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We establish the existence of an unbounded sequence of solutions for a

class of quasilinear elliptic equations involving the anisotropic p
!

ð�Þ-Laplace
operator, on a bounded domain with smooth boundary. We work on the
anisotropic variable exponent Sobolev spaces and our main tool is the
symmetric mountain-pass theorem of Ambrosetti and Rabinowitz.
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1. Introduction

We are interested in the existence of multiple solutions for the nonhomogeneous
anisotropic problem

�
XN
i¼1

@xi
���@xiu��piðxÞ�2@xiu� ¼ f ðx, uÞ in �,

u ¼ 0 on @�,

8><>: ð1:1Þ

where ��R
N (N� 3) is a bounded domain with smooth boundary, f :��R!R is

a Carathéodory function with the potential

Fðx, tÞ ¼

Z t

0

f ðx, sÞds,

and pi are continuous functions on � such that 2� pi(x)5N for any x2� and
i2 {1, . . . ,N}.
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Our study may be considered at the intersection of two directions in PDEs: the
anisotropic Sobolev spaces theory developed by [1–5], and the variable exponent
Sobolev spaces theory developed by [6–13]. Let us note that only a few results
concerning the critical anisotropic problems can be found in the mathematical
literature. On the other hand, many papers involving the variable exponent Sobolev
spaces appeared in the past decades, mostly because the interest regarding such
spaces and their applicability has recently grown. Materials requiring this theory
have been studied experimentally since the middle of the last century, when the
preoccupation for the electrorheological fluids (sometimes referred to as smart
fluids) arose. The first major discovery in electrorheological fluids was due to
Willis Winslow who obtained a US patent on the effect in 1947 [14] and wrote an
article published in 1949 [15]. The above-mentioned fluids have a special property:
when disposed to an electromagnetic field, their viscosity undergoes a significant
change. Winslow was the first who noticed that in an electrical field, the viscosity of
such fluids is inversely proportional to the strength of the field. The field induces
string-like formations in the fluid, which are parallel to the field. They can raise the
viscosity by as much as five orders of magnitude. This phenomenon is known as the
Winslow effect. For more information on properties, modelling and the application
of variable exponent spaces to these fluids we refer to [16–25]. Also, we must
underline the fact that the variable exponent spaces have other major applications,
for example in elastic mechanics [26], or in image restoration [27].

Consequently, we work on the so-called anisotropic variable exponent Sobolev
spaces which were introduced for the first time by Mihăilescu et al. [28,29]. Also, one
of the first contributions in this direction is due to Fragalà et al. [30]. The need for
such theory comes naturally every time we want to consider materials with
inhomogeneities that have different behaviour on different space directions. Since the
concern for this topic is relatively new, only few papers have been published. To give
some examples that were not previously mentioned, we refer the reader to [31–35].
By the nature of the conditions imposed on function f, our article is related to [32].
In [32], in addition to the discussion of the main problem, the following problem is
brought to our attention:

�
XN
i¼1

@xi
���@xiu��piðxÞ�2@xiu� ¼ �f ðuÞ in �,

u ¼ 0 on @�,

8><>: ð1:2Þ

where ��R
N (N� 3) is a bounded domain with smooth boundary, f is a continuous

function verifying some adequate conditions, � is a positive parameter and pi are
continuous functions on � such that 2� pi(x)5N for any x2�, i2 {1, . . . ,N} andPN

i¼1 1=infx2� piðxÞ41. In Remark 2, the author asserts the existence of a nontrivial
solution to problem (1.2) for all �40. His arguments are based on the mountain-pass
theorem of Ambrosetti and Rabinowitz [36]. We impose similar conditions to our
function f, but we consider f to be odd. This simple fact will allow us to show the
existence of an unbounded sequence of weak solutions using the symmetric
mountain-pass theorem of Ambrosetti and Rabinowitz [37, Theorem 11.5].
The statement of this theorem and some mathematical details on the properties
of variable exponent Sobolev spaces and anisotropic variable exponent Sobolev
spaces will be reminded in Section 2.

756 M.-M. Boureanu et al.
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2. Abstract framework

This section is dedicated to a general overview on the above mentioned spaces.
We set Cþð�Þ ¼ f p2Cð�Þ : minx2� pðxÞ4 1g and denote, for any p2Cþð�Þ,

pþ ¼ sup
x2�

pðxÞ and p� ¼ inf
x2�

pðxÞ:

For any p2Cþð�Þ, the variable exponent Lebesgue space is introduced as

Lpð�Þð�Þ ¼ u : u is a measurable real-valued function such that

Z
�

juðxÞjp ðxÞ dx51
� �

,

endowed with the Luxemburg norm

jujpð�Þ ¼ inf �4 0 :

Z
�

uðxÞ

�

���� ����p ðxÞ dx � 1

( )
:

The space (Lp (�)(�), j � jp (�)) has some important properties. Firstly, it is a separable
and reflexive Banach space [9, Theorem 2.5, Corollary 2.7]. Then, the inclusion
between spaces generalizes naturally: if 05j�j51 and p1, p2 are variable exponents
in Cþð�Þ such that p1� p2 in �, then the embedding Lp2(�)(�) ,! Lp1(�)(�) is
continuous [9, Theorem 2.8]. Furthermore, the following Hölder–type inequalityZ

�

uv dx

���� ���� � 1

p�
þ

1

p0�

� �
jujpð�Þjvjp0ð�Þ � 2jujpð�Þjvjp0ð�Þ ð2:1Þ

holds true for any u2Lp (�)(�) and v2Lp0(�)(�) [9, Theorem 2.1], where we denote by
Lp0(�)(�) the conjugate space of Lp (�)(�), obtained by conjugating the exponent
pointwise i.e. 1/p(x)þ 1/p0(x)¼ 1 [9, Corollary 2.7].

To continue describing the variable exponent Lebesgue spaces, let us introduce
the important function �p (�) :L

p (�)(�)!R,

�pð�ÞðuÞ ¼

Z
�

jujp ðxÞ dx:

This application is called the p (�)-modular of the Lp (�)(�) space and plays a key role
in handling these generalized Lebesgue spaces. Therefore we indicate some of its
properties [9]: if u2Lp (�)(�), (un)�Lp (�)(�) and pþ51, then,

jujpð�Þ5 1 ð¼1; 41Þ , �pð�ÞðuÞ5 1 ð¼1; 41Þ, ð2:2Þ

jujpð�Þ4 1) juj
p�

pð�Þ � �pð�ÞðuÞ � juj
pþ

pð�Þ, ð2:3Þ

jujpð�Þ5 1) juj
pþ

pð�Þ � �pð�ÞðuÞ � juj
p�

pð�Þ, ð2:4Þ

jujpð�Þ ! 0 ð!1Þ , �pð�ÞðuÞ ! 0 ð!1Þ, ð2:5Þ

lim
n!1
jun � ujpð�Þ ¼ 0, lim

n!1
�pð�Þðun � uÞ ¼ 0: ð2:6Þ

Next, for any p2Cþð�Þ, we give the definition of the variable exponent Sobolev
space W1,p (�)(�),

W1,pð�Þð�Þ ¼ u2Lpð�Þð�Þ : @xiu2L
pð�Þð�Þ, i2 f1, 2, . . .N g

	 

,
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endowed with the norm

kuk ¼ jujpð�Þ þ jrujpð�Þ: ð2:7Þ

(W1,p (�)(�), k � k) is a separable and reflexive Banach space. For the density of the
smooth functions in W1,pð�Þð�Þ we consider p2Cþð�Þ to be logarithmic Hölder
continuous, that is, there exists M40 such that jpðxÞ � pðyÞj � �M= logðjx� yjÞ for
all x, y2� with jx� yj � 1/2. The Sobolev spaces with zero boundary values
W

1,pð�Þ
0 ð�Þ, defined as the closure of C10 ð�Þ with respect to the norm k � k, have their

importance [38,39]. Note that the norms

kuk1,pð�Þ ¼ jrujpð�Þ,

and

kukpð�Þ ¼
XN
i¼1

@xiu
�� ��

pð�Þ

are equivalent to (2.7) in W
1,pð�Þ
0 ð�Þ and W

1,pð�Þ
0 ð�Þ is also a separable and reflexive

Banach space. Moreover, if s2Cþð�Þ and s(x)5p�(x) for all x2�,
where p�(x)¼Np(x)/[N� p(x)] if p(x)5N and p�(x)¼1 if p(x)�N, then the embed-
ding W

1,pð�Þ
0 ð�Þ ,!Lsð�Þð�Þ is compact and continuous. For more details concerning

the variable exponent spaces W
1,pð�Þ
0 ð�Þ we refer to the papers [9,38–41].

Now we can present the anisotropic variable exponent Sobolev space W
1,p
!

ð�Þ

0 ð�Þ,
where p

!

: �! R
N is the vectorial function

p
!

ð�Þ ¼ p1ð�Þ, . . . , pNð�Þð Þ,

where the components pi 2Cþð�Þ, i2 f1, . . . ,Ng are logarithmic Hölder continuous.

The space W
1,p
!

ð�Þ

0 ð�Þ is defined as the closure of C10 ð�Þ under the norm

kuk
p
!

ð�Þ
¼
XN
i¼1

@xiu
�� ��

pið�Þ
:

Notice that we are dealing with a natural generalization of the variable exponent
Sobolev space W

1,pð�Þ
0 ð�Þ that allows the adequate treatment of the existence of the

weak solutions for problem (1.1). But at the same time, W
1,p
!

ð�Þ

0 ð�Þ may be regarded

as a generalization of the classical anisotropic Sobolev space W1,p
!

0 ð�Þ, where p
!

is the

constant vector (p1, . . . , pN). W
1,p
!

0 ð�Þ endowed with the norm

kuk
1,p
! ¼

XN
i¼1

@xiu
�� ��

pi

is a reflexive Banach space for any p
!

2R
N with pi41 for all i2 {1, . . . ,N} (obviously,

for p constant, we have denoted by j � jp the norm in Lp). This result can be easily

extended to W
1,p
!

ð�Þ

0 ð�Þ, see [29].

We denote by P
!

þ, P
!

� 2R
N the vectors

P
!

þ ¼ ð p
þ
1 , . . . , pþNÞ, P

!

� ¼ ð p
�
1 , . . . , p�NÞ,

and by Pþþ, P
þ
�, P

�
� 2R

þ the following:

Pþþ ¼ maxf pþ1 , . . . , pþNg, Pþ� ¼ maxf p�1 , . . . , p�Ng, P�� ¼ minf p�1 , . . . , p�Ng:

758 M.-M. Boureanu et al.
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Below we assume that XN
i¼1

1

p�i
4 1, ð2:8Þ

and define P?� 2R
þ and P�,12R

þ by

P?� ¼
NPN

i¼1 1=p
�
i � 1

, P�,1 ¼ maxfPþ�,P
?
�g:

We end this section by recalling two important results: a theorem concerning the

embedding between W
1,p
!

ð�Þ

0 ð�Þ and Lq(�)(�), and the symmetric mountain-pass
theorem of Ambrosetti and Rabinowitz.

THEOREM 2.1 [29, Theorem 1] Suppose that ��R
N (N� 3) is a bounded domain with

smooth boundary and relation (2.8) is fulfilled. For any q2Cð�Þ verifying

15 qðxÞ5P�,1 for all x2�, ð2:9Þ

the embedding

W
1,p
!

ð�Þ

0 ð�Þ ,!Lqð�Þð�Þ

is continuous and compact.

THEOREM 2.2 [37, Theorem 11.5] Let X be a real infinite-dimensional Banach space
and J2C1(X;R) a functional satisfying the Palais–Smale condition (i.e. any
sequence (un)n�X such that (J(un))n is bounded and J0(un)! 0 admits a convergent
subsequence). Assume that J satisfies:

(i) J(0)¼ 0 and there are constants �, �40 such that

Jj@B� � �,

(ii) J is even and
(iii) for all finite-dimensional subspaces eX � X there exists R ¼ RðeX Þ4 0

such that

JðuÞ � 0 for u2 eX n BRðeX Þ:
Then J possesses an unbounded sequence of critical values characterized by a
minimax argument.

3. The main result

In this section we establish the existence of multiple weak solutions to problem (1.1).
We start by giving the following definition.

Definition 3.1 By a weak solution to problem (1.1) we understand a function

u2W
1,p
!

ð�Þ

0 ð�Þ such thatZ
�

XN
i¼1

@xiu
�� ��piðxÞ�2@xiu @xi’� f ðx, uÞ’

" #
dx ¼ 0

for all ’2W1,p
!

ð�Þ

0 ð�Þ.

Complex Variables and Elliptic Equations 759
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THEOREM 3.2 Suppose that f satisfies the following:

( f1) f is odd in t, i.e. f (x,�t)¼�f (x, t) for almost all x2� and all t2R

( f2) there exist a positive constant C and q2Cð�Þ, with 2 � P��5Pþþ5 q�5
qþ5P?�, such that f satisfies the growth condition

j f ðx, tÞj � CjtjqðxÞ�1

for almost all x2� and all t2R;
( f3) there exists a constant �4Pþþ such that for almost all x2� and all t40

05�Fðx, tÞ � tf ðx, tÞ:

Then problem (1.1) admits an unbounded sequence of weak solutions.

Remark 1 Since f is odd in t, so that F is even in t, the relation described by ( f3)

remains valid for all t2R.

Throughout this article we work under the conditions ( f1)–( f3) of Theorem 3.2.

Moreover, for simplicity, we denote by E the anisotropic variable exponent

space W
1,p
!

ð�Þ

0 ð�Þ.

The energy functional corresponding to problem (1.1) is defined as I :E!R,

IðuÞ ¼

Z
�

XN
i¼1

@xiu
�� ��piðxÞ
piðxÞ

dx�

Z
�

Fðx, uÞdx: ð3:1Þ

By standard arguments, I2C1(E,R) and the Fréchet derivative is given by

hI 0ðuÞ, vi ¼

Z
�

XN
i¼1

@xiu
�� ��piðxÞ�2@xiu @xiv� f ðx, uÞv

" #
dx

for all u, v2E. Thus the weak solutions of (1.1) coincide with the critical points of I.
We divide the proof of Theorem 3.2 in three auxiliary lemmas so that, at the end,

by simply combining these lemmas with Theorem 2.2, we get the desired result.

LEMMA 3.3 The energy functional I satisfies the Palais–Smale condition.

Proof Let (un)n�E be a sequence such that

jIðunÞj5M, 8n � 1, ð3:2Þ

where M is a positive constant, and

I 0ðunÞ ! 0 as n!1: ð3:3Þ

We claim that (un)n is bounded. Arguing by contradiction, we assume that, passing

eventually to a subsequence still denoted by (un)n,

kunkp!ð�Þ
! 1 as n!1: ð3:4Þ

760 M.-M. Boureanu et al.
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Using relations (3.2)–(3.4) and ( f3), we obtain

1þMþ kunkp!ð�Þ
� IðunÞ �

1

�
hI 0ðunÞ, uni

�
1

Pþþ
�

1

�

� �XN
i¼1

Z
�

@xiun
�� ��piðxÞdx

�

Z
�

Fðx, unÞ �
1

�
un f ðx, unÞ

� �
dx

�
1

Pþþ
�

1

�

� �XN
i¼1

Z
�

@xiun
�� ��piðxÞdx:

For each n, let us denote by In1, In2 the indices sets

In1 ¼ fi2 f1, 2, . . .N g : j@xiunjpið�Þ � 1g

and

In2 ¼ fi2 f1, 2, . . .N g : j@xiunjpið�Þ4 1g:

From (2.2)–(2.4) and the previous inequality we deduce

1þMþ kunkp!ð�Þ
�

1

Pþþ
�

1

�

� � X
i2In1

@xiun
�� ��Pþþ

pið�Þ
þ
X
i2I n2

@xiun
�� ��P��

pið�Þ

0@ 1A
¼

1

Pþþ
�

1

�

� � XN
i¼1

@xiun
�� ��P��

pið�Þ
�
X
i2I n1

@xiun
�� ��P��

pið�Þ
� @xiun
�� ��Pþþ

pið�Þ


 �24 35
�

1

Pþþ
�

1

�

� � XN
i¼1

@xiun
�� ��P��

pið�Þ
�N

 !
:

Applying the Jensen inequality to the convex function a :Rþ!R
þ, aðtÞ ¼ tP

�
� ,

P�� � 2 (or using the generalized mean inequality), we find that

1þMþ kunkp!ð�Þ
�

1

Pþþ
�

1

�

� � kunkP��
p
!

ð�Þ

NP���1
�N

0@ 1A:
Dividing the above relation by kunk

P��

p
!

ð�Þ
and passing to the limit as n!1 we obtain a

contradiction.
Thus (un) is bounded in E, and, since E is reflexive, there exists a u02E such that,

up to a subsequence, (un) converges weakly to u0 in E. Next, we show that (un)

converges strongly to u0 in E.
Note that q given in ( f2) fulfils (2.9), hence Theorem 2.1 yields that the

embedding E ,!Lq(�)(�) is compact. Thus (un) converges strongly to u0 in Lq(�)(�). In

addition, ( f2) and the Hölder-type inequality (2.1) yieldZ
�

f ðx, unÞðun � u0Þdx

���� ���� � 2C junj
qðxÞ�1

�� ��
qð�Þ

qð�Þ�1

jun � u0jqð�Þ: ð3:5Þ

Since

lim
n!1
junjqð�Þ 6¼ 1
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and

lim
n!1

� qð�Þ
qð�Þ�1
junj

qðxÞ�1
� �

¼ lim
n!1

Z
�

junj
qðxÞ�1

�� �� qðxÞ
qðxÞ�1dx ¼ lim

n!1

Z
�

junj
qðxÞdx

¼ lim
n!1

�qð�ÞðunÞ,

by (2.5) we get

lim
n!1
junj

qðxÞ�1
�� ��

qð�Þ
qð�Þ�1
6¼ 1: ð3:6Þ

Taking into account (3.5), (3.6) and the strong convergence of (un) to u0 in Lq(�)(�),
we arrive at

lim
n!1

Z
�

f ðx, unÞðun � u0Þdx ¼ 0:

Keeping in mind the above relation and relying on the fact that, by (3.3),

lim
n!1
hI 0ðunÞ, un � u0i ¼ 0,

where hI0ðunÞ,un�u0i¼
R

�

PN
i¼1 @xiun
�� ��piðxÞ�2@xiunð@xiun�@xiu0Þdx�R� f(x,un)(un� u0)dx,

we obtain

lim
n!1

XN
i¼1

Z
�

@xiun
�� ��piðxÞ�2@xiun @xiun � @xiu0� �

dx ¼ 0: ð3:7Þ

Furthermore, (un) converges weakly to u0 in E, thus

lim
n!1

XN
i¼1

Z
�

@xiu0
�� ��piðxÞ�2@xiu0 @xiun � @xiu0� �

dx ¼ 0: ð3:8Þ

From (3.7) and (3.8) we infer that

lim
n!1

XN
i¼1

Z
�

@xiun
�� ��piðxÞ�2@xiun � @xiu0

�� ��piðxÞ�2@xiu0
 �
@xiun � @xiu0
� �

dx ¼ 0:

Let us recall now a very useful inequality [42, formula (2.2)]:

ðj�ij
ri�2�i � j ij

ri�2 iÞ � ð�i �  iÞ � 2�ri j�i �  ij
ri , �i, i 2R,

valid for all ri� 2. We replace �i by @xi
un,  i by @xi

u0 and ri by pi(x) for each
i2 {1, 2, . . .N} and x2�. Combining the last two relations with (2.6), we find that
(un) converges strongly to u0 in E, in other words I satisfies the Palais–Smale
condition. g

LEMMA 3.4 There exist �, �40 such that I(u)��40 for any u2E, with kuk
p
!

ð�Þ
¼ �.

Proof Let u2E be such that kuk
p
!

ð�Þ
¼ �5 1, where � is a positive small number

which will be conveniently chosen later. Hence j@xi
ujpi(�)51 and, by (2.4),Z

�

XN
i¼1

@xiu
�� ��piðxÞ
piðxÞ

dx �
1

Pþþ

XN
i¼1

@xiu
�� ��Pþþ

pið�Þ

for all u2E, with kuk
p
!

ð�Þ
5 1.
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Using again the Jensen inequality (applied to the convex function b :Rþ!R
þ,

bðtÞ ¼ tP
þ
þ , Pþþ � 2) or the generalized mean inequality, we obtain

XN
i¼1

@xiu
�� ��Pþþ

pið�Þ
� N

PN
i¼1

@xiu
�� ��

pið�Þ

N

0BB@
1CCA

Pþþ

:

Combining the previous two relations, we get

Z
�

XN
i¼1

@xiu
�� ��piðxÞ
piðxÞ

dx �
kuk

Pþþ

p
!

ð�Þ

PþþN
Pþþ�1

ð3:9Þ

for all u2E, with kuk
p
!

ð�Þ
5 1.

Let us fix now an arbitrary x2�. If u(x)� 0, then, by ( f2),Z
�

Fðx, uðxÞÞdx �

Z
�

Z uðxÞ

0

CtqðxÞ�1
� �

dt dx �
C

q�

Z
�

juðxÞjqðxÞdx:

If u(x)� 0, then, using the fact that F is even in t and ( f2),Z
�

Fðx, uðxÞÞdx ¼

Z
�

Fðx,�uðxÞÞdx �

Z
�

Z �uðxÞ
0

CtqðxÞ�1
� �

dt dx

�
C

q�

Z
�

juðxÞjqðxÞdx:

Therefore, we can conclude that, for any x2�,Z
�

Fðx, uðxÞÞdx �
C

q�

Z
�

juðxÞjqðxÞdx: ð3:10Þ

From

juðxÞjq
�

þ juðxÞjq
þ

� juðxÞÞjqðxÞ 8x2�,

and (3.10) we deduce Z
�

Fðx, uÞdx �
C

q�

Z
�

jujq
�

þ jujq
þ


 �
dx,

thus Z
�

Fðx, uÞdx �
C

q�
jujq

�

q� þ juj
qþ

qþ


 �
for all u2E: ð3:11Þ

Applying Theorem 2.1 we have

E ,!Lq�ð�Þ, E ,!Lqþð�Þ

continuously. Then there exists a positive constant C1 such that, by (3.11),Z
�

Fðx, uÞdx � C1 kuk
q�

p
!

ð�Þ
þ kuk

qþ

p
!

ð�Þ

� �
� 2C1kuk

q�

p
!

ð�Þ
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for all u2E, with kuk
p
!

ð�Þ
5 1. By the above relation and (3.9) we get

IðuÞ � C0 kuk
Pþþ

p
!

ð�Þ
� 2C1 kuk

q�

p
!

ð�Þ
for all u2E, with kuk

p
!

ð�Þ
5 1,

where C0 ¼ 1=PþþN
Pþþ�1. Thus,

IðuÞ � kuk
Pþþ

p
!

ð�Þ
C0 � 2C1 kuk

q��Pþþ

p
!

ð�Þ

� �
for all u2E, with kuk

p
!

ð�Þ
5 1:

Let g : [0, 1]!R be the function, defined by

gðtÞ ¼ C0 � 2C1t
q��Pþþ :

Clearly g is positive in a neighbourhood of the origin, so that the choice of �2 (0, 1) is
so small that �¼ �g(�)40 and this completes the proof of the lemma. g

LEMMA 3.5 For any finite-dimensional subspace eE � E there exists R ¼ RðeE Þ4 0

such that

IðuÞ � 0 for all u2 eE n BRðeE Þ: ð3:12Þ

Proof Let eE � E be a finite-dimensional subspace, u2 eE and t41. Then

IðtuÞ �
tP
þ
þ

P��

XN
i¼1

Z
�

@xiu
�� ��piðxÞdx� Z

�

Fðx, tuÞdx:

Keeping in mind Remark 1 we rewrite ( f3):

�

s
�

f ðx, sÞ

Fðx, sÞ
, 8s 6¼ 0,

and, by integrating with respect to s, we obtain the existence of a positive constant C2

such that

Fðx, sÞ � C2 jsj
�, 8s2R:

Using (3.12) and taking into account the assumption �4Pþþ, we find

IðtuÞ �
tP
þ
þ

P��

XN
i¼1

Z
�

@xiu
�� ��piðxÞ dx� C2t

�

Z
�

juj� dx!�1 as t!1:

On the other hand, for all R40,

sup
kuk

p
!
ð�Þ
¼R,u2 ~E

IðuÞ ¼ sup
ktuk

p
!
ð�Þ
¼R,tu2 ~E

IðtuÞ ¼ sup
ktuk

p
!
ð�Þ
¼R,u2 ~E

IðtuÞ

and combining the above two relations we infer

sup
kuk

p
!
ð�Þ
¼R,u2 ~E

IðuÞ ! �1 as R!1:

764 M.-M. Boureanu et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Pe

ru
gi

a]
, [

P.
 P

uc
ci

] 
at

 0
6:

46
 0

9 
Se

pt
em

be
r 

20
11

 



Thus, we can choose R040 so large that I(u)� 0 8R�R0 and 8u2 eE with
kuk

p
!

ð�Þ
¼ R, that is

IðuÞ � 0 for all u2 eE n BR0
,

as desired. g

Proof of Theorem 3.2 The fact that F is even in t implies that I is even. Since
I(0)¼ 0, by Lemmas 3.3–3.5 and the symmetric mountain-pass theorem of
Ambrosetti and Rabinowitz we deduce the existence of an unbounded sequence of
weak solutions to problem (1.1). g
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[30] I. Fragalà, F. Gazzola, and B. Kawohl, Existence and nonexistence results for anisotropic

quasilinear equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire 21 (2004), pp. 715–734.
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