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Abstract

We establish sufficient conditions for the existence of nontrivial solutions for a class of nonlinear Neumann boundary value
problems involving nonhomogeneous differential operators. To cite this article: M. Mihăilescu, V. Rădulescu, C. R. Acad. Sci.
Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Problèmes de Neumann non homogènes dans les espaces d’Orlicz–Sobolev. On établit des conditions suffisantes pour l’exis-
tence des solutions non triviales pour une classe de problèmes aux limites de Neumann avec des opérateurs différentiels non
homogènes. Pour citer cet article : M. Mihăilescu, V. Rădulescu, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit Ω ⊂ R
N (N � 3) un domaine borné et régulier. On considère le problème non linéaire⎧⎨

⎩
−div

(
a
(
x,

∣∣∇u(x)
∣∣)∇u(x)

) + a
(
x,

∣∣u(x)
∣∣)u(x) = λg

(
x,u(x)

)
, pour x ∈ Ω,

∂u

∂ν
(x) = 0, pour x ∈ ∂Ω,

(1)

où ν est la normale extérieure à ∂Ω . Soit φ(x, t) = a(x, |t |)t si t �= 0 et φ(x,0) = 0. On suppose qu’il existe deux
constantes φ0 et φ0 telles que

1 < φ0 � tφ(x, t)

Φ(x, t)
� φ0 < ∞, ∀x ∈ Ω, t � 0. (2)

De plus, on suppose que la fonction Φ satisfait

M|t |p(x) � Φ(x, t), ∀x ∈ Ω, t � 0,
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où p ∈ C(Ω), p(x) > 1 pour chaque x ∈ Ω et M > 0 est une constante. D’autre part, on suppose que la fonction g

satisfait les conditions∣∣g(x, t)
∣∣ � C0|t |q(x)−1, ∀x ∈ Ω, t ∈ R,

et

C1|t |q(x) � G(x, t) :=
t∫

0

g(x, s)ds � C2|t |q(x), ∀x ∈ Ω, t ∈ R,

où C0, C1 et C2 sont des constantes positives et la fonction q ∈ C(Ω) satisfait 1 < q(x) <
N minΩ p

N−minΩ p
pour tout x ∈ Ω .

Le résultat principal de cette Note est le suivant :

Théorème 0.1.

(i) Si minΩ q < φ0 alors il existe λ� > 0 tel que pour chaque λ ∈ (0, λ�) le problème (1) admet une solution faible
non triviale.

(ii) Si maxΩ q < φ0 alors il existe λ� > 0 et λ�� > 0 tels que pour chaque λ ∈ (0, λ�) ∪ (λ��,∞) le problème (1)
admet une solution faible non triviale.

1. The main result

Let Ω ⊂ R
N (N � 3) be a bounded domain with smooth boundary. We consider the problem⎧⎨

⎩
−div

(
a
(
x,

∣∣∇u(x)
∣∣)∇u(x)

) + a
(
x,

∣∣u(x)
∣∣)u(x) = λg

(
x,u(x)

)
, for x ∈ Ω,

∂u

∂ν
(x) = 0, for x ∈ ∂Ω,

(3)

where ν is the outward unit normal to ∂Ω . In the particular case when a(x, t) = tp(x)−2, with p a continuous function
on Ω , we deal with problems involving variable growth conditions. The study of such problems has been stimulated
by recent advances in fluid dynamics (see [3,5,12,13]), image processing (see [1]) and calculus of variations and
differential equations with p(x)-growth conditions (see [4–7]).

In this Note we assume that the function a : Ω × R → R in (3) is such that the mapping φ : Ω × R → R, φ(x, t) =
a(x, |t |)t if t �= 0 and φ(x,0) = 0 satisfies:

(φ) for all x ∈ Ω , φ(x, ·) : R → R is an odd, increasing homeomorphism from R onto R; while the function Φ : Ω ×
R → R, Φ(x, t) := ∫ t

0 φ(x, s)ds, for all x ∈ Ω and all t � 0 belongs to class Φ (see [9], p. 33), that is, Φ satisfies
the following conditions:

(Φ1) for all x ∈ Ω , Φ(x, ·) : [0,∞) → R is a nondecreasing continuous function, with Φ(x,0) = 0 and Φ(x, t) > 0
whenever t > 0; limt→∞ Φ(x, t) = ∞;

(Φ2) for every t � 0, Φ(·, t) : Ω → R is a measurable function.

Remark 1. Since φ(x, ·) satisfies condition (φ) we deduce that Φ(x, ·) is convex and increasing from R
+ to R

+.

For the function Φ introduced above we define the generalized Orlicz space LΦ(Ω) as the Banach space of all
measurable functions u : Ω → R for which the Luxemburg norm

|u|Φ = inf

{
μ > 0;

∫
Ω

Φ

(
x,

|u(x)|
μ

)
dx � 1

}
,

is finite.
In this Note we assume that there exist two positive constants φ0 and φ0 such that

1 < φ0 � tφ(x, t)

Φ(x, t)
� φ0 < ∞, ∀x ∈ Ω, t � 0. (4)
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We point out that in the particular case when φ(x, t) = |t |p(x)−2t with p(x) ∈ C(Ω) then we denote φ0 by p+ :=
maxΩ p and φ0 by p− := maxΩ p.

Furthermore, we assume that Φ satisfies the following condition:

for each x ∈ Ω, the function [0,∞) 
 t → Φ(x,
√

t) is convex. (5)

Remark 2. Relation (5) assures that LΦ(Ω) is an uniformly convex space and thus, a reflexive space.

On the other hand, we point out that assuming that Φ and Ψ belong to class Φ and

Ψ (x, t) � K1 · Φ(x,K2 · t) + h(x), ∀x ∈ Ω, t � 0, (6)

where h ∈ L1(Ω), h(x) � 0 a.e. x ∈ Ω and K1, K2 are positive constants, then by Theorem 8.5 in [9] we have that
there exists the continuous embedding LΦ(Ω) ⊂ LΨ (Ω).

Next, we build upon LΦ(Ω) the generalized Orlicz–Sobolev space W 1,Φ(Ω) as the space of those weakly differ-
entiable functions in Ω for which the weak derivatives belong to LΦ(Ω). This space endowed with the norm

‖u‖ = inf

{
μ > 0;

∫
Ω

[
Φ

(
x,

|u(x)|
μ

)
+ Φ

(
x,

|∇u(x)|
μ

)]
dx � 1

}
,

is a reflexive Banach space. On W 1,Φ(Ω) the following relations hold true:∫
Ω

[
Φ

(
x, |u(x)|) + Φ

(
x, |∇u(x)|)]dx � ‖u‖φ0, ∀u ∈ W 1,Φ(Ω) with‖u‖ > 1; (7)

∫
Ω

[
Φ

(
x,

∣∣u(x)
∣∣) + Φ

(
x,

∣∣∇u(x)
∣∣)]dx � ‖u‖φ0

, ∀u ∈ W 1,Φ(Ω) with ‖u‖ < 1. (8)

We refer to Diening [2], Musielak [9], Musielak and Orlicz [10], Nakano [11] for further properties of generalized
Orlicz–Sobolev spaces.

In this Note we study problem (3) in the particular case when Φ satisfies

M|t |p(x) � Φ(x, t), ∀x ∈ Ω, t � 0, (9)

where p(x) ∈ C(Ω) with p(x) > 1 for all x ∈ Ω and M > 0 is a constant.

Remark 3. By relation (9) we deduce that W 1,Φ(Ω) is continuously embedded in W 1,p(x)(Ω) (see relation (6) with
Ψ (x, t) = |t |p(x)). On the other hand, it is known (see [5]) that W 1,p(x)(Ω) is compactly embedded in Lr(x)(Ω) for

any r(x) ∈ C(Ω) with 1 < r− � r+ <
Np−

N−p− . Thus, we deduce that W 1,Φ(Ω) is compactly embedded in Lr(x)(Ω)

for any r(x) ∈ C(Ω) with 1 < r(x) <
Np−

N−p− for all x ∈ Ω .

On the other hand, we assume that the function g from problem (3) satisfies the hypotheses∣∣g(x, t)
∣∣ � C0|t |q(x)−1, ∀x ∈ Ω, t ∈ R (10)

and

C1|t |q(x) � G(x, t) :=
t∫

0

g(x, s)ds � C2|t |q(x), ∀x ∈ Ω, t ∈ R, (11)

where C0, C1 and C2 are positive constants and q(x) ∈ C(Ω) satisfies 1 < q(x) <
Np−

N−p− for all x ∈ Ω .

Example. (a) First, we point out certain examples of functions g and G which satisfy hypotheses (10) and (11).

(1) g(x, t) = q(x)|t |q(x)−2t and G(x, t) = |t |q(x), where q(x) ∈ C(Ω) satisfies 2 � q(x) <
Np−

N−p− for all x ∈ Ω ;
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(2) g(x, t) = q(x)|t |q(x)−2t + (q(x) − 2) · [log(1 + t2)]|t |q(x)−4t + t

1+t2 |t |q(x)−2 and G(x, t) = |t |q(x) + log(1 +
t2) · |t |q(x)−2, where q(x) ∈ C(Ω) satisfies 4 � q(x) <

Np−
N−p− for all x ∈ Ω .

(b) Second, we point out certain examples of functions φ(x, t) and Φ(x, t) for which the results of this paper can
be applied.

(1) φ(x, t) = p(x)|t |p(x)−2t and Φ(x, t) = |t |p(x), with p(x) ∈ C(Ω) satisfying 2 � p(x) < N , for all x ∈ Ω .
(2)

φ(x, t) = p(x)
|t |p(x)−2t

log(1 + |t |) and Φ(x, t) = |t |p(x)

log(1 + |t |) +
|t |∫

0

sp(x)

(1 + s)(log(1 + s))2
ds

with p(x) ∈ C(Ω) satisfying 3 � p(x) < N , for all x ∈ Ω .
(3) φ(x, t) = p(x) log(1 + α + |t |) · |t |p(x)−1t and

Φ(x, t) = log
(
1 + α + |t |) · |t |p(x) −

|t |∫
0

sp(x)

1 + α + s
dx

where α > 0 is a constant and p(x) ∈ C(Ω) satisfying 2 � p(x) < N , for all x ∈ Ω .

We say that u ∈ W 1,Φ(Ω) is a weak solution of problem (3) if∫
Ω

a
(
x, |∇u|)∇u∇v dx +

∫
Ω

a
(
x, |u|)uv dx − λ

∫
Ω

g(x,u)v dx = 0,

for all v ∈ W 1,Φ(Ω).
The main result of this Note is given by the following theorem:

Theorem 1.1. Assume φ and Φ verify conditions (φ), (Φ1), (Φ2), (4), (5) and (9) and the functions g and G satisfy
conditions (10) and (11).

(i) If q− < φ0 then there exists λ� > 0 such that for any λ ∈ (0, λ�) problem (3) has a nontrivial weak solution.
(ii) If q+ < φ0 then there exists λ� > 0 and λ� > 0 such that for any λ ∈ (0, λ�)∪ (λ�,∞) problem (3) has a nontrivial

weak solution.

Let E denote the generalized Orlicz–Sobolev space W 1,Φ(Ω).
For each λ > 0 we define the energy functional Jλ : E → R by

Jλ(u) =
∫
Ω

[
Φ

(
x, |∇u|) + Φ

(
x, |u|)]dx − λ

∫
Ω

G(x,u)dx, ∀u ∈ E.

Standard arguments imply that Jλ is well-defined on E, Jλ ∈ C1(E,R) and

〈
J ′

λ(u), v
〉 =

∫
Ω

a
(
x, |∇u|)∇u · ∇v dx +

∫
Ω

a
(
x, |u|)uv dx − λ

∫
Ω

g(x,u)v dx,

for all u, v ∈ E. Thus, we remark that the weak solutions of Eq. (3) are exactly the critical points of the energy
functional Jλ.

The following auxiliary results will be useful in order to establish the result of Theorem 1.1(i):

Lemma 1.2. Assume the hypotheses of Theorem 1.1(i) are fulfilled. Then there exists λ� > 0 such that for any
λ ∈ (0, λ�) there exist ρ, α > 0 such that Jλ(u) � α > 0 for any u ∈ E with ‖u‖ = ρ.

Lemma 1.3. Assume the hypotheses of Theorem 1.1(i) are fulfilled. Then there exists θ ∈ E such that θ � 0, θ �= 0 and
Jλ(tθ) < 0, for t > 0 small enough.
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Lemma 1.4. Assume that the sequence {un} converges weakly to u in E and

lim sup
n→∞

〈
J ′

λ(un), un − u
〉
� 0.

Then {un} converges strongly to u in E.

Proof of Theorem 1.1(i). Let λ� > 0 be given by Lemma 1.2 and λ ∈ (0, λ�). By Lemma 1.2 it follows that on the
boundary of the ball centered in the origin and of radius ρ in E, denoted by Bρ(0), we have inf∂Bρ(0) Jλ > 0.

On the other hand, by Lemma 1.3, there exists θ ∈ E such that Jλ(tθ) < 0 for all t > 0 small enough. Moreover,
relations (8) and (11) and the fact that E is continuously embedded in Lq(x)(Ω) imply that for any u ∈ Bρ(0) we have

Jλ(u) � ‖u‖φ0 − λC2c
q−
1 ‖u‖q−

,

where c1 is a positive constant. It follows that −∞ < c := infBρ(0) Jλ < 0.
We let now 0 < ε < inf∂Bρ(0) Jλ − infBρ(0) Jλ. Applying Ekeland’s variational principle to the functional

Jλ : Bρ(0) → R, we find uε ∈ Bρ(0) such that

Jλ(uε) < inf
Bρ(0)

Jλ + ε and Jλ(uε) < Jλ(u) + ε‖u − uε‖, u �= uε.

Since

Jλ(uε) � inf
Bρ(0)

Jλ + ε � inf
Bρ(0)

Jλ + ε < inf
∂Bρ(0)

Jλ,

we deduce that uε ∈ Bρ(0). Now, we define Iλ : Bρ(0) → R by Iλ(u) = Jλ(u) + ε‖u − uε‖. It is clear that uε is a
minimum point of Iλ and thus for small t > 0 and any v ∈ B1(0) we have

Iλ(uε + t · v) − Iλ(uε)

t
� 0 or

Jλ(uε + t · v) − Jλ(uε)

t
+ ε‖v‖ � 0.

Letting t → 0 it follows that 〈J ′
λ(uε), v〉 + ε‖v‖ > 0 and we infer that ‖J ′

λ(uε)‖ � ε.
We deduce that there exists a sequence {wn} ⊂ Bρ(0) such that

Jλ(wn) → c and J ′
λ(wn) → 0. (12)

It is clear that {wn} is bounded in E. Thus, there exists w ∈ E such that, up to a subsequence, {wn} converges weakly
to w in E. Using relation (12) we find

lim
n→∞

〈
J ′

λ(wn),wn − w
〉 = 0.

Thus, by Lemma 1.4, we deduce that {wn} converges strongly to w in E. So, by (12), Jλ(w) = c < 0 and J ′
λ(w) = 0.

We conclude that w is a nontrivial weak solution for problem (3) for any λ ∈ (0, λ�). The proof of Theorem 1.1 (i) is
complete. �

Next, we prove Theorem 1.1(ii).

Proof of Theorem 1.1(ii). Since q+ < φ0 it follows that q− < φ0 and thus, by Theorem 1.1(i) there exists λ� > 0
such that for any λ ∈ (0, λ�) problem (3) has a nontrivial weak solution.

On the other hand, we point out that Jλ is coercive and weakly lower semi-continuous in E, for all λ > 0. Then
Theorem 1.2 in [14] implies that there exists uλ ∈ E a global minimizer of Iλ and thus a weak solution of problem (3).

We show that uλ is not trivial for λ large enough. Indeed, letting t0 > 1 be a fixed real and u0(x) = t0, for all x ∈ Ω

we have u0 ∈ E and

Jλ(u0) = Λ(u0) − λ

∫
Ω

G(x,u0)dx �
∫
Ω

Φ(x, t0)dx − λC1

∫
Ω

|t0|q(x) dx � L − λC1t
q+
0 |Ω1|,

where L is a positive constant. Thus, there exists λ� > 0 such that Jλ(u0) < 0 for any λ ∈ [λ�,∞). It follows that
Jλ(uλ) < 0 for any λ � λ� and thus uλ is a nontrivial weak solution of problem (3) for λ large enough. The proof of
Theorem 1.1(ii) is complete. �

We refer to [8] for complete proofs and additional results.
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[8] M. Mihăilescu, V. Rădulescu, Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces, Ann. Inst.

Fourier, in press.
[9] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034, Springer, Berlin, 1983.

[10] J. Musielak, W. Orlicz, On modular spaces, Studia Math. 18 (1959) 49–65.
[11] H. Nakano, Modulared Semi-ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950.
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