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208 G. A. Afrouzi et al.

1 Introduction

In this paper, we study the following nonlocal elliptic system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−M1

(∫

�

1

p(x)
|�u|p(x)dx

)

�
(
|�u|p(x)−2�u

)
= Fu(x, u, v) in �,

−M2

(∫

�

1

q(x)
|�v|q(x)dx

)

�
(
|�v|q(x)−2�v

)
= Fv(x, u, v) in �,

u = v = �u = �v = 0 on ∂�,

(1.1)

where � is a bounded domain in R
N with smooth boundary ∂�, p, q ∈ C(�), p, q > 1 in

�, and M1, M2 are continuous functions. The function F satisfies Carathéodory conditions
and is of class C1 in u, v ∈ R. The functions Fu , Fv represent source forces, while M1, M2

are Kirchhoff dissipative terms.
For simplicity reasons, in the present paper we reduce to the case where M1 = M2 =: M .

Notice that the results we establish in what follows remain valid for M1 �= M2 by adding
some slight changes.

Boundary value problems like (1.1) model several physical and biological systems where
u and v describe a process depending on the average of itself, as for example, population
densities. We refer the reader, for instance, to Alves and Figueiredo [1], Autuori and Pucci
[5–7], Autuori et al. [8], Molica Bisci and Rădulescu [22], Molica Bisci et al. [23], Rădulescu
[25], Rădulescu and Repovš [26], and Vasconcellos [27].

Problem (1.1) is called a nonlocal problem because of the presence of the term M , which
implies that the equation in (1.1) is no longer a pointwise identity. This provokes some
mathematical difficulties which make the study of such a problem particularly interesting.
Nonlocal differential equations are also called Kirchhoff-type equations because Kirchhoff
[17] has investigated an equation of the form

ρ
∂2u

∂t2
−

(
ρ0

h
+ E

2L

∫ L

0

∣
∣
∣
∣
∂u

∂x

∣
∣
∣
∣

2

dx

)
∂2u

∂x2
= 0, (1.2)

where E is the Young modulus of the material, ρ is the mass density, L is the length of
the string, h is the area of the cross-section, and ρ0 is the initial tension. Equation (1.2)
extends the classical D’Alembert’s wave equation, by considering the effect of the changing
in the length of the string during the vibration. A distinguished feature of Eq. (1.2) is that the

equation contains a nonlocal coefficient ρ0
h + E

2L

∫ L
0

∣
∣ ∂u
∂x

∣
∣2 dx , which depends on the average

1
2L

∫ L
0

∣
∣ ∂u
∂x

∣
∣2 dx , and hence the equation is no longer a pointwise identity.

We point out that the Kirchhoff model takes into account the length changes of the string
produced by transverse vibrations. We refer to Bernstein [10] and Pohozaev [24] as pioneer-
ing papers dedicated to Kirchhoff equations. However, Eq. (1.2) receivedmuch attention only
after the paper by Lions [21], where an abstract framework to the problem was proposed.
D’Ancona and Spagnolo [13] considered Kirchhoff’s equation as a quasi-linear hyperbolic
Cauchy problem that describes the transverse oscillations of a stretched string. For com-
pleteness we refer the reader to some recent interesting results obtained by Autuori and
Pucci in [5–7] studying Kirchhoff equations by using different approaches. We also recall
that nonhomogeneous p(x)-Kirchhoff operators have been used in the last decades to model
various phenomena, see [16,32] and the references therein. Indeed, recently, there has been an
increasing interest in studying systems involving somehow nonhomogeneous p(x)-Laplace
operators,motivated by the image restoration problem, by themodeling of electro-rheological
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Nonlocal fourth-order Kirchhoff systems 209

fluids (sometimes referred to as smart fluids), as well as the thermo-convective flows of non-
Newtonian fluids: details and further references can be found in [4].

The investigation of existence and multiplicity of solutions for problems with p(x)-
biharmonic operators has drawn the attentions of many authors, see [3,14,18,20] for some
recent work on this subject. Motivated by the above references, we establish the existence of
infinitely many low or high energy solutions for system (1.1).

Our paper is organized as follows. We first present some necessary preliminary results
on variable exponent Sobolev spaces. Next, we give the main results about the existence of
weak solutions. The final part of this paper is concerned with the existence of infinitely many
low or high energy solutions.

2 Functional setting

In this section, we recall some definitions and basic properties of the variable exponent
Lebesgue and Sobolev spaces L p(x)(�) and Wk,p(x)(�), where � is a bounded domain in
R
N . Denote

C+(�) = {h(x); h(x) ∈ C(�), h(x) > 1, for all x ∈ �}.
For any h ∈ C+(�), we define

h+ = max{h(x); x ∈ �}, h− = min{h(x); x ∈ �}.
For any p ∈ C+(�), we define the variable exponent Lebesgue space

L p(x)(�) =
{

u : � → R; u is a measurable real-valued function and

∫

�

|u(x)|p(x)dx < ∞
}

,

endowed with the Luxemburg norm

|u|p(x) = |u|L p(x)(�) = inf

{

μ > 0;
∫

�

∣
∣
∣
∣
u(x)

μ

∣
∣
∣
∣

p(x)

dx ≤ 1

}

.

Then (L p(x)(�), | · |p(x)) is a Banach space, cf. [19].

Proposition 2.1 (Fan and Zhao [15]) The space (L p(x)(�), | · |p(x)) is separable, uniformly
convex, reflexive and its conjugate space is Lq(x)(�) where q(x) is the conjugate function
of p(x), that is,

1

p(x)
+ 1

q(x)
= 1 for all x ∈ �.

For u ∈ L p(x)(�) and v ∈ Lq(x)(�), we have
∣
∣
∣
∣

∫

�

uvdx

∣
∣
∣
∣ ≤

(
1

p− + 1

q−

)

|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

The Sobolev space with variable exponent Wk,p(x)(�) is defined as

Wk,p(x)(�) = {u ∈ L p(x)(�) : Dαu ∈ L p(x)(�), |α| ≤ k},
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210 G. A. Afrouzi et al.

where Dαu = ∂ |α|
∂x

α1
1 ∂x

α2
2 ...∂x

αN
N

u, with α = (α1, . . . , αN ) is a multi-index and |α| = ∑N
i=1 αi .

The space Wk,p(x)(�) equipped with the norm

‖u‖k,p(x) =
∑

|α|≤k

|Dαu|p(x),

becomes a separable and reflexive Banach space. For more details, we refer the reader to
[15,29]. Denote for x ∈ � and k ≥ 1,

p∗(x) =
{

Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N,

p∗
k (x) =

{
Np(x)

N−kp(x) if kp(x) < N,

+∞ if kp(x) ≥ N.

Proposition 2.2 (Fan and Zhao [15]) Let p, r ∈ C+(�) such that r(x) ≤ p∗
k (x) for all

x ∈ �. Then there is a continuous embedding

Wk,p(x)(�) ↪→ Lr(x)(�).

If we replace ≤ with <, the embedding is compact.

We denote by Wk,p(x)
0 (�) the closure of C∞

0 (�) in Wk,p(x)(�). Then the function space
(
W 2,p(x)(�) ∩ W 1,p(x)

0 (�), ‖u‖p(x)

)
is a separable and reflexive Banach space, where

‖u‖p(x) = inf

{

μ > 0 :
∫

�

∣
∣
∣
∣
�u(x)

μ

∣
∣
∣
∣

p(x)

dx ≤ 1

}

.

Remark 2.3 According to [30], the norm ‖ · ‖2,p(x) is equivalent to the norm |� · |p(x) in the
space W 2,p(x)(�) ∩ W 1,p(x)

0 (�). Consequently, the norms ‖ · ‖2,p(x), ‖ · ‖p(x) and |� · |p(x)
are equivalent.

Consider the functional

φ(u) =
∫

�

|�u|p(x) dx .

Then we have the following properties (see for example [3, Proposition 3.2]):
if u ∈ W 2,p(x)(�) ∩ W 1,p(x)

0 (�), then

‖u‖p(x) < 1 (= 1; > 1) ⇔ φ(u) < 1 (= 1; > 1); (2.1)

‖u‖p(x) > 1 ⇒ ‖u‖p−
p(x) ≤ φ(u) ≤ ‖u‖p+

p(x); (2.2)

‖u‖p(x) < 1 ⇒ ‖u‖p+
p(x) ≤ φ(u) ≤ ‖u‖p−

p(x); (2.3)

‖u‖p(x) → 0 (→ ∞) ⇔ φ(u) → 0 (→ ∞). (2.4)

Note that the weak solutions of problem (1.1) are considered in the generalized Sobolev
space

X =
(
W 2,p(x)(�) ∩ W 1,p(x)

0 (�)
)

×
(
W 2,q(x)(�) ∩ W 1,q(x)

0 (�)
)
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Nonlocal fourth-order Kirchhoff systems 211

equipped with the norm

‖(u, v)‖ = max{‖u‖p(x), ‖v‖q(x)}.
We denote by (un, vn) ⇀ (u, v) and (un, vn) → (u, v) the weak convergence and strong
convergence of (un, vn) to (u, v) in X , respectively, denote by ci the positive constants. The
dual space X is denoted by X∗ and ‖ · ‖∗ stands for its norm. Therefore

‖J ′(u, v)‖∗ = ‖D1 J (u, v)‖∗,p(x) + ‖D2 J (u, v)‖∗,q(x),

where ‖ ·‖∗,p(x) (respectively ‖ ·‖∗,q(x)) is the norm of (W 2,p(x)(�)∩W 1,p(x)(�))∗ (respec-
tively (W 2,q(x)(�) ∩ W 1,q(x)(�))∗).

Set

I1(u) =
∫

�

1

p(x)
|�u|p(x) dx,

I2(v) =
∫

�

1

q(x)
|�v|q(x) dx,

I (u, v) = I1(u) + I2(v),

F(u, v) =
∫

�

F(x, u, v) dx .

Then

I ′(u, v)(ϕ, ψ) = D1 I (u, v)(ϕ) + D2 I (u, v)(ψ),

F ′(u, v)(ϕ, ψ) = D1F(u, v)(ϕ) + D2F(u, v)(ψ),

where

D1 I (u, v)(ϕ) =
∫

�

|�u|p(x)−2�u�ϕ dx = I ′
1(u)(ϕ),

D2 I (u, v)(ψ) =
∫

�

|�v|q(x)−2�v�ψ dx = I ′
2(v)(ψ),

D1F(u, v)(ϕ) =
∫

�

∂F

∂u
(x, u, v)ϕ dx,

D2F(u, v)(ψ) =
∫

�

∂F

∂v
(x, u, v)ψ dx .

The Euler–Lagrange functional associated to problem (1.1) is given by

J (u, v) = M̂

(∫

�

1

p(x)
|�u|p(x) dx

)

+ M̂

(∫

�

1

q(x)
|�v|q(x) dx

)

−
∫

�

F(x, u, v) dx,

where M̂(t) = ∫ t
0 M(τ )dτ. Then J ∈ C1(X,R) and

J ′(u, v)(ϕ, ψ) = D1 J (u, v)(ϕ) + D2 J (u, v)(ψ), (2.5)

where

D1 J (u, v)(ϕ) = M

(∫

�

1

p(x)
|�u|p(x) dx

) ∫

�

|�u|p(x)−2�u�ϕ dx − D1F(u, v)(ϕ),

D2 J (u, v)(ψ) = M

(∫

�

1

q(x)
|�v|q(x) dx

) ∫

�

|�v|q(x)−2�v�ψ dx − D2F(u, v)(ψ).

Hereafter, F(x, s, t) and M(t) are always supposed to verify the following assumption:
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212 G. A. Afrouzi et al.

(M1) There exist m2 ≥ m1 > 0 and β ≥ α > 1 such that for all t ∈ R
+, m1tα−1 ≤

M(t) ≤ m2tβ−1.
(M2) For all t ∈ R

+, M̂(t) ≥ M(t)t .
(F1) For all (x, s, t) ∈ � × R

2, we assume

|F(x, s, t)| ≤ c1
(
1 + |s|σ1(x) + |t |σ2(x) + |s|σ3(x)|t |σ4(x)

)
,

where c1 is a positive constant, (σ1(x), σ2(x), σ3(x), σ4(x)) ∈ C+(�)4 such that

σ1(x) < p∗
2(x), σ2(x) < q∗

2 (x),
2σ3(x)

p∗
2(x)

+ 2σ4(x)

q∗
2 (x)

< 1 in �.

(F2) There are M > 0, θ1 > βp+, θ2 > βq+ such that for all x ∈ � and all (s, t) ∈ R
2

with |s|θ1 + |t |θ2 ≥ 2M, we have

0 < F(x, s, t) ≤ s

θ1

∂F

∂s
(x, s, t) + t

θ2

∂F

∂t
(x, s, t),

where β comes from (M1) above.
(F3) F(x, s, t) = o(|s|αp+ + |t |αq+

) as (s, t) → (0, 0) uniformly with respect to x ∈ �,
where α comes from (M1).

(F4) F(x,−s,−t) = −F(x, s, t) for all x ∈ � and (s, t) ∈ R
2.

(F5) We have

F(x, s, t) ≥ c2(|s|γ1(x) + |t |γ2(x)) as (s, t) → (0, 0),

where (γ1(x), γ2(x)) ∈ (C+(�))2 such that γ1(x) < p∗
2(x), γ2(x) < q∗

2 (x), p+ <

γ −
1 ≤ γ +

1 < βp−, q+ < γ −
2 ≤ γ +

2 < βq− for a.e. x ∈ �, where β comes from
(M1).

Lemma 2.4 (El Amrouss et al. [3]) We have the following assertions:

(1) I ′
1 is a bounded homeomorphism and strictly monotone operator.

(2) I ′
1 is a mapping of type (S+), namely

un ⇀ u and lim sup
n→+∞

I ′
1(un)(un − u) ≤ 0, implies un → u.

Since X is a reflexive and separable Banach space, then X∗ is too. There exist (see [31])
{e j } ⊂ X and {e∗

j } ⊂ X∗ such that

X = span{e j : j = 1, 2, . . .}, X∗ = span{e∗
j : j = 1, 2, . . .},

and

〈ei , e∗
j 〉 =

{
1 if i = j,
0 if i �= j,

where 〈·, ·〉 denote the duality product between X and X∗. We define

X j = span{e j }, Yk =
k⊕

j=1

X j , Zk =
∞⊕

j=k

X j .

A central role in our arguments will be played by the fountain theorem, which is due to
Bartsch [9]. This result is nicely presented in Willem [28] by using the quantitative defor-
mation lemma. We also point out that the dual version of the fountain theorem is due to
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Nonlocal fourth-order Kirchhoff systems 213

Bartsch andWillem, see [28]. Both the fountain theorem and its dual form are effective tools
for studying the existence of infinitely many large or small energy solutions. It should be
noted that the Palais–Smale condition plays an important role for these theorems and their
applications.

Lemma 2.5 (Fountain Theorem, see [28]). Assume

(A1) X is a Banach space, J ∈ C1(X,R) is an even functional.
Suppose that for every k ∈ N, there exist ρk > rk > 0 such that

(A2) inf{J (u) : u ∈ Zk, ‖u‖ = rk} → +∞ as k → +∞.
(A3) max{J (u) : u ∈ Yk, ‖u‖ = ρk} ≤ 0.
(A4) J satisfies the Palais–Smale condition for every c > 0.

Then J has an unbounded sequence of critical points.

Lemma 2.6 (Dual Fountain Theorem, see [28]). Assume (A1) is satisfied and there is k0 > 0
so that, for each k ≥ k0, there exist ρk > rk > 0 such that

(B1) ak = inf{J (u) : u ∈ Zk, ‖u‖ = ρk} ≥ 0.
(B2) bk = max{J (u) : u ∈ Yk, ‖u‖ = rk} < 0.
(B3) dk = inf{J (u) : u ∈ Zk, ‖u‖ ≤ ρk} → 0 as k → +∞.
(B4) J satisfies the (PS)∗c condition for every c ∈ [dk0 , 0).
Then J has a sequence of negative critical values converging to 0.

For every a > 1, u, v ∈ La(�), we define

|(u, v)|a := max{|u|a, |v|a}.
Set

a := max
x∈�

{σ1(x), σ2(x), 2σ3(x), 2σ4(x)}, (2.6)

b := min
x∈�

{σ1(x), σ2(x), 2σ3(x), 2σ4(x)}. (2.7)

Then we have the following result.

Lemma 2.7 [14] Denote

βk = sup{|(u, v)|a; ‖(u, v)‖ = 1, (u, v) ∈ Zk}, (2.8)

θk = sup{|(u, v)|b; ‖(u, v)‖ = 1, (u, v) ∈ Zk}. (2.9)

Then limk→∞ βk = limk→∞ θk = 0.

We conclude this preliminary section by recalling the definition of the localized Palais–
Smale condition, which was introduced by Brezis and Nirenberg [12].

Definition 2.8 We say that J satisfies the (PS)∗c condition (with respect to (Yn)), if any
sequence {un j } ⊂ X such that n j → +∞, un j ∈ Yn j , J (un j ) → c and (J |Yn j )′(un j ) → 0,
contain a subsequence converging to a critical point of J .
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214 G. A. Afrouzi et al.

3 Existence results in a non-symmetric setting

In this section we establish two existence results under general hypotheses on the potential
F .

Theorem 3.1 Assume that M satisfies (M1) and

|F(x, s, t)| ≤ c3(1 + |s|α1 + |t |β1),
where α1, β1 are two constants with 1 ≤ α1 < min{αp−, αq−}, 1 ≤ β1 < min{αp−, αq−}
[α comes from (M1)]. Then problem (1.1) has a nontrivial weak solution.

Proof In view of (M1), the functional J is weakly lower semi-continuous. In the following,
we will prove that J is coercive, that is, J (u, v) → +∞ as ‖(u, v)‖ → +∞. From (M1) we
have M̂(t) ≥ m1

α
tα . For (u, v) ∈ X such that ‖(u, v)‖ → +∞, we obtain

J (u, v) = M̂

(∫

�

1

p(x)
|�u|p(x) dx

)

+ M̂

(∫

�

1

q(x)
|�v|q(x) dx

)

−
∫

�

F(x, u, v)dx

≥ m1

α

(∫

�

1

p(x)
|�u|p(x) dx

)α

+ m1

α

(∫

�

1

q(x)
|�v|q(x) dx

)α

− c3

∫

�

|u|α1 dx

−c3

∫

�

|v|β1dx − c3|�|

≥ m1

α(p+)α
‖u‖αp−

p(x) + m1

α(q+)α
‖v‖αq−

q(x) − c4‖u‖α1
p(x) − c5‖v‖β1

q(x) − c3|�|,
where |�| denote the measure of �. Without loss of generality, we may assume ‖u‖p(x) ≥
‖v‖q(x).

If ‖v‖q(x) > 1 we have

J (u, v) ≥ m1

α(p+)α
‖u‖αp−

p(x) + m1

α(q+)α
‖v‖αq−

q(x) − c4‖u‖α1
p(x) − c5‖v‖β1

q(x) − c3|�|.
If ‖v‖q(x) < 1 we have

J (u, v) ≥ m1

α(p+)α
‖u‖αp−

p(x) − c4‖u‖α1
p(x) − c6.

By the assumptions on α1 and β1, we deduce the coercivity of J and hence J attains its
minimum on X , which yields a solution of problem (1.1). ��
Lemma 3.2 Let (un, vn) be a Palais–Smale sequence for the Euler–Lagrange functional J.
If conditions (M1), (M2), (F2) are satisfied, then (un, vn) is bounded.

Proof Let (un, vn) be a Palais–Smale sequence for the functional J . This means that
J (un, vn) is bounded and ‖J ′(un, vn)‖∗ → 0 as n → +∞. Thus, there is a positive constant
c7 such that

c7 ≥ J (un, vn)

= M̂

(∫

�

1

p(x)
|�un |p(x) dx

)

+ M̂

(∫

�

1

q(x)
|�vn |q(x) dx

)

−
∫

�

F(x, un, vn) dx

≥ M

(∫

�

1

p(x)
|�un |p(x) dx

) ∫

�

1

p(x)
|�un |p(x) dx −

∫

�

un
θ1

∂F

∂u
(x, un, vn) dx

+M

(∫

�

1

q(x)
|�vn |q(x) dx

)∫

�

1

q(x)
|�vn |p(x) dx −

∫

�

vn

θ2

∂F

∂v
(x, un, vn) dx − c8,
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Nonlocal fourth-order Kirchhoff systems 215

where c8 is some positive constant. Therefore

c7 ≥ J (un, vn)

≥
(

1

p+ − 1

θ1

)

M

(∫

�

1

p(x)
|�un |p(x) dx

) ∫

�

|�un |p(x) dx − 1

θ1
D1 J (un, vn)(un)

+
(

1

q+ − 1

θ2

)

M

(∫

�

1

q(x)
|�vn |q(x)dx

) ∫

�

|�vn |q(x) dx − 1

θ2
D2 J (un, vn)(vn) − c8

≥ m1

(p+)α−1 (
1

p+ − 1

θ1
)

(∫

�

|�un |p(x) dx
)α

+ m1

(q+)α−1 (
1

q+ − 1

θ2
)

(∫

�

|�vn |q(x) dx

)α

− 1

θ1
‖D1 J (un, vn)‖∗,p(x)‖un‖ − 1

θ2
‖D2 J (un, vn)‖∗,q(x)‖vn‖ − c8.

Now, we suppose that the sequence (un, vn) is not bounded. Without loss of generality, we
may assume ‖un‖p(x) ≥ ‖vn‖q(x).

Therefore, for n large enough that ‖un‖p(x) > 1, we obtain

c7 ≥ m1

(p+)α−1

(
1

p+ − 1

θ1

)

‖un‖αp−
p(x)

−
(
1

θ1
‖D1 J (un, vn)‖∗,p + 1

θ2
‖D2 J (un, vn)‖∗,q

)

‖un‖p(x).

But this cannot hold true since αp− > p− > 1. Hence, (un, vn) is bounded. ��

Lemma 3.3 Let (un, vn) be a bounded Palais–Smale sequence for the Euler–Lagrange func-
tional J. If conditions (M1), (M2), (F1), (F2) are satisfied, then (un, vn) contains a convergent
subsequence.

Proof Let (un, vn) be a bounded Palais–Smale sequence for J . Then there is a subsequence
still denoted by (un, vn)which converges weakly in X . Without loss of generality, we assume
that (un, vn) ⇀ (u, v), then J ′(un, vn)(un − u, vn − v) → 0. We obtain

J ′(un, vn)(un − u, vn − v)

= M

(∫

�

1

p(x)
|�un |p(x) dx

)∫

�

|�un |p(x)−2�un(�un − �u) dx

+ M

(∫

�

1

q(x)
|�vn |q(x)dx

) ∫

�

|�vn |q(x)−2�vn(�vn − �v) dx

−
∫

�

∂F

∂u
(x, un, vn)(un − u) dx −

∫

�

∂F

∂v
(x, un, vn)(vn − v) dx → 0.

On the other hand, let σ̃1(x) and σ̃2(x) be two continuous and positive functions on � such
that for all x ∈ �

2σ3(x) + σ̃1(x)

p∗
2(x)

+ 2σ4(x) + σ̃2(x)

q∗
2 (x)

= 1.

Using the Young inequality, we obtain

|s|σ3(x)|t |σ4(x) ≤ |s|
σ3(x)p∗2 (x)

2σ3(x)+σ̃1(x) + |t |
σ4(x)q∗

2 (x)

2σ4(x)+σ̃2(x) = |s|σ5(x) + |t |σ6(x),
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where σ5(x) := σ3(x)p∗
2 (x)

2σ3(x)+σ̃1(x)
< p∗

2(x) and σ6(x) := σ4(x)q∗
2 (x)

2σ4(x)+σ̃2(x)
< q∗

2 (x). From (F1), we

obtain σ6(x), σ7(x) ∈ C+(�) with σ6(x) < p∗
2(x), σ7(x) < q∗

2 (x) in � such that

|F(x, s, t)| ≤ c9(1 + |s|σ6(x) + |t |σ7(x)).
From this inequality, Propositions (2.1) and (2.2), we deduce that

∫

�

∂F

∂u
(x, un, vn)(un − u) dx → 0

and
∫

�

∂F

∂v
(x, un, vn)(vn − v) dx → 0.

Therefore

M

(∫

�

1

p(x)
|�un |p(x)dx

) ∫

�

|�un |p(x)−2�un(�un − �u) dx → 0,

M

(∫

�

1

q(x)
|�vn |q(x)dx

)∫

�

|�vn |q(x)−2�vn(�vn − �v) dx → 0.

Since (un, vn) is bounded in X , passing to a subsequence, if necessary, we may assume that
when n → +∞

∫

�

1

p(x)
|�un |p(x) dx → t0 ≥ 0

and
∫

�

1

q(x)
|�vn |p(x) dx → t1 ≥ 0.

If t0 = 0 = t1 then (un, vn) converges strongly to (0, 0) and the proof is finished. Otherwise,
since the function M is continuous, when n → +∞ we find

M

(∫

�

1

p(x)
|�un |p(x) dx

)

→ M(t0)

and

M

(∫

�

1

q(x)
|�vn |p(x) dx

)

→ M(t1).

Thus, by (M1), for sufficiently large n, we have

0 < c9 ≤ M

(∫

�

1

p(x)
|�un |p(x) dx

)

≤ c10, (3.1)

0 < c11 ≤ M

(∫

�

1

q(x)
|�vn |q(x) dx

)

≤ c12. (3.2)

From (3.1) and (3.2), we deduce that
∫

�

|�un |p(x)−2�un(�un − �u) dx → 0,
∫

�

|�vn |q(x)−2�vn(�vn − �v) dx → 0.
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UsingLemma2.4, we have un → u inW 2,p(x)(�)∩W 1,p(x)
0 (�) and vn → v inW 2,q(x)(�)∩

W 1,q(x)
0 (�), which implies that (un, vn) → (u, v) in X . ��

Theorem 3.4 Assume that M satisfies (M1), (M2) and F verifies (F1) − (F3) and

(F6) σ−
1 , 2σ−

3 > αp+ and σ−
2 , 2σ−

4 > αq+.

Then problem (1.1) has a nontrivial weak solution.

Proof Let us show that J satisfies the conditions of mountain pass theorem (see [2,28]). As
pointed out by Brezis and Browder [11], the mountain pass theorem “extends ideas already
present in Poincaré and Birkhoff”.

By Lemmas (3.2) and (3.3), J satisfies Palais–Smale condition in X .
For ‖(u, v)‖ < 1, using theYoung inequality, the fact 2σ3(x)p∗

2 (x)
+ 2σ4(x)

q∗
2 (x) < 1 in�, Proposition

2.2 and (2.3), we obtain
∫

�

|u|σ3(x)|v|σ4(x) dx ≤ 1

2

∫

�

|u|2σ3(x) dx + 1

2

∫

�

|v|2σ4(x) dx ≤ c13

(

‖u‖2σ
−
3

p(x) + ‖v‖2σ
−
4

q(x)

)

.

Since αp+ < p∗
2(x) and αq+ < q∗

2 (x), we deduce W 2,p(x)(�) ∩ W 1,p(x)
0 (�) ↪→ Lαp+

(�)

and W 2,q(x)(�) ∩ W 1,q(x)
0 (�) ↪→ Lαq+

(�). Then there exist c14, c15 > 0 such that

|u|αp+ ≤ c14‖u‖p(x) for u ∈ W 2,p(x)(�) ∩ W 1,p(x)
0 (�),

|v|αq+ ≤ c15‖v‖q(x) for v ∈ W 2,q(x)(�) ∩ W 1,q(x)
0 (�),

where | · |r denote the norm on Lr (�). Let ε > 0 be small enough such that εcαp+
14 ≤ m1

2α(p+)α

and εcαq+
15 ≤ m1

2α(q+)α
. By the assumptions (F1) and (F3), we have

|F(x, s, t)| ≤ ε(|s|αp+ + |t |αq+
) + c(ε)(|s|σ1(x) + |t |σ2(x) + |s|σ3(x)|t |σ4(x))

for all (x, s, t) ∈ � ×R
2. In view of (M1) and the above inequality, for ‖(u, v)‖ sufficiently

small, noting Proposition 2.2, we have

J (u, v) ≥ m1

α

(∫

�

1

p(x)
|�u|p(x) dx

)α

+ m1

α

(∫

�

1

q(x)
|�v|q(x) dx

)α

− ε

∫

�

|u|αp+
dx − ε

∫

�

|v|αq+
dx

− c(ε)
∫

�

(
|u|σ1(x) + |v|σ2(x) + |u|σ3(x)|v|σ4(x)

)
dx

≥ m1

α(p+)α
‖u‖αp+

p(x) − εcαp+
14 ‖u‖αp+

p(x) + m1

α(q+)α
‖v‖αq+

q(x) − εcαq+
15 ‖v‖αq+

q(x)

− c(ε)

(

‖u‖σ−
1
p(x) + ‖v‖σ−

2
q(x) + c13‖u‖2σ

−
3

p(x) + c13‖v‖2σ
−
4

q(x)

)

≥ m1

2α(p+)α
‖u‖αp+

p(x) + m1

2α(q+)α
‖v‖αq+

q(x) − c(ε)

(

‖u‖σ−
1
p(x) + ‖v‖σ−

2
q(x) + c13‖u‖2σ

−
3

p(x)

+ c13‖v‖2σ
−
4

q(x)

)

.
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Since σ−
1 , 2σ−

3 > αp+ and σ−
2 , 2σ−

4 > αq+, there exist r > 0 and δ > 0 such that
J (u, v) ≥ δ > 0 for every (u, v) ∈ X satisfying ‖(u, v)‖ = r.

On the other hand, our assumption (F2) implies the following assertion: for every x ∈ �,
s, t ∈ R, the inequality

F(x, s, t) ≥ c16(|s|θ1 + |t |θ2 − 1) (3.3)

holds, see [14]. For (̃u, ṽ) ∈ X\{(0, 0)} and t > 1, by (M1) we have

J (t ũ, t ṽ) = M̂

( ∫

�

1

p(x)

(
|t�ũ|p(x) dx

)
+ M̂

(∫

�

1

q(x)
|t�ṽ|q(x) dx

)

−
∫

�

F(x, t ũ, t ṽ) dx

≤ m2

β

(∫

�

1

p(x)
|t�ũ|p(x) dx

)β

− c16

∫

�

|t ũ|θ1dx

+ m2

β

(∫

�

1

q(x)
|t�ṽ|q(x) dx

)β

− c16

∫

�

|t ṽ|θ2 dx − c17

≤ m2

β(p−)β
tβp

+
(∫

�

|�ũ|p(x) dx
)β

− c16t
θ1

∫

�

|̃u|θ1 dx

+ m2

β(q−)β
tβq

+
(∫

�

|�ṽ|q(x) dx

)β

− c16t
θ2

∫

�

|̃v|θ2 dx − c17

→ −∞, as t → +∞,

due to θ1 > βp+ and θ2 > βq+. Since J (0, 0) = 0, considering Lemmas 3.2 and 3.3, we
conclude that J satisfies the conditions of mountain pass lemma. So J admits at least one
nontrivial critical point. ��

4 Infinitely many low or high energy solutions

In this sectionwe establish twomultiplicity results, provided that the potential F has a suitable
symmetry. The first property shows the existence of a sequence of high energy solutionswhile
the second result deals with the existence of a sequence of solutions with negative energies
that converge to zero (that is, small energy solutions).

Theorem 4.1 Assume that M satisfies (M1), (M2) and F fulfills hypotheses (F1), (F2), (F4),
and (F6). Then problem (1.1) has a sequence of weak solutions (±uk) such that J (±uk) →
+∞ as k → ∞.

Theorem 4.2 Assume that M satisfies (M1), (M2) and F fulfills hypotheses (F1), (F2)−(F5),
and

(F7) αp+ > σ−
1 , 2σ−

3 and αq+ > σ−
2 , 2σ−

4 .

Thenproblem (1.1)hasa sequenceofweak solutions (±vk) such that J (±vk) < 0, J (±vk) →
0 as k → ∞.

Proof of Theorem 4.1 According to (F4) and Lemmas 3.2 and 3.3, J is an even functional
and satisfies the Palais–Smale condition. We prove that if k is large enough, then there exist
ρk > rk > 0 such that (A2) and (A3) are fulfilled. Thus, the assertion of conclusion can be
obtained from fountain theorem.
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(A2) : For any (uk, vk) ∈ Zk , ‖uk‖p(x) ≥ 1, ‖vk‖q(x) ≥ 1 and ‖(uk, vk)‖ = rk (rk will be
specified below), we have

J (uk, vk) = M̂

(∫

�

1

p(x)
|�uk |p(x) dx

)

+ M̂

(∫

�

1

q(x)
|�vk |q(x) dx

)

−
∫

�

F(x, uk, vk) dx

≥ m1

α(p+)α

(∫

�

|�uk |p(x) dx
)α

+ m1

α(q+)α

(∫

�

|�vk |q(x) dx

)α

− c1

∫

�

(
1 + |uk |σ1(x) + |vk |σ2(x) + |uk |σ3(x)|vk |σ4(x)

)
dx

≥ m1

α(p+)α
‖uk‖αp−

p(x) + m1

α(q+)α
‖vk‖αq−

q(x) − c1|uk |σ1(ξ
k
1 )

σ1(x)
− c1|vk |σ2(ξ

k
2 )

σ2(x)

− c18|uk |2σ3(η
k
1)

2σ3(x)
− c18|vk |2σ4(η

k
2)

2σ4(x)
− c1|�|,

where ξ k1 , ξ k2 , ηk1, η
k
2 ∈ �. Therefore

J (uk, vk)

≥ m1

max{α(p+)α, α(q+)α}‖(uk, vk)‖
min{αp−,αq−} − c1|uk |σ1(ξ

k
1 )

a − c1|vk |σ2(ξ
k
2 )

a

− c18|uk |2σ3(η
k
1)

a − c18|vk |2σ4(η
k
2)

a − c1|�|
≥ m1

max{α(p+)α, α(q+)α}‖(uk, vk)‖
min{αp−,αq−} − c1 (βk‖(uk, vk)‖)σ1(ξ k1 )

− c1 (βk‖(uk, vk)‖)σ2(ξ k2 ) − c18 (βk‖(uk, vk)‖)2σ3(ηk1) − c18(βk‖(uk, vk)‖)2σ4(ηk2)
− c1|�|

≥ m1

max{α(p+)α, α(q+)α}‖(uk, vk)‖
min{αp−,αq−} − c19β

b
k ‖(uk, vk)‖a − c1|�|,

where a, b are defined in (2.6) and (2.7). At this stage, we fix rk as follows:

rk :=
(

m1

2c19 max{α(p+)α, α(q+)α}βb
k

) 1
a−min{αp−,αq−}

→ +∞ as k → +∞.

Consequently, if ‖(uk, vk)‖ = rk then

J (uk, vk) ≥ m1

2max{α(p+)α, α(q+)α}‖(uk, vk)‖
min{αp−,αq−} − c1|�| → +∞

as k → +∞.

(A3) : From (F2), we have F(x, s, t) ≥ c16(|s|θ1 + |t |θ2 − 1) for every x ∈ � and s, t ∈ R.
Therefore, for any (u, v) ∈ Yk with ‖(u, v)‖ = 1 and 1 < ρk = tk with tk → +∞, using
(M1) we have
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J (tku, tkv)

= M̂

(∫

�

1

p(x)
|�(tku)|p(x) dx

)

+ M̂

(∫

�

1

q(x)
|�(tkv)|q(x) dx

)

−
∫

�

F(x, tku, tkv) dx

≤ m2

β

(∫

�

1

p(x)
|�(tku)|p(x) dx

)β

+ m2

β

(∫

�

1

q(x)
|�(tkv)|q(x) dx

)β

− c16

∫

�

|tku|θ1 dx − c16

∫

�

|tkv|θ2 dx + c20

≤ m2

β(p−)β
tβp

+
k

(∫

�

|�u|p(x) dx
)β

− c16t
θ1
k

∫

�

|u|θ1 dx

+ m2

β(q−)β
tβq

+
k

(∫

�

|�v|q(x) dx

)β

− c16t
θ2
k

∫

�

|v|θ2 dx + c20.

By θ1 > βp+, θ2 > βq+ and dim Yk < ∞, we deduce that J (uk, vk) → −∞ as
‖(tku, tkv)‖ → +∞ for (u, v) ∈ Yk . The conclusion of Theorem 4.1 is reached by the
fountain theorem. ��
Proof of Theorem 4.2 From (F4), we know that J satisfies (A1), the assertion of conclusion
can be obtained from the dual fountain theorem.
(B1): For any (uk, vk) ∈ Zk , ‖uk‖p(x) < 1, ‖vk‖q(x) < 1 and ‖(uk, vv)‖ = ρk (ρk will be
specified below), we have

J (uk, vk)

≥ m1

α(p+)α
‖uk‖αp+

p(x) + m1

α(q+)α
‖vk‖αq+

q(x) − εcαp+
14 ‖uk‖αp+

p(x) − εcαq+
15 ‖vk‖αq+

q(x)

− c(ε)|uk |σ1(ξ
k
3 )

σ1(x)
− c(ε)|vk |σ2(ξ

k
4 )

σ2(x)
− c(ε)|uk |2σ3(η

k
3)

2σ3(x)
− c(ε)|vk |σ4(η

k
4)

2σ4(x)
,

where ξ k3 , ξ k4 , ηk3, η
k
4 ∈ �. Therefore

J (uk, vk)

≥ m1

max{α(p+)α, α(q+)α}‖(uk, vk)‖
max{αp+,αq+} − c(ε)|uk |σ1(ξ

k
3 )

b − c(ε)|vk |σ2(ξ
k
4 )

b

− c(ε)|uk |2σ3(η
k
3)

b − c(ε)|vk |σ4(η
k
4)

b

≥ m1

max{α(p+)α, α(q+)α}‖(uk, vk)‖
max{αp+,αq+} − c(ε)(θk‖(uk, vk)‖)σ1(ξ k3 )

− c(ε)(θk‖(uk, vk)‖)σ2(ξ k4 ) − c(ε)(θk‖(uk, vk)‖)2σ3(ηk3) − c(ε)(θk‖(uk, vk)‖)2σ4(ηk4)

≥ m1

max{α(p+)α, α(q+)α}‖(uk, vk)‖
max{αp+,αq+} − c21θ

b
k ‖(uk, vk)‖b. (4.1)

Choose ρk =
(
2c21 max{α(p+)α, α(q+)α}θbk m−1

1

) 1
max{αp+,αq+}−b . Then

J (uk, vk) ≥ m1

2max{α(p+)α, α(q+)α}ρ
max{αp+,αq+}
k

− m1

2max{α(p+)α, α(q+)α}ρ
max{αp+,αq+}
k = 0.
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Since αp+ > σ1(x), 2σ3(x) and αq+ > σ2(x), 2σ4(x), we have ρk → 0 as k → +∞.
(B2) : For (u, v) ∈ Yk , ‖(u, v)‖ = 1 and 0 < tk < ρk < 1, using (F1), (F5) we obtain

J (tku, tkv)

≤ m2

β

(∫

�

1

p(x)
|tk�u|p(x) dx

)β

+ m2

β

(∫

�

1

q(x)
|tk�v|q(x) dx

)β

− c2

∫

�

|tku|γ1(x) dx − c2

∫

�

|tkv|γ2(x) dx

≤ m2

β(p−)β
tβp

−
k

(∫

�

|�u|p(x) dx
)β

− c2t
γ +
1

k

∫

�

|u|γ1(x) dx

+ m2

β(q−)β
tβq

−
k

(∫

�

|�v|q(x) dx

)β

− c2t
γ +
2

k

∫

�

|u|γ2(x) dx .

Conditions γ +
1 < βp− and γ +

2 < βq− imply that there exists rk ∈ (0, ρk) such that
J (tku, tkv) < 0 when tk = rk . Hence, we deduce that

bk := max
(u,v)∈Yk , ‖(u,v)‖=rk

J (u, v) < 0.

(B3) : Because Yk ∩ Zk �= ∅ and rk < ρk , we have

dk = inf{J (u) : u ∈ Zk, ‖u‖ ≤ ρk} ≤ bk = max{J (u) : u ∈ Yk, ‖u‖ = rk} < 0.

From (4.1), for (u′, v′) ∈ Zk , ‖(u′, v′)‖ = 1, 0 ≤ t ≤ ρk and (u, v) = (tu′, tv′), we have

J (u, v) = J (tu′, tv′) ≥ m1

max{α(p+)α, α(q+)α} t
max{αp+,αq+} − c21t

bθbk ≥ −c21t
bθbk ,

hence, dk → 0, that is, (B3) is satisfied.
Finally, we verify the (PS)∗c condition. Suppose (un j , vn j ) ⊂ X such that n j → +∞,

(un j , vn j ) ∈ Yn j and (J |Yn j )′(un j , vn j ) → 0. Similar to the process in the proof of Lemma
3.2, we deduce the boundedness of ‖(un j , vn j )‖. Going if necessary to a subsequence, we

can assume (un j , vn j ) ⇀ (u, v) in X . As X = ∪n j Yn j , we can choose (u′
n j

, v′
n j

) such that
(u′

n j
, v′

n j
) → (u, v). Hence

lim
n j→+∞ J ′(un j , vn j )(un j − u, vn j − v)

= lim
n j→+∞ J ′(un j , vn j )(un j − u′

n j
, vn j − v′

n j
) + lim

n j→+∞ J ′(un j , vn j )(u
′
n j

− u, v′
n j

− v)

= lim
n j→+∞(J |Yn j )′(un j , vn j )(un j − u′

n j
, vn j − v′

n j
)

= 0.

Similar to the process of verifying the Palais–Smale condition in the proof of Lemma 3.3, we
conclude un j → u in W 2,p(x)(�) ∩ W 1,p(x)

0 (�), and vn j → v in W 2,q(x)(�) ∩ W 1,q(x)
0 (�),

which implies that (un j , vn j ) → (u, v) in X . Furthermore, we have J ′(un j , vn j ) → J ′(u, v).
Let us prove that J ′(u, v) = 0. Taking (ωk, ω

′
k) ∈ Yk , notice that when n j ≥ k we have

J ′(u, v)(ωk, ω
′
k) = (J ′(u, v) − J ′(un j , vn j ))(ωk, ω

′
k) + J ′(un j , vn j )(ωk, ω

′
k)

= (J ′(u, v) − J ′(un j , vn j ))(ωk, ω
′
k) + (J |Yn j )′(un j , vn j )(ωk, ω

′
k).
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Going to the limit we obtain

J ′(u, v)(ωk, ω
′
k) = 0, for all (ωk, ω

′
k) ∈ Yk,

so J ′(u, v) = 0, this show that J satisfies the (PS)∗c condition for every c ∈ R. The conclusion
of Theorem 4.2 is reached by the dual fountain theorem. ��
Acknowledgments V. Rădulescu acknowledges the support through Grant CNCS PCE-47/2011.
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22. Molica Bisci, G., Rădulescu, V.: Mountain pass solutions for nonlocal equations. Ann. Acad. Sci. Fenn.
Math. 39, 579–592 (2014)
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The goal of this erratum is to correct a mistake that appears in the assumption (M2) in the
original article. In the correct version, the hypothesis (M2) should be removed. In such a
case, we restate the following assumption:

(M1) There exist m2 ≥ m1 > 0 and α > 1 such that m1tα−1 ≤ M(t) ≤ m2tα−1, for all
t ∈ R

+.

We point out that the original assumption (M1) implies α1 = α2, so we rename constant
α. In conditions (F2) and (F5), we replace β by α.

The correct statement of Lemma 3.2 is the following.
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Lemma 3.2 Let (un, vn) be a Palais–Smale sequence for the Euler–Lagrange functional J.

Assume that conditions (M1), (F2) are satisfied and

m1θ1(p−)α−1 > αm2, m1θ2(q
−)α−1 > αm2. (0.1)

Then the sequence (un, vn) is bounded.

In the proof of Lemma 3.2, by hypotheses (0.1), (M1) and (F2), we can write for n large
enough

c7 ≥ J (un, vn) ≥ m1

α

(∫
�

1

p(x)
|�un |p(x) dx

)α

−
∫

�

un

θ1

∂ F

∂u
(x, un, vn) dx

+ m1

α

(∫
�

1

q(x)
|�vn |q(x) dx

)α

−
∫

�

vn

θ2

∂ F

∂v
(x, un, vn) dx − c8,

where c8 is a positive constant. Therefore

c7 ≥ J (un, vn)

≥ m1

α

(∫
�

1

p(x)
|�un |p(x) dx

)α

− m2

θ1

(∫
�

1

p(x)
|�un |p(x) dx

)α−1 ∫
�

|�un |p(x) dx

+ 1

θ1
D1 J (un, vn)(un)

+ m1

α

(∫
�

1

q(x)
|�vn |q(x)dx

)α

− m2

θ2

(∫
�

1

q(x)
|�vn |p(x) dx

)α−1 ∫
�

|�vn |p(x) dx

+ 1

θ2
D2 J (un, vn)(vn) − c8

≥
(

m1

α
− m2

θ1(p−)α−1

)(∫
�

|�un |p(x) dx

)α

+
(

m1

α
− m2

θ2(q−)α−1

) (∫
�

|�vn |q(x)dx

)α

− 1

θ1
‖D1 J (un, vn)‖∗,p(x)‖un‖ − 1

θ2
‖D2 J (un, vn)‖∗,q(x)‖vn‖ − c8.

Now, we suppose that the sequence (un, vn) is not bounded. Without loss of generality, we
may assume ‖un‖p(x) ≥ ‖vn‖q(x). Therefore, for n large enough so that ‖un‖p(x) > 1, we
obtain

c7 ≥
(

m1

α
− m2

θ1(p−)α−1

)
‖un‖αp−

p(x)

−
(
1

θ1
‖D1 J (un, vn)‖∗,p + 1

θ2
‖D2 J (un, vn)‖∗,q

)
‖un‖p(x).

But this cannot hold since αp− > p− > 1. Hence, (un, vn) is bounded.
Theorem 3.1 and Lemma 3.3 remain unchanged. However, Theorems 3.4, 4.1, 4.2 and

Lemmas 3.2, 3.3 need to be stated without assumption (M2). Hypothesis (0.1) should be also
added in the statement of Theorems 3.4 and 4.1. The proofs of Theorems 3.4 , 4.1 and 4.2
are similar to the original proofs, but replacing β by α.
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