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We study the reaction-diffusion system

8>>>>><
>>>>>:

ut − d1∆u = a − (b + 1)u + f(u)v in Ω × (0, T ),

vt − d2∆v = bu − f(u)v in Ω × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x) on Ω,

∂u

∂ν
(x, t) =

∂u

∂ν
(x, t) = 0 on ∂ Ω × (0, T ).

Here Ω is a smooth and bounded domain in R
N (N ≥ 1), a, b, d1, d2 > 0 and f ∈

C1[0,∞) is a non-decreasing function. The case f(u) = u2 corresponds to the standard
Brusselator model for autocatalytic oscillating chemical reactions. Our analysis points
out the crucial role played by the nonlinearity f in the existence of Turing patterns.
More precisely, we show that if f has a sublinear growth then no Turing patterns occur,
while if f has a superlinear growth then existence of such patterns is strongly related to
the inter-dependence between the parameters a, b and the diffusion coefficients d1, d2.

Keywords: Turing patterns; reaction-diffusion system; Brusselator model; stability;
steady-state solutions.

Mathematics Subject Classification 2010: 35J25, 35K50, 47H11, 58C15

1. Introduction

Many physical, chemical, biological, environmental and even sociological processes
are driven by reaction-diffusion systems. These are multi-component models involv-
ing two different mechanisms: on one hand, there is diffusion, a random particle
movement, and on the other hand, there are chemical, biological or sociological
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reactions representing instantaneous interactions, which depend on the state vari-
ables themselves and possibly also explicitly on the particles’ position.

In the early fifties, Turing [24], a British mathematician, proposed a model that
accounts for pattern formation in morphogenesis. Turing [24] suggested that under
certain conditions, chemicals can react and diffuse in such a way to produce steady-
state heterogeneous spatial patterns of chemical or morphogen concentrations. He
showed that a system of two reacting and diffusing chemicals could give rise to
spatial patterns from initial near-homogeneity. The idea behind Turing’s model is
the existence of a low-range diffusing activator and a wide-range diffusing inhibitor.
The activator production is inhibited by the presence of inhibitors and enhanced
by the presence of the activator. In contrast, the inhibitor is not self-enhancing,
that is, its production is not linked to the presence of other inhibitors, but to the
presence of activators. Turing systems show a very rich behavior from the pattern
formation point of view, varying from spots to stripes and from lamellar to chaotic
structures.

Lately, many Turing-type models described by coupled systems of reaction-
diffusion equations have been used for generating patterns in both organic and
inorganic systems.

In this paper, we shall be concerned with Turing patterns in a general Brussela-
tor model for autocatalytic oscillating chemical reactions. An autocatalytic reaction
is one in which a species acts to increase the rate of its producing reaction. In many
autocatalytic systems complex dynamics are seen, including multiple steady-states
and periodic orbits. The study of oscillating reactions has only been the subject of
interest for the last fifty years, starting with the Belousov–Zhabotinsky chemical
reactions.

There is now a large number of real and hypothetical systems that provide
insight into the complex behavior of autocatalytic systems. Among them we men-
tion Brusselator model [19], Gray–Scott model [8], Lengyel–Epstein model [12],
Oregonator model [6], Schnakenberg model [21], Sel’klov model [22].

In this paper we shall consider the system




ut − d1∆u = a − (b + 1)u + f(u)v in Ω × (0, T ),

vt − d2∆v = bu − f(u)v in Ω × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x) on Ω,

∂u

∂ν
(x, t) =

∂u

∂ν
(x, t) = 0 on ∂ Ω × (0, T ),

(1)

where Ω ⊂ RN (N ≥ 1) is a smooth and bounded domain, a, b, d1, d2 are positive
constants and f ∈ C1(0,∞)∩C[0,∞) is non-negative and non-decreasing function
such that f > 0 in (0,∞). The initial data u0, v0 are non-negative continuous
functions in Ω. The case f(s) = s2 in system (1) corresponds to the Brusselator
model introduced by Prigogine and Lefever [19] in 1968. It consists on the following
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four intermediate reaction steps

A → X, B + X → Y + D, 2X + Y → 3X, X → E.

The global reaction is A + B → D + E and corresponds to the transformation of
input products A and B into output products D and E. The unknowns u, v in
system (1) represent the concentrations of two intermediary reactants having the
diffusion rates d1, d2 > 0 while a, b > 0 are fixed concentrations. The Brusselator
system has been extensively investigated in the last decades from both analytical
and numerical point of view (see, for instance, [1, 4, 5, 7, 10, 11, 16, 18, 25, 27]).

The analysis in this paper reveals the fact that the dynamics of the evolution
system (1) and its associated steady-state is strongly related to the behavior of the
nonlinearity f . Throughout this paper, we shall assume that f satisfies one of the
following hypotheses:

either f is sublinear, that is,

(f1) the mapping (0,∞) � s → f(s)
s is non-increasing;

of f has a superlinear character, namely,
(f2) the mapping (0,∞) � s → f(s)

s is non-decreasing.

A particular attention will be paid to the steady-states to (1), that is,
solutions of 


−d1∆u = a − (b + 1)u + f(u)v in Ω,

−d2∆v = bu − f(u)v in Ω,

∂u

∂ν
=

∂v

∂ν
= 0 on ∂ Ω.

(2)

It is easily seen that there exists a unique uniform steady-state of (2), namely

(u, v) =
(

a,
ab

f(a)

)
. (3)

In this paper, we shall investigate the asymptotic stability of the above constant
solution. In particular, we shall see that if f has a sublinear growth, then the
constant solution (u, v) defined by (3) is uniformly asymptotically stable. Moreover,
in the sublinear case on f we prove that (3) is the unique solution of system (2),
so there are no Turing patterns in this case. In turn, if f satisfies (f2), the analysis
of (2) is more involved. The existence of Turing patterns (and implicitly of non-
constant solutions to (2)) is strongly dependent on the diffusion coefficients d1, d2

and on the parameters a, b. The most important issue in the study of steady-state
solutions are the a priori estimates. Using a similar approach to that in [7], we
are able to find precise upper and lower bounds for solutions to (2) in terms of
a, b, d1, d2 for any dimension N ≥ 1. This allows us to extend the study of the
standard Brusselator system started in [4, 7, 18]. As a consequence, we are able to
provide existence results in terms of a, b, d1 and d2 in case where f has a superlinear
growth.
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The outline of the paper is as follows. Section 2 is devoted to time-dependent
solutions of (1). The main ingredient in proving the existence of such solutions
if the invariant region method in the spirit of [23] (see also [26]) combined with a
priori estimates. Then, uniform stability of the constant solution (3) is investigated.
In Sec. 3, we discuss the existence and non-existence of non-constant solutions to
the steady-state system (2). Here, we point out the role played by each parameter
a, b, d1 and d2 > 0.

2. The Evolution System (1)

2.1. Existence of global solutions

In this part, we establish the existence of global solutions to (1). Our first result
result concerns the case where f is sublinear.

Theorem 2.1. Assume that f satisfies (f1) and lims→∞ f(s)/s = 0. Then, for any
a, b, d1, d2 > 0 and any non-negative continuous functions u0, v0, the system (1) has
at least one global solution.

Proof. The proof relies on the invariant region method (see, e.g., [23, 26]). To this
aim, we rewrite the system (1) is the vectorial form

wt =
(

d1 0
0 d2

)
∆w + F (w) in Ω × (0,∞), (4)

where w = (u, v)T and

F (w) =
(

a − (b + 1)u + f(u)v
bu − f(u)v

)
.

We claim that the rectangle Σ := [0, c1] × [0, c2] is an invariant region for
(4) provided c1, c2 > 0 are large enough. In view of (f1) we can choose c1 >

max {2a, ‖u0‖L∞} such that

(b + 1/2)c1

f(c1)
> ‖v0‖L∞

and define

c2 :=
(b + 1/2)c1

f(c1)
.

We also write Σ as

Σ = {w = (u, v)T ∈ C(Ω) ∩ C(Ω) : Gi(w) ≤ 0, 1 ≤ i ≤ 4},
where

G1(w) = −u, G2(w) = u − c1, G3(w) = −v, G4(w) = v − c2.
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It is obviously that the initial data (u0, v0) belongs to the interior of Σ. If w =
(u, v)T ∈ ∂Σ, by the definition of c1 and c2 we have

∇G1 · F|u=0 = −a− f(0)v < 0,

∇G2 · F|u=c1
= a − (b + 1)c1 + f(c1)v ≤ a − (b + 1)c1 + f(c1)c2 = a − c1

2
≤ 0,

∇G3 · F|v=0 = −bu ≤ 0,

∇G4 · F|v=c2
= bu − f(u)v = u

(
b − f(u)

u

)
≤ u

(
b − f(c1)

c1
c2

)
< 0.

By [23, Theorem 14.13] it follows that Σ is invariant for (4). Thus, there exists a
global solution of (4).

Next, we turn our attention to the case where f is superlinear. For the standard
Brusselator model, that is, f(u) = u2, the existence of global solution to (1) was
obtained by Rothe [20]. Here, the existence of global solution to (1) is derived for
more general nonlinearities f under the restriction d1 = d2 and the initial data u0

is strictly positive in Ω.

Theorem 2.2. Assume that d1 = d2 > 0, the initial data u0, v0 are continuous
function in Ω such that u0 > 0, v0 ≥ 0 in Ω and the nonlinearity f satisfies (f2)
and lims→0 f(s)/s = 0. Then, for any a, b > 0, the system (1) has a global solution.

Proof. With the change of variable we can assume d1 = d2 = 1. For ε > 0 small
enough we consider the related problem



ut − ∆u = a − (b + 1)u + f(u)v in Ω × (0,∞),

vt − ∆v = bu − f(u)v in Ω × (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) + ε on Ω,

∂u

∂ν
(x, t) =

∂v

∂ν
(x, t) = 0 on ∂ Ω × (0,∞),

(5)

By standard parabolic arguments, there exists a classical solution (uε, uε) of (5)
in a maximal interval (0, T ε

max). We claim that T ε
max = ∞. First, by (5) we have

that Uε satisfies

uε
t − ∆uε + (b + 1)uε ≥ a > 0 in Ω × (0, T ε

max).

Since u0 > 0 in Ω, there exists a constant k > 0 independent of ε such that

uε ≥ k in Ω × (0, T ε
max). (6)

Since lims→0 f(s)/s = 0, we can choose k > 0 small enough such that

v0 + 1 ≤ bk

f(k)
in Ω. (7)
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The function v satisfies


vε
t − ∆vε = buε − f(uε)vε in Ω × (0, T ε

max),

vε(x, 0) = v0(x) + ε on Ω,

∂vε

∂ν
(x, t) = 0 on ∂ Ω × (0, T ε

max).

(8)

Using (6) and that fact that f satisfies (f2), we can easily deduce that the interval

Σ := [0, bk/f(k)]

is an invariant region for Eq. (8). This means that

v(x, t) ≤ bk

f(k)
= const. in Ω × (0, T ε

max). (9)

Adding the first two equations in (5), we have

(uε + uε)t − ∆(uε + uε) +
1
d1

(uε + uε) ≤ a +
bk

d1f(k)
in Ω × (0, T ε

max).

By maximum principle we deduce that uε + vε ≤ M in Ω × (0, T ε
max), for some

constant M > 0 independent of ε. Therefore, for ε > 0 small enough, uε, uε satisfy

ε ≤ uε, vε ≤ M in Ω × (0, T ε
max).

This yields T ε
max = ∞, so uε and vε exist globally. Also by standard parabolic

arguments and up to a subsequence, uε and vε converge to some functions u and v

which are global solutions to (1). This finishes the proof of Theorem 2.2.

2.2. Stability of the uniform steady-state

The linearization of (4) at w0 = (a, ab/f(a))T is

wt =

(
d1 0
0 d2

)
∆w + ∇F (w0) ·w + O(‖w − w0‖2). (10)

Denote by

0 = µ0 < µ1 < µ2 < · · · < µn < · · ·
the eigenvalues of −∆ with homogeneous Neumann boundary condition. For any
k ≥ 0 we also denote by e(µk) the multiplicity of µk. Consider

X =
{
w = (u, v) ∈ C1(Ω) × C1(Ω) :

∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω

}
(11)

and decompose

X =
⊕
k≥0

Xk, (12)

where Xk denotes the eigenspace corresponding to µk, k ≥ 0.
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Theorem 2.3. Assume that

f(a) >
baf ′(a)
f(a)

− b − 1 (13)

and the first eigenvalue µ1 of the Dirichlet operator subject to homogeneous Neu-
mann condition satisfies

µ1 >
1
d1

(
baf ′(a)
f(a)

− b − 1
)
− f(a)

d2
. (14)

Then the steady-state w0 is uniformly asymptotically stable.

Proof. Define L : X → C(Ω) × C(Ω) by

L =




d1∆ +
baf ′(a)
f(a)

− b − 1 f(a)

b − baf ′(a)
f(a)

d2∆ − f(a)




Then Xk is invariant for L and ξk is an eigenvalue of L on Xk if and only if ξ is an
eigenvalue of the matrix

Ak =




−d1µk +
baf ′(a)
f(a)

− b − 1 f(a)

b − baf ′(a)
f(a)

−d2µk − f(a)


 .

The determinant and trace of Ak are

det(Ak) = µk

[
d1d2µk + d1f(a) − d2

(
baf ′(a)
f(a)

− b − 1
)]

+ f(a),

Tr(Ak) =
baf ′(a)
f(a)

− b − 1 − f(a) − (d1 + d2)µk.

(15)

Remark that for any k ≥ 0 we have

det(Ak) > 0 > Tr(Ak).

Denote by ξ+
k and ξ−k the two eigenvalues of Ak, k ≥ 0.

If ξ+
k , ξ−k are complex numbers, then by (14) we have

Re(ξ+
k ) = Re(ξ−k ) =

1
2
Tr(Ak)

≤ 1
2

(
baf ′(a)
f(a)

− b − 1 − f(a)
)

< 0.
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If ξ+
k , ξ−k are real numbers, then by (14) we have

ξ−k ≤ ξ+
k =

Tr(Ak) +
√

Tr2(Ak) − 4det(Ak)

2

=
2det(Ak)

Tr(Ak) −
√

Tr2(Ak) − 4det(Ak)

≤ det(Ak)
Tr(Ak)

< 0.

Since µk → ∞ as k → ∞, from the above estimate we deduce ξ+
k → −∞ as k → ∞.

Hence, in both the above cases we can find δ > 0 such that the spectrum of L
lies in the region {z ∈ C : Re(z) < −δ}. By [9, Theorem 5.1.1], we obtain that w0

is asymptotically uniformly stable for (4). This ends the proof.

If f satisfies (f1) then baf ′(a)
f(a) − b − 1 < 0 so that both conditions (13) and (14)

are satisfied. In this case we obtain.

Corollary 2.4. If f satisfies (f1) then w0 is uniformly asymptotically stable.

2.3. Diffusion-driven instability

In this part, we point out that under certain conditions on the parameters a and
b, the uniform steady-state (u0, v0) defined by (3) can be linearly stable in the
absence of diffusion but unstable in the presence of diffusion. This is the well-known
phenomenon of diffusion-driven instability emphasized by Turing in his pioneering
work [24].

Let us consider the spatially homogeneous system corresponding to (1):


du

dt
= a − (b + 1)u + f(u)v , t > 0,

dv

dt
= bu − f(u)v , t > 0,

(16)

We have the following result.

Theorem 2.5. Assume that

f(a) >
baf ′(a)
f(a)

− b − 1 > 0. (17)

Then, there exist d∗, D∗ > 0 such that for all

0 < d1 < d∗ and d2 > D∗,

the steady-state w0 = (a, ba/f(a))T is uniformly asymptotically stable for the sys-
tem (16) and instable for the system (1), that is, Turing instabilities occur.

Remark that (17) does not hold if f satisfies (f1).
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Proof. Using the same approach as in Theorem 2.3 we have that w0 is uniformly
asymptotically stable for (16) provided (17) holds. Also by (17) we can choose
D∗ > 0 large enough such that

µ1D
∗
(

baf ′(a)
f(a)

− b − 1
)

> f(a).

Using (15), for all d2 > D∗ we have

lim
d1↘0

det(A1) ≤ f(a) − µ1D
∗
(

baf ′(a)
f(a)

− b − 1
)

< 0.

Therefore we can find d∗ > 0 such that

det(A1) < 0 for all 0 < d1 < d∗, d2 > D∗.

This implies that A1, and so the operator L, has at least one positive eigenvalue.
By [9, Corollary 5.1.1] it follows that w0 is uniformly asymptotically instable. This
finishes the proof.

3. Steady-State Solutions

In this section, we shall be concerned with steady-state solutions to (1). Basic to
our subsequent analysis is the following result which is due to Lou and Ni (see [13,
Proposition 2.2] or [14, Lemma 2.1]).

Lemma 3.1. Let g ∈ C1(Ω × R).

(1) If w ∈ C2(Ω) ∩ C1(Ω) satisfies

∆w + g(x, w) ≥ 0 in Ω,
∂w

∂n
≤ 0 on ∂ Ω,

and w(x0) = maxΩ w, then g(x0, w(x0)) ≥ 0.
(2) If w ∈ C2(Ω) ∩ C1(Ω) satisfies

∆w + g(x, w) ≤ 0 in Ω,
∂w

∂n
≥ 0 on ∂ Ω,

and w(x0) = minΩ w, then g(x0, w(x0)) ≤ 0.

Using the above result, we first derive that if f satisfies (f1) then (2) has no
non-constant solutions. More precisely we have.

Theorem 3.2. Assume that f satisfies (f1). Then, (u, v) = (a, ab
f(a) ) is the unique

solution of system (2).

Proof. Let (u, v) be a classical solution of (2). Let also x1 (respectively, x2) be a
maximum point of u (respectively, v) and x3 (respectively, x4) be a minimum point
of u (respectively, v) in Ω. Using Lemma 3.1(i) in the first equation of (2) we have

(b + 1)u(x1) ≤ a + f(u(x1))v(x1). (18)



August 14, 2010 9:9 WSPC/S0219-1997 152-CCM S0219199710003968

670 M. Ghergu & V. Rădulescu

Now, Lemma 3.1(i) applied to the second equation in (2) yields

bu(x2) ≥ f(u(x2))v(x2),

that is, v(x2) ≤ b u(x2)
f(u(x2))

. By virtue of (f1) we next derive

v(x1) ≤ v(x2) ≤ b
u(x2)

f(u(x2))
≤ b

u(x1)
f(u(x1))

. (19)

Therefore (18) and (19) imply (b + 1)u(x1) ≤ a + bu(x1), that is,

u ≤ u(x1) ≤ a in Ω. (20)

On the other hand, Lemma 3.1(ii) applied to the second equation of (2) leads us to
v(x4) ≥ b u(x4)

f(u(x4))
. Again by (f1) it follows that

v(x3) ≥ v(x4) ≥ b
u(x4)

f(u(x4))
≥ b

u(x3)
f(u(x3))

. (21)

Next, Lemma 3.1(ii) applied to the first equation in (2) yields

(b + 1)u(x3) ≥ a + f(u(x3))v(x3) ≥ a + bu(x3),

which implies

u ≥ u(x3) ≥ a in Ω. (22)

Now (20) and (22) produce u ≡ a in Ω and by (2) we also have v ≡ ab/f(a). This
ends the proof.

When f satisfies (f2) the analysis of the steady-state system (2) is more delicate.
In some cases, depending of the parameters a, b, d1, d2 we obtain the existence of
non-constant solutions to (1). We start this study with the following crucial result
that provides a priori estimates for solutions to (2).

Theorem 3.3. Assume that f satisfies (f2). Then, any solution (u, v) of (2)
satisfies

a

b + 1
≤ u ≤ a +

d2

d1
· ab

(b + 1)f
(

a

b + 1

) in Ω, (23)

and
ab

(b + 1)f


a +

d2

d1
· ab

(b + 1)f
(

a

b + 1

)



≤ v ≤ ab

(b + 1)f
(

a

b + 1

) in Ω. (24)

Proof. Consider first a minimum point x0 ∈ Ω of u. By Lemma 3.1(ii) it follows

a − (b + 1)u(x0) + f(u(x0))v(x0) ≤ 0
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which implies u(x0) ≥ a/(b + 1). Hence

u ≥ a

b + 1
in Ω. (25)

At maximum point of v we have bu− f(u)v ≥ 0, that is, v ≤ bu/f(u). By virtue of
(f2) and (25) we deduce

v ≤ ab

(b + 1)f
(

a

b + 1

) in Ω. (26)

Let w = d1u + d2v. Adding the first two relations in (2) we have

−∆w = a − u in Ω,
∂w

∂ν
= 0 on ∂Ω.

Let now x1 ∈ Ω be a maximum point of w. According to Lemma 3.1(i) we have
a − u(x1) ≥ 0, that is, u(x1) ≤ a. By virtue of (26), for all x ∈ Ω we have

d1u(x) ≤ w(x) ≤ w(x1) ≤ d1a + d2 · ab

(b + 1)f
(

a

b + 1

) in Ω.

This yields

u ≤ a +
d2

d1
· ab

(b + 1)f
(

a

b + 1

) in Ω. (27)

We have proved that u satisfies (23). Again by Lemma 3.1(ii), at minimum points
of v we have bu − f(u)v ≤ 0, which yields v ≥ bu/f(u). Combining this inequality
with (27) we obtain the first estimate in (24). This concludes our proof.

From the estimates (23) and (24) in Theorem 3.3 we derive the following:

Proposition 3.4. Assume that f satisfies (f2) and let a, b, D1, D2 > 0 be fixed.
Then, there exist two positive constants C1, C2 > 0 depending on a, b, D1, D2 such
that for all

d1 ≥ D1, 0 < d2 ≤ D2,

any solution (u, v) of (2) satisfies

C1 < u, v < C2 in Ω.

Furthermore, by standard elliptic arguments and Theorem 3.3 we now obtain:

Proposition 3.5. Assume that f satisfies (f2) and let a, b, D1, D2 > 0 be fixed.
Then, for any positive integer k ≥ 1 there exists a constant

C = C(a, b, D1, D2, k, N, Ω) > 0

such that for all

d1 ≥ D1, 0 < d2 ≤ D2,
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any solution (u, v) of (2) satisfies

‖u‖Ck(Ω) + ‖v‖Ck(Ω) ≤ C.

In particular, any solution of (2) belongs to C∞(Ω) × C∞(Ω).

Theorem 3.6. (i) Let a, b, d2 > 0 be fixed. There exists D = D(a, b, d2) > 0 such
that system (2) has no non-constant solutions for all d1 > D.

(ii) Let a, d1, d2 > 0 be fixed. There exists B = B(a, d1, d2) > 0 such that system
(2) has no non-constant solutions for all 0 < b < B.

Proof. (i) Remark first that if (u, v) is a solution of (2), then, integrating the two
equations in (2) over Ω and adding them up we have∫

Ω

u(x)dx = a|Ω|. (28)

Lemma 3.7. Let a, b, d2 > 0 be fixed and let {δn} ⊂ (0,∞) be such that δn → ∞
as n → ∞. If (un, vn) is a solution of (2) with d1 = δn then

(un, vn) →
(

a,
ab

f(a)

)
in C2(Ω) × C2(Ω) as n → ∞. (29)

Proof. By Proposition 3.5, the sequence {(un, vn)} is bounded in C3(Ω)×C3(Ω).
Hence, passing to a subsequence if necessary, {(un, vn)} converges in C2(Ω)×C2(Ω)
to some (u, v) ∈ C2(Ω)×C2(Ω). We divide by δn in the corresponding equation to
un and then we pass to the limit with n → ∞. We obtain that (u, v) satisfies



−∆u = 0 in Ω,

−d2∆v = bu − f(u)v in Ω,

∂u

∂ν
=

∂v

∂ν
= 0 on ∂ Ω.

(30)

Also, un and u satisfy (28). Now, the first equation in (30) together with ∂u/∂ν = 0
on ∂ Ω implies that u is constant. Combining this fact with (28) it follows that u ≡ a.
Thus, from (30), v satisfies

−d2∆v = ab − f(a)v in Ω,
∂v

∂ν
= 0 on ∂Ω.

Multiplying the above equality with ab − f(a)v and then integrating over Ω we
obtain

0 ≤ d2

f(a)

∫
Ω

|∇(ab − f(a)v)|2dx = −
∫

Ω

(ab − f(a)v)2dx ≤ 0.

Hence v ≡ ab
f(a) and the proof follows.

We first introduce the function spaces

H2
n(Ω) =

{
w ∈ W 2,2(Ω) :

∂w

∂ν
= 0
}

, L2
0(Ω) =

{
w ∈ L2(Ω) :

∫
Ω

w = 0
}

.
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Thus, letting w = u− a, by (28) and the standard elliptic regularity, system (2)
is equivalent to


−∆w = δ(a − (b + 1)(w + a) + f(w + a)v) in Ω,

−d2∆v = b(w + a) − f(w + a)v in Ω,

w ∈ H2
n(Ω) ∩ L2

0(Ω), v ∈ H2
n(Ω),

(31)

where δ = 1/d1. Define

F : R × (H2
n(Ω) ∩ L2

0(Ω)) × H2
n(Ω) → L2

0(Ω) × L2(Ω),

by

F(δ, w, v) =

(
∆w + δP(a − (b + 1)(w + a) + f(w + a)v)

d2∆v + b(w + a) − f(w + a)v

)
,

where P : L2(Ω) → L2
0(Ω) is the projection operator from L2(Ω) onto L2

0(Ω),
namely,

P(z) = z − 1
|Ω|
∫

Ω

z(x)dx, for all z ∈ L2(Ω).

Now (31) is equivalent to

F(δ, w, v) = 0. (32)

Indeed, if F(δ, w, v) = 0, then

d2∆v + b(w + a) − f(w + a)v = 0 in Ω, v ∈ H2
n(Ω).

It is easy to see that the above relations imply b(w + a)− f(w+ a)v ∈ L2
0(Ω). Since

w ∈ L2
0(Ω), this yields

a − (b + 1)(w + a) + f(w + a)v ∈ L2
0(Ω),

so that

P(a − (b + 1)(w + a) + f(w + a)v) = a − (b + 1)(w + a) + f(w + a)v.

Therefore (31) is satisfied.
With the same method as in the proof of Lemma 3.7 we have that the equation

F(0, w, v) = 0 has the unique solution (w, v) = (0, ab/f(a)). Next it is easy to see
that

D(w,v)F(0, 0, ab/f(a)) : (H2
n(Ω) ∩ L2

0(Ω)) × H2
n(Ω) → L2

0(Ω) × L2(Ω),

is given by

D(w,v)F(0, 0, ab/f(a)) =




∆ 0

b
f(a) − af ′(a)

f(a)
d2∆ − f(a)


 .

Thus D(w,v)F(0, 0, ab/f(a)) is invertible and we are in the frame of the Implicit
Function Theorem. It follows that there exists δ0, r > 0 such that (0, 0, ab/f(a)) is
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the unique solution of

F(δ, w, v) = 0 in [0, δ0] × Br

(
0,

ab

f(a)

)
,

where Br(0, ab
f(a)) denotes the open ball in (H2

n(Ω) ∩ L2
0(Ω)) × H2

n(Ω) centered at
(0, ab/f(a)) and having the radius r > 0.

Let now {δn} be a sequence of positive real numbers such that δn → ∞ as
n → ∞ and let (un, vn) be an arbitrary solution of (2) for a, b, d2 fixed and d1 = δn.
Letting wn = un − a, it follows that

F
(

1
δn

, wn, vn

)
= 0.

According to Lemma 3.7 we have

(wn, vn) →
(

0,
ab

f(a)

)
in C2(Ω) × C2(Ω) as n → ∞.

This means that for n ≥ 1 large enough there holds (1/δn, wn, vn) ∈ (0, δ0) ×
Br(0, ab

f(a)) which yields (wn, vn) = (0, ab
f(a) ). Hence, for d1 = 1/δn small enough,

system (2) has only the constant solution (a, ab
f(a) ). The proof of (ii) is similar. �

3.1. Existence results

Let X be the space defined in (11) and let

X+ = {(u, v) ∈ X : u, v > 0 in C(Ω)}.
We write the system (2) in the form

−∆w = G(w) , w ∈ X+, (33)

where

G(w) =




1
d1

(a − (b + 1)u + f(u)v)

1
d2

(bu − f(u)v)


 .

It is more convenient to write (33) in the form

F(w) = 0 , w ∈ X+, (34)

where

F(w) = w − (I − ∆)−1(G(w) + w) , w ∈ X+. (35)

Let w0 = (a, ab/f(a))T be the uniform steady state solution of (2). Then

∇F(w0) = I − (I − ∆)−1(I + A),
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where

A := ∇G(w0) =




1
d1

(
b
af ′(a) − f(a)

f(a)
− 1
)

f(a)
d1

− b

d2

af ′(a) − f(a)
f(a)

−f(a)
d2


 .

If ∇F(w0) is invertible, by [15, Theorem 2.8.1] the index of F at w0 is
given by

index(F ,w0) = (−1)γ , (36)

where γ denotes the number of the negative eigenvalues of ∇F(w0). On the other
hand, using the decomposition (12) we have that Xi is an invariant space under
∇F(w0) and ξ ∈ R is an eigenvalue of ∇F(w0) in Xi if and only if ξ is an eigenvalue
of (µi + 1)−1(µiI−A). Therefore, ∇F(w0) is invertible if and only if for any i ≥ 0
the matrix (µiI − A) is invertible.

Let us define

H(a, b, d1, d2, µ) = det(µI − A). (37)

Then, if (µiI − A) is invertible for any i ≥ 0, with the same arguments as in [17]
we have

γ =
∑
i≥0,

H(a,b,d1,d2,µi)<0

e(µi). (38)

A straightforward computation yields

H(a, b, d1, d2, µ) = µ2 −
(

abf ′(a) − (b + 1)f(a)
d1f(a)

− f(a)
d2

)
µ +

f(a)
d1d2

.

If

b
af ′(a) − f(a)

f(a)
>

(
1 +

√
d1

d2
f(a)

)2

, (39)

then the equation H(µ) = 0 has two positive solutions µ±(a, b, d1, d2) given by

µ±(a, b, d1, d2) =
1
2
(θ(a, b, d1, d2) ±

√
θ(a, b, d1, d2)2 − 4f(a)/(d1d2)),

where

θ(a, b, d1, d2) =
abf ′(a) − (b + 1)f(a)

d1f(a)
− f(a)

d2
.

With the same method as in [17] (see also [7, 18]) we have the following result.

Theorem 3.8. Assume that condition (39) holds and there exist i > j ≥ 0 such
that

(i) µi < µ+(a, b, d1, d2) < µi+1 and µj < µ−(a, b, d1, d2) < µj+1;
(ii)

∑i
k=j+1 ek is odd.

Then (2) has at least one non-constant solution.
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Proof. The proof uses some topological degree arguments (see [2, 3]). By
Theorem 3.6(i) we can fix D > d1 such that

(a) system (2) with diffusion coefficients D and d2 has no non-constant solutions;
(b) H(a, b, D, d2, µ) > 0 for all µ ≥ 0.

Further, by Proposition 3.4 one can find C1, C2 > 0 depending on a, b, d1, d2 such
that for any d ≥ d1, any solution (u, v) of (2) with diffusion coefficients d and d2

satisfies

C1 < u, v < C2 in Ω.

Set

M = {(u, v) ∈ C(Ω) × C(Ω) : C1 < u, v < C2 in Ω},
and define

Ψ : [0, 1] ×M → C(Ω) × C(Ω),

by

Ψ(t,w) = (−∆ + I)−1




u +
(

1 − t

D
+

t

d1

)
(a − (b + 1)u + f(u)v)

v +
1
d2

(bu − f(u)v)


 .

It is easy to see that solving (2) is equivalent to find a fixed point of Ψ(1, ·) in M.
Further, from the definition of M and Proposition 3.4, we have that Ψ(t, ·) has no
fixed points in ∂M for all 0 ≤ t ≤ 1. Therefore, the Leray–Schauder topological
degree deg(I− Ψ(t, ·),M, 0) is well defined.

Using (35) we have I − Ψ(1, ·) = F . Thus, if (2) has no other solutions except
the constant one w0, then by (36) and (38) we have

deg(I − Ψ(1, ·),M, 0) = index(F ,w0) = (−1)
Pi

k=j+1 e(µk) = −1. (40)

On the other hand, from the invariance of the Leray–Schauder degree at the homo-
topy we deduce

deg(I − Ψ(1, ·),M, 0) = deg(I − Ψ(0, ·),M, 0). (41)

Remark that by our choice of D, we have that w0 is the only fixed point of Ψ(0, ·).
Furthermore by (b) above we have

deg(I − Ψ(0, ·),M, 0) = index(I − Ψ(·, 0),w0) = 1. (42)

Now, from (40)–(42) we reach a contradiction. Therefore, there exists a non-
constant solution of (2). This ends the proof.

Corollary 3.9. Let a, b, d2 > 0 be fixed. Assume that

abf ′(a) > (b + 1)f(a) (43)

and all the eigenvalues µi have odd multiplicity. Then, there exists a sequence
of intervals {(kn, Kn)} with 0 < kn < Kn < kn−1 → 0 (as n → ∞) such
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that the steady-state system (2) has at least one non-constant solution for all
d1 ∈ ⋃n≥1(kn, Kn).

Proof. In view of (43), condition (39) holds for small values of d1 > 0. Also for
a, b, d2 > 0 fixed we have

µ−(a, b, d1, d2) → f(a)2

d2(abf ′(a) − (b + 1)f(a))
as d1 → 0.

µ+(a, b, d1, d2) → ∞ as d1 → 0.

Therefore we can find a sequence of intervals {(kn, Kn)}n such that∑
i≥0,

µ−(a,b,d1,d2)<µi<µ+(a,b,d1,d2)

e(µi) is odd (44)

for all d1 ∈ ⋃n≥1(kn, Kn). Therefore, conditions (i) and (ii) in Theorem 3.8 are
fulfilled.

Corollary 3.10. Let a, b, d1 > 0 be fixed. Assume that (43) holds and∑
i≥0,

0<µi<
abf′(a)−(b+1)f(a)

d1f(a)

e(µi) is odd. (45)

Then there exists D > 0 such that the steady-state system (2) has at least one
non-constant solution for any d2 > D.

Proof. By virtue of (43), for any d2 > 0 large enough condition (39) holds. Also
for any a, b, d1 fixed we have

0 < µ−(a, b, d1, d2) < µ+(a, b, d1, d2) <
abf ′(a) − (b + 1)f(a)

d1f(a)

and

µ−(a, b, d1, d2) → 0, µ+(a, b, d1, d2) → abf ′(a) − (b + 1)f(a)
d1f(a)

as d2 → ∞.

Therefore, for d2 > 0 large, condition (45) implies (i) and (ii) in Theorem 3.8. This
concludes the proof.

Corollary 3.11. Let a, d1, d2 > 0 be fixed. Assume that af ′(a) > f(a) and all
the eigenvalues µi have odd multiplicity. Then, there exists a sequence of intervals
{(bn, Bn)} with 0 < bn < Bn < bn+1 → ∞ (as n → ∞) such that the steady-state
system (2) has at least one non-constant solution for all b ∈ ∪n≥1(bn, Bn).

Proof. We proceed similarly. Since af ′(a) > f(a), for large values of b condition
(39) is fulfilled. Also for a, d1, d2 > 0 fixed we have

µ−(a, b, d1, d2) → 0, µ+(a, b, d1, d2) → ∞ as b → ∞.
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Hence, we can find a sequence of non-overlapping intervals {(bn, Bn)} such that
bn → ∞ as n → ∞ and (44) holds for all b ∈ ⋃n≥1(bn, Bn).

If f(s) = sm, m > 1, then condition (43) is independent of a. We obtain

Corollary 3.12. Let f(s) = sm, m > 1. Assume that b(m − 1) > 1 and∑
i≥0,

0<µi<(b(m−1)−1)/d1

e(µi) is odd. (46)

Then there exists A > 0 such that the steady-state system (2) has at least one
non-constant solution for any 0 < a < A.

Proof. It is easy to see that (39) holds for small values of a > 0. As before

0 < µ−(a, b, d1, d2) < µ+(a, b, d1, d2) <
b(m − 1) − 1

d1

and

µ−(a, b, d1, d2) → 0 , µ+(a, b, d1, d2) → b(m − 1) − 1
d1

as a → 0.

Therefore, for a > 0 small, condition (46) implies (i) and (ii) in Theorem 3.8. This
ends the proof.
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