
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From (4.2) and (4.5) we see that β has local linking at the origin and of course it is locally Lipschitz there.
Therefore,

Cdm (β, 0) ̸= 0.

Invoking the shifting theorem for C2−0 functionals due to Li, Li and Liu [13], we conclude that

Ck(β, 0) = δk,dmℤ for all k ≥ 0.

The proof is now complete.

Now we are ready for our third multiplicity theorem concerning problem (4.1).

Theorem 4.3. If hypotheses (H4) hold, then problem (4.1) admits at least four nontrivial solutions

u0 ∈ int C+, v0 ∈ − int C+, y0, ŷ ∈ intC10(Ω)[v0, u0] nodal.

Proof. From Proposition 3.2 we already have two nontrivial constant sign solutions

u0 ∈ int C+ and v0 ∈ − int C+.

Moreover, by virtue of Proposition 3.3wemay assume that u0 and v0 are extremal (that is, u0 = u∗ ∈ int C+
and v0 = v∗ ∈ − int C+). Thedifferentiability of f(z, ⋅ ) andhypothesis (H4) (i) imply that if ρ =max{‖ū‖∞, ‖v̄‖∞},
then we can find ̂ξρ > 0 such that x → f(z, x) + ̂ξρx is nondecreasing on [−ρ, ρ] for almost all z ∈ Ω.

As in the proof of Proposition 3.4, using the functional β ∈ C2−0(H1
0(Ω)) and the mountain pass theorem

(see Theorem 2.1), we can find y0 ∈ [v0, u0] ∩ C10(Ω), which is a solution of problem (4.1). We have

−∆y0(z) + ̂ξρy0(z) = f(z, y0(z)) + ̂ξρy0(z)

≤ f(z, u0(z)) + ̂ξρu0(z) (since y0 ≤ u0)

= −∆u0(z) + ̂ξρu0(z) for almost all z ∈ Ω,

This implies

∆(u0 − y0)(z) ≤ ̂ξρ(u0 − y0)(z) for almost all z ∈ Ω,

and hence u0 − y0 ∈ int C+ by the strong maximum principle.
Similarly, we show that y0 − v0 ∈ int C+. Therefore,

y0 ∈ intC10(Ω)[v0, u0].

Since y0 is a critical point of mountain pass type for β, from [13, Theorem 2.7] we have

Ck(β, y0) = δk,1ℤ for all k ≥ 0. (4.6)

From Proposition 4.2 we know that

Ck(β, 0) = δk,dmℤ for all k ≥ 0 with dm ≥ 2. (4.7)

Comparing (4.6) and (4.7), we infer that y0 ̸= 0, and so

y0 ∈ intC10(Ω)[v0, u0] is a nodal solution of (4.1).

Recall that u0, v0 are local minimizers of β (see Claim 4 in the proof of Proposition 3.4). Hence we have

Ck(β, un) = Ck(β, v0) = δk,0ℤ for all k ≥ 0. (4.8)

Moreover, the coercivity of β( ⋅ ) (see (3.33)) implies that

Ck(β,∞) = δk,0ℤ for all k ≥ 0. (4.9)
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Suppose that Kβ = {0, u0, v0, y0}. Then from (4.6)–(4.9) and theMorse relation (2.6)with t = −1,we have

(−1)dm + 2(−1)0 + (−1)1 = (−1)0,

implying (−1)dm = 0, a contradiction.
So, there exists ŷ ∈ Kβ, ŷ ∉ {0, u0, v0, y0}. Then ŷ ∈ [v0, u0] ∩ C10(Ω) is nodal (see Claim 3 in the proof of

Proposition 3.4 and use standard regularity theorem). In fact, as we did in the beginning of the proof for y0,
we can show that

ŷ ∈ intC10(Ω)[v0, u0].

The proof is now complete.

5 A special case
In this section, we consider a special case of problem (1.1) under hypotheses (H2), which we encounter in
the literature.

So, we deal with the following parametric nonlinear Dirichlet problem:

− ∆pu(z) = λ|u(z)|p−2u(z) − g(z, u(z)) in Ω, u|∂Ω= 0, λ > 0. (5.1)

We impose the following conditions on the perturbation g(z, x).
(H5): g : Ω × ℝ → ℝ is a measurable function such that for almost all z ∈ Ω one has g(z, 0) = 0, g(z, ⋅ ) is

locally α-Hölder continuous with α ∈ (0, 1] and local Hölder constant k ∈ L∞(Ω)+ and the following asser-
tions hold:
(i) For every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

|g(z, x)| ≤ aρ(z) for almost all z ∈ Ω and all |x| ≤ ρ.

(ii) One has
lim inf
x→±∞

g(z, x)
|x|p−2x

≥ ξ∗ > λ − λ̂1 uniformly for almost all z ∈ Ω.

(iii) There exist ξ0, ξ∗ ∈ ℝ, ξ∗ < λ − λ̂2, such that

ξ0 ≤ lim inf
x→0

g(z, x)
|x|p−2x

≤ lim sup
x→0

g(z, x)
|x|p−2x

≤ ξ∗ uniformly for almost all z ∈ Ω.

(iv) There exists M0 > 0 such that for almost all z ∈ Ω,

x 󳨃→ g(z, x)
xp−1

is nondecreasing on [M0, +∞),

x 󳨃→ g(z, x)
|x|p−2x

is nonincreasing on (−∞, −M0].

Setting f(z, x) = λ|x|p−2x − g(z, x) andusingTheorem3.5,we can state the followingmultiplicity theorem
for problem (5.1).

Theorem 5.1. If hypotheses (H5) hold and λ > λ̂2, then problem (5.1) admits at least three nontrivial solutions

u0 ∈ int C+, v0 ∈ − int C+, y0 ∈ [v0, u0] ∩ C10(Ω) nodal.

Remark 5.2. This theorem complements the multiplicity result of Papageorgiou and Papageorgiou [17].

In the semilinear case (p = 2), we can say more. So, now the problem under consideration is the following:

− ∆u(z) = λu(z) − g(z, u(z)) in Ω, u|∂Ω= 0, λ > 0. (5.2)

The hypotheses on the perturbation g(z, x) are the following.
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(H6): g : Ω × ℝ → ℝ is a measurable function such that for almost all z ∈ Ω one has that g(z, 0) = 0,
g(z, ⋅ ) ∈ C1(ℝ) and the following assertions hold:
(i) For every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

|g󸀠x(z, x)| ≤ aρ(z) for almost all z ∈ Ω and all |x| ≤ ρ.

(ii) One has
lim inf
x→±∞

g(z, x)
x
≥ ξ∗ > λ − λ̂1 uniformly for almost all z ∈ Ω.

(iii) One has
g󸀠x(z, 0) = limx→0

g(z, x)
x
= 0 uniformly for almost all z ∈ Ω.

(iv) There exists M0 > 0 such that for almost all z ∈ Ω,

x 󳨃→ g(z, x)
xp−1

is nondecreasing on [M0, +∞),

x 󳨃→ g(z, x)
|x|p−2x

is nonincreasing on (−∞, −M0].

Again, setting f(z, x) = λx − g(z, x) and using Theorem 4.3, we can state the following multiplicity theo-
rem for problem (5.2).

Theorem 5.3. If hypotheses (H6) hold and λ > λ̂2, then problem (5.2) has at least four nontrivial solutions

u0 ∈ int C+, v0 ∈ − int C+, y0, ŷ ∈ intC10(Ω)[v0, u0] nodal.

Remark 5.4. This theorem complements the multiplicity results of Ambrosetti and Lupo [2], Ambrosetti and
Mancini [3] and Struwe [21, 22], which produce only three solutions and there are no nodal solutions among
them.
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