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Abstract. We consider a nonlinear Robin problem driven by the p-Laplacian
plus an indefinite potential. The reaction term is of arbitrary growth and only

conditions near zero are imposed. Using critical point theory together with
suitable truncation and perturbation techniques and comparison principles, we

show that the problem admits a sequence of distinct smooth nodal solutions

converging to zero in C1(Ω).

1. Introduction. Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In
this paper we study the following nonlinear Robin problem −∆pu(z) + ξ(z)|u(z)|p−2u(z) = f(z, u(z)) in Ω,

∂u

∂np
+ β(z)|u|p−2u = 0 on ∂Ω.

(1)

In this problem, ∆p denotes the p-Laplace differential operator defined by

∆pu = div (|Du|p−2Du) for all u ∈W 1,p(Ω), 1 < p <∞.

The potential function ξ ∈ L∞(Ω) is indefinite (that is, sign changing) and the
reaction term f(z, x) is a Carathéodory function (that is, for all x ∈ R, the mapping
z 7→ f(z, x) is measurable and for almost all z ∈ Ω, x 7→ f(z, x) is continuous). We
do not impose any global polynomial growth condition on f(z, ·). All the conditions
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on f(z, ·) concern its behaviour near zero. In the boundary condition, ∂u
∂np

denotes

the generalized normal derivative defined by extension of the map

C1(Ω) 3 u 7→ |Du|p−2(Du, n)RN ,

with n(·) being the outward unit normal on ∂Ω. The boundary coefficient β ∈
C0,α(∂Ω) (with 0 < α < 1) satisfies β(z) ≥ 0 for all z ∈ ∂Ω. When β = 0, we have
the usual Neumann problem.

Using variational methods, together with suitable truncation and perturbation
techniques and comparison principles, and an abstract result of Kajikiya [5], we
show that the problem admits an infinity of smooth nodal (that is, sign changing)
solutions converging to zero in C1(Ω). Our starting point is the recent work of
Papageorgiou and Rădulescu [9], where the authors produced an infinity of nodal
solutions for a nonlinear Robin problem with zero potential (that is, ξ ≡ 0) and
a reaction term of arbitrary growth. They assumed that the reaction term f(z, x)
is a Carathéodory function and there exists η > 0 such that for almost all z ∈ Ω,
f(z, ·)|[−η,η] is odd and f(z, η) ≤ 0 ≤ f(z,−η) (the second inequality follows from
the first inequality and the oddness of f(z, ·)). Moreover, they assumed that for
almost all z ∈ Ω, f(z, ·) exhibits a concave (that is, a strictly (p − 1)-superlinear)
term near zero. So, f(z, ·) has zeros of constant sign and it presents a kind of
oscillatory behaviour near zero. In the present work we introduce in the equation an
indefinite potential term ξ(z)|x|p−2x and we remove the requirement that f(z, η) ≤
0 for almost all z ∈ Ω. We point out that this was a very convenient hypothesis,
since the constant function ũ ≡ η > 0 provided an upper solution for the problem
and ṽ = −η < 0 a lower solution. With them, the analysis of problem (1) was
significantly simplified. The absence of this condition in the present work, changes
the geometry of the problem and so we need a different approach. We should
mention that in Papageorgiou and Rădulescu [9], the differential operator is more
general and is nonhomogeneous. It is an interesting open problem whether our
present work can be extended to equations driven by nonhomogeneous differential
operators, as in [9].

Wang [13] was the first to produce an infinity of solutions for problems with
a reaction of arbitrary growth. He used cut-off techniques to study semilinear
Dirichlet problems with zero potential driven by the Laplacian. More recently, Li
and Wang [6] produced infinitely many nodal solutions for semilinear Schrödinger
equations. We also refer to our recent papers [11, 12], which deal with the qualitative
analysis of nonlinear Robin problems.

2. Mathematical background. In the analysis of problem (1) we will use the
Sobolev space W 1,p(Ω), the Banach space C1(Ω) and the “boundary” Lebesgue
spaces Ls(∂Ω), 1 ≤ s ≤ +∞.

We denote by ‖ · ‖ the norm of the Sobolev space W 1,p(Ω) defined by

‖u‖ =
[
‖u‖pp + ‖Du‖pp

]1/p
for all u ∈W 1,p(Ω).

The Banach space C1(Ω) is an ordered Banach space with positive (order) cone

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone contains the open set

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.
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Also, let D̂+ ⊆ C+ be defined by

D̂+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω,
∂u

∂n
|∂Ω∩u−1(0) < 0 if ∂Ω ∩ u−1(0) 6= ∅}.

Evidently, D̂+ ⊆ C1(Ω) is open and D+ ⊆ D̂+.
On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·).

Using this measure, we can define in the usual way the boundary Lebesgue spaces
Ls(∂Ω), 1 ≤ s ≤ ∞. From the theory of Sobolev spaces, we know that there exists
a unique continuous linear map γ0 : W 1,p(Ω) → Lp(∂Ω), known an the “trace
operator”, such that

γ0(u) = u|∂Ω for all u ∈W 1,p(Ω) ∩ C1(Ω).

So, the trace operator assigns “boundary values” to every Sobolev function. The

trace operator is compact into Ls(∂Ω) for all s ∈
[
1, (N−1)p

N−p

)
if p < N and into

Ls(∂Ω) for all s ≥ 1 if N ≤ p. Moreover, we have

ker γ0 = W 1,p
0 (Ω) and im γ0 = W

1
p′ ,p(∂Ω) (

1

p
+

1

p′
= 1).

In the sequel, for the sake of notational simplicity, we will drop the use of operator
γ0. All restrictions of Sobolev functions on ∂Ω, are understood in the sense of traces.

Given h1, h2 ∈ L∞(Ω), we write that h1 ≺ h2 if and only if for every compact
set K ⊆ Ω, we can find ε = ε(K) > 0 such that

h1(z) + ε ≤ h2(z) for almost all z ∈ K.
We see that, if h1, h2 ∈ C(Ω) and h1(z) < h2(z) for all z ∈ Ω, then h1 ≺ h2.
The next strong comparison theorem can be found in Fragnelli, Mugnai and

Papageorgiou [3].

Proposition 1. Assume that ξ̃, h1, h2 ∈ L∞(Ω), ξ̃(z) ≥ 0, for almost all z ∈ Ω,
h1 ≺ h2, u ∈ C1(Ω), u 6= 0, v ∈ D+, u ≤ v and that they satisfy

(i) −∆pu(z) + ξ̃(z)|u(z)|p−2u(z) = h1(z) for almost all z ∈ Ω;

(ii) −∆pv(z) + ξ̃(z)v(z)p−1 = h2(z) for almost all z ∈ Ω; and
(iii) ∂v

∂n |∂Ω < 0.

Then v − u ∈ D̂+.

As we have already mentioned in the introduction, the sequence of nodal solutions
will be generated by using an abstract result of Kajikiya [5], which is essentially
an extension of the symmetric mountain pass theorem (see also Wang [13]). Recall
that, if X is a Banach space and ϕ ∈ C1(X,R), we say that ϕ satisfies the “Palais-
Smale condition” (“PS-condition”, for short), if the following holds:

“Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and

ϕ′(un)→ 0 in X∗ as n→∞,
admits a strongly convergent subsequence”.

Theorem 2.1. Let X be a Banach space and suppose that ϕ ∈ C1(X,R) satisfies
the PS-condition, is even and bounded below, ϕ(0) = 0, and for every n ∈ N there
exist an n-dimensional subspace Vn of X and ρn > 0 such that

sup[ϕ(u) : u ∈ Vn ∩ ∂Bρn ] < 0,

where ∂Bρn = {u ∈ X : ||u|| = ρn}.
Then there exists a sequence {un}n≥1 ⊆ X such that
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• (i) ϕ′(un) = 0 for all n ∈ N (that is, un is a critical point of ϕ); and
• (ii) ϕ(un) < 0 for all n ∈ N and un → 0 in X.

In what follows, we denote by A : W 1,p(Ω) → W 1,p(Ω)∗ the nonlinear map
defined by

〈A(u), h〉 =

∫
Ω

|Du|p−2(Du,Dh)RNdz for all u, h ∈W 1,p(Ω).

It is well-known (see, for example, Gasinski and Papageorgiou [4]), that A(·)
is monotone continuous and of type (S)+ (that is, if un

w−→ u in W 1,p(Ω) and
lim sup
n→∞

〈A(un), un − u〉 ≤ 0, then un → u in W 1,p(Ω)).

For x ∈ R, we set x± = max{±x, 0}. Then, given u ∈W 1,p(Ω), we can define

u±(·) = u(·)±.
We know that u± ∈W 1,p(Ω), |u| = u+ + u−, and u = u+ − u−.
Finally, if X is a Banach space and ϕ ∈ C1(X,R), then

Kϕ = {u ∈ X : ϕ′(u) = 0}
is the critical set of ϕ.

3. Infinitely many nodal solutions. In this section we prove our main result,
namely the existence of a whole sequence of distinct nodal solutions {un}n≥1 which

converge to zero in C1(Ω).
Our hypotheses on the data of problem (1) are the following:

H(ξ) : ξ ∈ L∞(Ω).
H(β) : β ∈ C0,α(∂Ω) with α ∈ (0, 1) and β(z) ≥ 0 for all z ∈ ∂Ω.
H(f) : f : Ω × R → R is a Carathéodory function such that for almost all z ∈

Ω, f(z, 0) = 0, f(z, ·) is odd on [−η, η] with η > 0 and the following conditions
hold:
(i) there exists aη ∈ L∞(Ω) such that

|f(z, x)| ≤ aη(z) for almost all z ∈ Ω, all |x| ≤ η;

(ii) lim
x→0

f(z,x)
|x|p−2x = +∞ uniformly for almost all z ∈ Ω; and

(iii) there exists ϑ̃ > 0 such that for almost all z ∈ Ω the function

x 7→ f(z, x) + ϑ̃|x|p−2x

is nondecreasing on [−η, η].

Given ϑ̂ ∈ (0, ||ξ||∞] and r > p, using hypotheses H(f) above, we can find

c1 = c1(ϑ̂, r) > 0 such that

f(z, x)x ≥ ϑ̂|x|p − c1|x|r for almost all z ∈ Ω, all |x| ≤ η. (2)

Let ϑ ∈ (0, ϑ̂) and introduce the following Carathéodory function

k(z, x) =

 −ϑη
p−1 + c1η

r−1 if x < −η
ϑ|x|p−2x− c1|x|r−2x if − η ≤ x ≤ η
ϑηp−1 − c1ηr−1 if η < x.

(3)

We consider the following auxiliary Robin problem: −∆pu(z) + ||ξ||∞|u(z)|p−2u(z) = k(z, u(z)) in Ω,
∂u

∂np
+ β(z)|u|p−2u = 0 on ∂Ω.

(4)
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Proposition 2. If hypotheses H(ξ), H(β) hold, then problem (4) admits a unique
positive solution ũ ∈ [0, η] ∩D+ and since problem (4) is odd, ṽ = −ũ ∈ [−η, 0] ∩
(−D+) is the unique negative solution of (4).

Proof. First, we establish the existence of a positive solution.

To this end, let ξ̂0 > ||ξ||∞ and consider the following Carathéodory function

k̂(z, x) =


−k(z, η)− ξ̂0ηp−1 if x < −η
k(z, x) + ξ̂0|x|p−2x if − η ≤ x ≤ η
k(z, η) + ξ̂0η

p−1 if η < x.

(5)

We set K̂(z, x) =
∫ x

0
k̂(z, s)ds and consider the C1-functional ψ̂+ : W 1,p(Ω)→ R

defined by

ψ̂+(u) =
1

p
||Du||pp +

1

p

∫
Ω

[
||ξ||∞ + ξ̂0

]
|u|pdz +

1

p

∫
∂Ω

β(z)|u|pdσ −
∫

Ω

K̂(z, u+)dz

for all u ∈W 1,p(Ω).

From (5) it is clear that ψ̂+ is coercive. Also, using the Sobolev embedding

theorem and the compactness of the trace map, we see that ψ̂+ is sequentially
weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find
ũ ∈W 1,p(Ω) such that

ψ̂+(ũ) = inf
[
ψ̂+(u) : u ∈W 1,p(Ω)

]
. (6)

Hypothesis H(f)(ii) implies that given any µ > 0, we can find δ = δ(µ) > 0 such
that

F (z, x) ≥ µ

p
|x|p for almost all z ∈ Ω, all |x| ≤ δ. (7)

Let û1 be the Lp-normalized positive principal eigenfunction of the operator
−∆p + ξI with Robin boundary condition, corresponding to the first eigenvalue

λ̂1 ∈ R. From Papageorgiou and Rădulescu [8] we know that û1 ∈ D+ and of
course, ||û1||p = 1. So, we can choose a small t ∈ (0, 1) such that

tû1(z) ∈ (0, δ] for all z ∈ Ω. (8)

We have

ψ̂+(tû1) ≤ tp

p

[
λ̂1 + ξ̂0 − µ

]
(use (7), (8) and recall that ||û1||p = 1).

We choose µ > λ̂1 + ξ̂0 and obtain

ψ̂+(tû1) < 0,

⇒ ψ̂+(ũ) < 0 = ψ̂+(0) (see (6)),

⇒ ũ 6= 0.

By (6) we have

ψ̂′+(ũ) = 0,

⇒ 〈A(ũ), h〉+

∫
Ω

[||ξ||∞ + ξ̂0]|ũ|p−2ũhdz +

∫
∂Ω

β(z)|ũ|p−2ũhdσ =∫
Ω

k̂(z, ũ+)hdz for all h ∈W 1,p(Ω). (9)
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Choosing h = −ũ− ∈W 1,p(Ω) in (9), we have

||Dũ−||pp + c2||ũ−||pp ≤ 0 for some c2 > 0

(recall that ξ̂0 > 0 and use hypothesis H(β))

⇒ ũ ≥ 0, ũ 6= 0.

Also, in (9) we choose h = (ũ− η)+ ∈W 1,p(Ω). Then〈
A(ũ), (ũ− η)+

〉
+

∫
Ω

[||ξ||∞ + ξ̂0]ũp−1(ũ− η)+dz +

∫
∂Ω

β(z)ũp−1(ũ− η)+dσ

=

∫
Ω

[k(z, η) + ξ̂0η
p−1](ũ− η)+dz (see (5))

=

∫
Ω

[(ϑ+ ξ̂0)ηp−1 − c1ηr−1](ũ− η)+dz (see (3))

≤
∫

Ω

[(||ξ||∞ + ξ̂0)ηp−1 − c1ηr−1](ũ− η)+dz (recall that 0 < ϑ < ||ξ||∞)

≤
〈
A(η), (ũ− η)+

〉
+

∫
Ω

[||ξ||∞ + ξ̂0]ηp−1(ũ− η)+dz +

∫
∂Ω

β(z)ũp−1(ũ− η)+dσ

(note that A(η) = 0 and use hypothesis H(β))

⇒
〈
A(ũ)−A(η), (ũ− η)+

〉
+

∫
Ω

[||ξ||∞ + ξ̂0](ũp−1 − ηp−1)(ũ− η)+dz ≤ 0,

⇒ũ ≤ η (recall that ξ̂0 > 0).

So, we have proved that

ũ ∈ [0, η] = {u ∈W 1,p(Ω) : 0 ≤ u(z) ≤ η for almost all z ∈ Ω}. (10)

It follows from (5), (9) and (10) that

〈A(ũ), h〉+

∫
Ω

||ξ||∞ũp−1hdz +

∫
∂Ω

β(z)ũp−1hdσ =

∫
Ω

k(z, ũ)hdz

for all h ∈W 1,p(Ω),

⇒ −∆pũ(z) + ||ξ||∞ũ(z)p−1 = k(z, ũ(z)) for almost all z ∈ Ω,

∂ũ

∂np
+ β(z)ũp−1 = 0 on ∂Ω (see Papageorgiou and Rădulescu [8]). (11)

By virtue of (11) and Papageorgiou and Rădulescu [10], we have

ũ ∈ L∞(Ω).

So, we can apply Theorem 2 of Lieberman [7] and infer that

ũ ∈ C+\{0}.
It follows from (3), (5), (10) and (11) that

∆pũ(z) ≤ [||ξ||∞ + c1||ũ||r−p∞ ]ũ(z)p−1 for almost all z ∈ Ω

⇒ ũ ∈ D+, that is, ũ ∈ [0, η] ∩D+

by the nonlinear maximum principle (see Gasinski and Papageorgiou [4, p. 738]).
The uniqueness of this positive solution of problem (4) follows from Theorem 1

of Diaz and Saa [1].
Since problem (4) is odd (note that k(z, ·) is odd, see (3)), it follows that

ṽ = −ũ ∈ [−η, 0] ∩ (−D+)
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is the unique negative solution of (4).

Using the two constant sign solutions of problem (4) produced by Proposition
2, we introduce the following truncation-perturbation of the reaction term f(z, ·)
(recall that ξ̂0 > ||ξ||∞)

f̂(z, x) =


f(z, ṽ(z)) + ξ̂0|ṽ(z)|p−2ṽ(z) if x < ṽ(z)

f(z, x) + ξ̂0|x|p−2x if ṽ(z) ≤ x ≤ ũ(z)

f(z, ũ(z)) + ξ̂0ũ(z)p−1 if ũ(z) < x.

(12)

This is a Carathéodory function. We also consider the positive and negative

truncations of f̂(z, ·), that is, the Carathéodory functions

f̂±(z, x) = f(z,±x±) for all (z, x) ∈ Ω× R.

We set F̂ (z, x) =
∫ x

0
f̂(z, s)ds, F̂±(z, x) =

∫ x
0
f̂±(z, s)ds and consider the C1-

functionals ϕ̂, ϕ̂± : W 1,p(Ω)→ R defined by

ϕ̂(u) =
1

p
||Du||pp +

1

p

∫
Ω

[ξ(z) + ξ̂0]|u|pdz +
1

p

∫
∂Ω

β(z)|u|pdσ −
∫

Ω

F̂ (z, u)dz,

ϕ̂±(u) =
1

p
||Du||pp +

1

p

∫
Ω

[ξ(z) + ξ̂0]|u|pdz +
1

p

∫
∂Ω

β(z)|u|pdσ −
∫

Ω

F̂±(z, u)dz

for all u ∈W 1,p(Ω).

From (12) and since ξ̂0 > 0, we get the following proposition.

Proposition 3. If hypotheses H(ξ), H(β), H(f) hold, then ϕ̂ is even and coercive.

From this proposition, we infer the following corollary.

Corollary 1. If hypotheses H(ξ), H(β), H(f) hold, then the functional ϕ̂ is bounded
below and satisfies the PS-condition.

Also, we have this proposition.

Proposition 4. If hypotheses H(ξ), H(β), H(f) hold, then Kϕ̂ ⊆ C1(Ω) and there
exists M > 0 such that

−M ≤ u(z) ≤M for all z ∈ Ω, all u ∈ Kϕ̂.

Proof. The inclusion Kϕ̂ ⊆ C1(Ω) follows from the nonlinear regularity theory (see
Papageorgiou and Rădulescu [10] and Lieberman [7]).

From (12), hypothesis H(f)(i) and the fact that ξ̂0 > ||ξ||∞, we see that we can
find M > 0 such that

|f̂(z, x)| ≤ [ξ(z) + ξ̂0]Mp−1 for almost all z ∈ Ω, all x ∈ R. (13)
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Suppose that u ∈ Kϕ̂. Then for all h ∈W 1,p(Ω), we have

〈A(u), h〉+

∫
Ω

[ξ(z) + ξ̂0]|u|p−2uhdz +

∫
∂Ω

β(z)|u|p−2uhdσ

=

∫
Ω

f̂(z, u)hdz

≤
∫

Ω

|f̂(z, u)||h|dz

≤
∫

Ω

(ξ(z) + ξ̂0)Mp−1|h|dz (see (13))

≤
∫

Ω

[ξ(z) + ξ̂0]Mp−1|h|dz +

∫
∂Ω

β(z)Mp−1|h|dσ (see hypothesis H(β)). (14)

In (14) we choose h = (u−M)+ ∈W 1,p(Ω). Then

〈
A(u), (u−M)+

〉
+

∫
Ω

[ξ(z) + ξ̂0]up−1(u−M)+dz +

∫
∂Ω

β(z)up−1(u−M)+dσ

≤
〈
A(M), (u−M)+

〉
+

∫
Ω

[ξ(z)+ξ̂0]Mp−1(u−M)+dz+

∫
∂Ω

β(z)Mp−1(u−M)+dσ,

⇒
〈
A(u)−A(M), (u−M)+

〉
+

∫
Ω

[ξ(z) + ξ̂0](up−1 −Mp−1)(u−M)+dz ≤ 0

(note that A(M) = 0 and see hypothesis H(β))

⇒u ≤M.

In a similar fashion, we can show that

−M ≤ u,
⇒ u ∈ [−M,M ] ∩ C1(Ω) for all u ∈ Kϕ̂.

We choose ϑ0 ≥ ϑ̃ such that for almost all z ∈ Ω, the functions

x 7→ f(z, x) + ϑ0|x|p−2x and x 7→ (ϑ+ ϑ0)|x|p−2x− c1|x|r−2x (15)

are nondecreasing on [−M,M ] (see hypothesis H(f)(iii)).

Proposition 5. If hypotheses H(ξ), H(β), H(f) hold, then ũ ≤ u for all u ∈
Kϕ̂+
\{0} and v ≤ ṽ for all v ∈ Kϕ̂−\{0}.

Proof. As before the nonlinear regularity theory and the nonlinear maximum prin-
ciple imply that

Kϕ̂+
⊆ D+ ∪ {0} and Kϕ̂− ⊆ (−D+) ∪ {0}. (16)

Let u ∈ Kϕ̂+
, u 6= 0. Let t∗ > 0 be the biggest real number such that

t∗ũ ≤ u (see Filippakis and Papageorgiou [2, Lemma 3.6]). (17)
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Suppose that t∗ ∈ (0, 1). Then for ϑ̂0 = ξ̂0 + ϑ0 we have

−∆p(t
∗ũ)(z) + [ξ(z) + ϑ̂0](t∗ũ)(z)p−1

=(t∗)p−1[−∆pũ(z) + [ξ(z) + ϑ̂0]ũ(z)p−1]

≤(t∗)p−1[−∆pũ(z) + [||ξ||∞ + ϑ̂0]ũ(z)p−1]

=(t∗)p−1[k(z, ũ(z)) + ϑ̂0ũ(z)p−1](see Proposition 2)

=(t∗)p−1[ϑũ(z)p−1 − c1ũ(z)r−1 + ϑ̂0ũ(z)p−1] (see Proposition 2 and (3))

<ϑ(t∗ũ)(z)p−1 − c1(t∗ũ)(z)r−1 + ϑ̂0(t∗ũ)(z)p−1 for almost all z ∈ Ω (18)

(recall that t∗ < 1, r > p).

Let Ω1 = {z ∈ Ω : u(z) ≤ ũ(z)} and Ω2 = {z ∈ Ω : ũ(z) < u(z)}.
For almost all z ∈ Ω1, we have

f̂(z, u(z)) + ϑ0u(z)p−1 =f(z, u(z)) + ϑ̂0u(z)p−1 (see (12) and (16))

>ϑu(z)p−1 − c1u(z)r−1 + ϑ̂0u(z)p−1

(see (2) and recall that ϑ < ϑ̂)

≥ϑ(t∗ũ)(z)p−1 − c1(t∗ũ)(z)r−1 + ϑ̂0(t∗ũ)(z)p−1. (19)

For the last inequality we have used relation (17) in combination with the monoto-
nicity of the mapping x 7→ (ϑ+ ϑ0)|x|p−2x− c1|x|r−2x, see (15).

For almost all z ∈ Ω2, we have

f̂(z, u(z)) + ϑ0u(z)p−1 ≥f̂(z, u(z)) + ϑ0ũ(z)p−1 (since z ∈ Ω2)

=f(z, ũ(z)) + ϑ̂0ũ(z)p−1 (see (12))

≥f(z, t∗ũ(z)) + ϑ̂0(t∗ũ)(z)p−1

(recall that we have assumed t∗ < 1)

>ϑ(t∗ũ)(z)p−1 − c1(t∗ũ)(z)r−1 + ϑ̂0(t∗ũ)(z)p−1 (20)

(see (2), (15) and recall that ϑ < ϑ̂).

Returning to (18) and using (19) and (20) we see that

−∆p(t
∗ũ)(z) + [ξ(z) + ϑ̂0](t∗ũ)(z)p−1

<f̂(z, u(z)) + ϑ0u(z)p−1

=−∆pu(z) + [ξ(z) + ϑ̂0]u(z)p−1 for almost all z ∈ Ω (recall that u ∈ Kϕ̂+
). (21)

We introduce the following functions

h1(z) = (ϑ+ ϑ̂0)(t∗ũ)(z)p−1 − c1(t∗ũ)(z)r−1,

h2(z) = (ϑ̂+ ϑ̂0)(t∗ũ)(z)p−1 − c1(t∗ũ)(z)r−1,

h3(z) = f̂(z, u(z)) + ϑ̂0u(z)p−1.

Evidently h1, h2 ∈ C1(Ω) and h3 ∈ L∞(Ω) (see Proposition 4 and (12)). We
have

h1(z) < h2(z) for all z ∈ Ω (recall that ϑ < ϑ̂),

⇒ h1 ≺ h2. (22)
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Also, we have

h2 ≤ h3 (see (2)),

⇒ h1 ≺ h3 (see (22)).

By virtue of (21) we can use Proposition 1 (the strong comparison principle) and
have

u− t∗ũ ∈ D̂+,

which contradicts the maximality of t∗ > 0 (recall that D̂+ ⊆ C1(Ω) is open). So,
we have

1 ≤ t∗,
⇒ ũ ≤ u for all u ∈ Kϕ̂+ (see (17)).

In a similar fashion we show that

v ≤ ṽ for all v ∈ Kϕ̂− .

Proposition 6. If hypotheses H(ξ), H(β), H(f) hold and V ⊆W 1,p(Ω) is a nontri-
vial finite dimensional subspace, then we can find ρV > 0 such that

sup[ϕ̂(u) : u ∈ V, ||u|| = ρV ] < 0.

Proof. Since V is finite dimensional, all norms are equivalent. Hence, we can find
ρV > 0 such that

u ∈ V, ||u|| ≤ ρV ⇒ |u(z)| ≤ δ for almost all z ∈ Ω. (23)

Then for u ∈ V with ||u|| = ρV , we have

ϕ̂(u) =
1

p
||Du||pp +

1

p

∫
Ω

[ξ(z) + ξ̂0]|u|pdz +
1

p

∫
∂Ω

β(z)|u|pdσ −
∫

Ω

F̂ (z, u)dz.

Clearly, we can always have

δ ∈
(

0,min

{
min

Ω
ũ,min

Ω
(−ṽ)

})
(recall that ũ ∈ D+, ṽ ∈ −D+).

So, by (7), (12), (23), we have

ϕ̂(u) ≤1

p
||Du||pp +

||ξ||∞
p
||u||pp +

1

p

∫
∂Ω

β(z)|u|pdσ − µ

p
||u||pp

≤1

p
[c3 − µc4]||u||p for some c3, c4 > 0

(here we have used the fact that on V all norms are equivalent).

Choosing µ > c3
c4

, we see that

ϕ̂(u) < 0 for all u ∈ V such that ||u|| = ρV .

Now we are ready for the main result of this work.

Theorem 3.1. If hypotheses H(ξ), H(β), H(f) hold, then problem (1) admits a
sequence of distinct nodal solutions

{un}n≥1 ⊆ C1(Ω) such that un → 0 on C1(Ω).
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Proof. Corollary 1 and Proposition 6 permit us to use Theorem 2.1. So, we can
find {un}n≥1 ⊆W 1,p(Ω) such that

un ∈ Kϕ̂ for all n ∈ N and un → 0 in W 1,p(Ω). (24)

From (23) and Proposition 4 we have that un ∈ C1(Ω) for all n ∈ N. Moreover,
Proposition 3 together with Theorem 2.1 (see also [7]) imply that we can find
α′ ∈ (0, 1) and c5 > 0 such that

un ∈ C1,α′(Ω) and ||un||C1,α′ (Ω) ≤ c5 for all n ∈ N. (25)

Exploiting the compact embedding of C1,α(Ω) into C1(Ω), we can infer from (24)
and (25) that

un → 0 in C1(Ω) as n→∞.
So, we can find n0 ∈ N such that

un ∈ [ṽ, ũ] for all n ≥ n0.

Since ṽ, ũ are not solutions of (1) (see (2), (3) and recall that ϑ < ϑ̂), on ac-
count of Proposition 5 and (12), we see that {un}n≥n0 ⊆ C1(Ω) (by the nonlinear
regularity theory) are nodal solutions of problem (1).
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[7] G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear

Anal., 12 (1988), 1203–1219.
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