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Abstract We study a nonlinear boundary value problem driven by the p-Laplacian plus
an indefinite potential with Robin boundary condition. The reaction term is a Carathéodory
function which is asymptotically resonant at ±∞ with respect to a nonprincipal Ljusternik–
Schnirelmann eigenvalue. Using variational methods, together with Morse theory and
truncation-perturbation techniques, we show that the problem has at least three nontrivial
smooth solutions, two of which have a fixed sign.
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1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper we study the

following nonlinear Robin boundary value problem
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{
−�pu(z) + ξ(z)|u(z)|p−2u(z) = f (z, u(z)) in �,
∂u
∂n p

+ β(z)|u|p−2u = 0 on ∂�.
(1)

Here �p denotes the p-Laplacian differential operator defined by

�pu = div (|Du|p−2Du) for all u ∈ W 1,p(�), 1 < p < ∞.

Also, ξ ∈ L∞(�) is an indefinite (that is, sign changing) potential function. The reaction
term f (z, x) is a Carathéodory function (that is, for all x ∈ R the mapping z �→ f (z, x)
is measurable and for almost all z ∈ � the function x �→ f (z, x) is continuous) which is
p-sublinear in x ∈ R and asymptotically interacts as x → ±∞ with the nonprincipal part of
the spectrum of W 1,p(�) � u �→ −�pu + ξ(z)|u|p−2u with Robin boundary condition. In
the boundary condition, ∂u

∂n p
denotes the generalized normal derivative on ∂�, defined by

∂u

∂n p
= |Du|p−2(Du, n)RN = |Du|p−2 ∂u

∂n
for all u ∈ W 1,p(�),

with n(·) being the outward unit normal on ∂�. The boundary coefficient function β(·)
satisfies β ∈ C0,α(∂�) with 0 < α < 1 and β(z) � 0 for all z ∈ ∂�. When β ≡ 0, we get
the Neumann problem. In this resonant setting, we prove a multiplicity theorem, producing
three nontrivial smooth solutions.

Previous three solutions theorems for equations driven by the p-Laplacian with zero
potential function (that is, ξ ≡ 0), were proved by Gasinski and Papageorgiou [9], Guo
and Liu [10], Liu and Liu [13], Motreanu et al. [14], Papageorgiou and Papageorgiou [18],
Papageorgiou and Rădulescu [19,21], Papageorgiou et al. [23] (Dirichlet problems) and
Gasinski and Papageorgiou [8], Motreanu et al. [15] (Neumann problems). Recently, Mugnai
and Papageorgiou [17] considered Neumann problems driven by the p-Laplacian plus an
indefinite potential, while Papageorgiou and Rădulescu [20,22] studied Robin problems
driven by the p-Laplacian with no potential function. Of the aforementioned works, resonant
problems are treated only in [13,14,17,20]. In all these works resonance occurs with respect to
the principal eigenvalue. The reason for this is that due to the nonlinearity of the differential
operator, the eigenspaces are not linear spaces and consequently the underlying Sobolev
space does not have a direct sum decomposition in terms of the eigenspaces. In addition,
we have only partial knowledge of the spectrum of the operator. These drawbacks make the
study of problems which are resonant with respect to the nonprincipal part of the spectrum,
rather difficult and require different tools to prove existence and multiplicity theorems. Our
approach uses variational methods based on the critical point theory for linking sets over
cones (since the eigenspaces are cones), together with Morse theory (critical groups). With
these tools we prove the existence of at least three nontrivial smooth solutions.

2 Mathematical background

In this section, for the convenience of the reader, we briefly recall the main mathematical
tools which will be used in the sequel.

So, let X be a Banach space with X∗ its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗, X). Given ϕ ∈ C1(X,R), we say that ϕ satisfies the “Cerami
condition” (the C-condition for short), if the following property holds:

“Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is bounded and

(1 + ‖un‖) ϕ′(un) → 0 in X∗,

admits a strongly convergent subsequence”.
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Since the underlying Banach space is in general not locally compact (in most applications
X is infinite dimensional), the necessary compactness condition needed to have a coherent
theory is passed to the functional ϕ by introducing the aforementioned C-condition. This
is analogous to what happens in infinite dimensional degree theory (the Leray–Schauder
degree theory). The C-condition leads to a deformation theorem describing the changes in
the topological structure of the sublevel sets ϕ. From this, one can derive the minimax theory
of the critical values of ϕ. Prominent in that theory, is the so-called “mountain pass theorem”
due to Ambrosetti and Rabinowitz [2].

Theorem 1 Suppose that ϕ ∈ C1(X,R) satisfies the C-condition, u0, u1 ∈ X, ||u1 −u0|| >

ρ > 0

max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ||u − u0|| = ρ] = mρ

and c = inf
γ∈�

max
0�t�1

ϕ(γ (t)), where � = {γ ∈ C([0, 1], X) : γ (0) = u0, γ (1) = u1}. Then
c � mρ and c is a critical value of ϕ.

For our problem, the underlying space is the Sobolev space W 1,p(�) with the norm

||u|| = [||u||pp + ||Du||pp
]1/p

for all u ∈ W 1,p(�).

In addition, we will also use the ordered Banach space C1(�), with positive (order) cone
given by

C+ = {u ∈ C1(�) : u(z) � 0 for all z ∈ �}.

In C+ we consider the nonempty open set D+ given by

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ �}.

To deal with the Robin boundary condition, we will need the “boundary” Lebesgue spaces
Lq(∂�) (1 � q � ∞). So, on ∂� we consider the (N − 1)-dimensional Hausdorff (surface)
measure denoted by σ(·). Using this measure, we can define the Lebesgue spaces Lq(∂�).
From the theory of Sobolev spaces, we know there exists a unique linear continuous map
γ0 : W 1,p(�) → Lq(∂�), known as the trace map, such that γ0(u) = u|∂� for all u ∈
W 1,p(�) ∩C(�). So, we can understand the trace map as representing the boundary values

of u ∈ W 1,p(�). We know that γ0 is a compact mapping into Lq(∂�) for all q ∈
[
1,

p(N−1)
N−p

)
and

im γ0 = W
1
p′ ,p(∂�)

(
1

p′ + 1

p
= 1

)
and ker γ0 = W 1,p

0 (�).

In the sequel, for the sake of notational simplicity, we shall drop the use of the map γ0. It
is understood that all restrictions of the Sobolev functions u ∈ W 1,p(�) on ∂�, are defined
in the sense of traces.

Next, we recall some basic facts about the spectrum of the differential operator u �→
−�pu + ξ(z)|u|p−2u with Robin boundary condition. For details we refer to Mugnai and
Papageorgiou [17] and Papageorgiou and Rădulescu [20].
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We consider the following nonlinear eigenvalue problem:{
−�pu(z) + ξ(z)|u(z)|p−2u(z) = λ̂|u(z)|p−2u(z) in �,
∂u
∂n p

+ β(z)|u|p−2u = 0 on ∂�.
(2)

We say that λ̂ ∈ R is an eigenvalue of the differential operator, if problem (2) admits a
nontrivial solution û ∈ W 1,p(�), known as an eigenfunction corresponding to the eigenvalue
λ̂. We know that there exists a smallest eigenvalue λ̂1 ∈ Rwhich has the following properties:

• λ̂1 is isolated in the spectrum σ̂ (p) of the differential operator;
• λ̂1 is simple (that is, if û1, û2 are eigenfunctions corresponding to λ̂1, then û1 = ξ û2

for some ξ �= 0); and

• λ̂1 = inf
[

γ (u)

||u||pp : u ∈ W 1,p(�), u �= 0
]
, where γ : W 1,p(�) → R is the C1-functional

defined by

γ (u) = ||Du||pp +
∫

�

ξ(z)|u|pdz +
∫

∂�

β(z)|u|pdσ for all u ∈ W 1,p(�). (3)

The infimum in (3) is realized on the corresponding one dimensional eigenspace. Evi-
dently, the elements of this eigenspace do not change sign. In what follows, by û1 we denote
the positive L p-normalized (that is, ||û1||p = 1) eigenfunction corresponding to the eigen-
value λ̂1. The nonlinear regularity theory (see Lieberman [12, Theorem 2]), implies that
û1 ∈ C+\{0}. Moreover, using the nonlinear strong maximum principle (see, for example,
Gasinski and Papageorgiou [7, p. 738]), we show that û1 ∈ D+.

It is easy to show that the spectrum σ̂ (p) is closed and so given the isolation of λ̂1, the
second eigenvalue of (2) is well-defined by

λ̂2 = inf
[
λ̂ ∈ σ̂ (p) : λ̂ > λ̂1

]
.

Using the Ljusternik–Schnirelmann minimax scheme with the Fadell–Rabinowitz coho-
mological index ind (·) (see [6]), we produce a whole sequence {λ̂k}k�1 of distinct eigenvalues
such that λ̂k → +∞ (see Cingolani and Degiovanni [4]). However, we do not know if this
sequence exhausts σ̂ (p). This is the case if p = 2 (linear eigenvalue problem) or N = 1
(ordinary differential equation). All eigenvalues λ̂ �= λ̂1 have nodal (that is, sign changing)
eigenfunctions.

As we already mentioned in the introduction, our approach involves also the use of critical
groups (Morse theory). So, let us briefly recall some basic definitions and facts from that
theory.

So, let X be a Banach space, ϕ ∈ C1(X,R) and c ∈ R. We introduce the following sets:

Kϕ = {u ∈ X : ϕ′(u) = 0}(the critical set of ϕ),

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c}(the critical set of ϕ at the level c),

ϕc = {u ∈ X : ϕ(u) � c}(the sublevel set of ϕ at c).

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X . For every k ∈ N0, by Hk(Y1, Y2)

we denote the kth-relative singular homology group with integer coefficients for the pair
(Y1, Y2). Recall that Hk(Y1, Y2) = 0 for all k ∈ −N. If u ∈ Kc

ϕ is isolated, then the critical
groups of ϕ at u are defined by
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Ck(ϕ, u) = Hk(ϕ
c ∩U, ϕc ∩U\{u}) for all k ∈ N0.

Here, U is a neighborhood of u such that Kϕ ∩ ϕc ∩ U = {u}. The excision property of
the singular homology implies that the above definition of critical groups is independent of
the particular choice of the neighborhood U .

If ϕ ∈ C1(X,R) satisfies the C-condition and inf ϕ(Kϕ) > −∞, then the critical groups
of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X, ϕc) for all k ∈ N0,

with c < inf ϕ(Kϕ). The second deformation theorem (see Gasinski and Papageorgiou [7,
p. 628]), implies that this definition is independent of the choice of the level c < inf ϕ(Kϕ).

Assuming that Kϕ is infinite, we define

M(t, u) =
∑
k�0

rank Ck(ϕ, u) for all t ∈ R, all u ∈ Kϕ,

P(t,∞) =
∑
k�0

rank Ck(ϕ,∞) for all t ∈ R.

The Morse relation says that∑
u∈Kϕ

M(t, u) = P(t,∞) + (1 + t)Q(t) for all t ∈ R, (4)

where Q(t) = ∑
k�0

βk tk is a formal series in t ∈ R with nonnegative integer coefficients βk .

From (4) it follows easily that, if for some m ∈ N we have Cm(ϕ,∞) �= 0, then there
exists u ∈ Kϕ such that Cm(ϕ, u) �= 0. Moreover, if u ∈ X is a local minimizer of ϕ, then

Ck(ϕ, u) = δk,0Z for all k ∈ N,

with δk,0 being the Kronecker symbol, that is,

δk,ϑ =
{

1 if k = ϑ

0 if k �= ϑ
for all k, ϑ ∈ N0.

Let A : W 1,p(�) → W 1,p(�)∗ be the nonlinear map defined by

〈A(u), h〉 =
∫

�

|Du|p−2(Du, Dh)RN dz for all u, h ∈ W 1,p(�).

From Motreanu et al. [16, p. 40], we have the following property.

Proposition 2 The map A : W 1,p(�) → W 1,p(�)∗ is bounded (maps bounded sets into
bounded sets), demicontinuous, maximal monotone and of type (S)+, that is,

“un
w→ u in W 1,p(�), lim sup

n→∞
〈A(un), un − u〉 � 0 ⇒ un → u in W 1,p(�)′′.

Also, as a consequence of the properties of λ̂1 and û1, we have (see Papageorgiou and
Rădulescu [20]).

Proposition 3 If ϑ ∈ L∞(�), ϑ(z) � λ̂1 for almost everywhere z in �, ϑ �≡ λ̂1, then
there exists c0 > 0 such that

γ (u) −
∫

�

ϑ(z)|u|pdz � c0||u||p for all u ∈ W 1,p(�).
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We now fix our notation. Given x ∈ R, we set x± = max{±x, 0}. Then for u ∈ W 1,p(�)

we define

u±(·) = u(·)±.

We have u± ∈ W 1,p(�), u = u+ − u−, |u| = u+ + u−. Given a measurable function
g : � × R → R (for example, a Carathéodory function), we define

Ng(u)(·) = g(·, u(·)) for all u ∈ W 1,p(�),

which is the Nemytskii (superposition) operator corresponding to g.
Finally, we introduce the hypotheses on the data of problem (1):

H(ξ) : ξ ∈ L∞(�).
H(β) : β ∈ C0,α(∂�) with α ∈ (0, 1) and β(z) � 0 for all z ∈ ∂�.

Remark 1 If β ≡ 0, then we obtain the Neumann problem. So, our framework here includes
the Neumann problem as a special case.

H( f ) : f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for almost
all z ∈ � and

(i) for every ρ > 0, there exists aρ ∈ L∞(�) such that

| f (z, x)| � aρ(z) for almost all z ∈ �, all |x | � ρ;

(ii) there exists an integer m � 2 such that

lim
x→±∞

f (z, x)

|x |p−2x
= λ̂m uniformly for almost all z ∈ �;

(iii) if F(z, x) = ∫ x
0 f (z, s)ds, then

lim
x→±∞[ f (z, x)x − pF(z, x)] = +∞ uniformly for almost all z ∈ �; and

(iv) there exist functions ϑ̂, ϑ ∈ L∞(�) such that

ϑ(z) � λ̂1 for almost all z ∈ �, ϑ �≡ λ̂1,

ϑ̂(z) � lim inf
x→0

f (z,x)
|x |p−2x

� lim sup
x→0

f (z,x)
|x |p−2x

� ϑ(z) uniformly for almost all z ∈ �.

Remark 2 Hypothesis H(i i) implies that asymptotically at ±∞, we have resonance with
respect to any nonprincipal Ljusternik–Schnirelmann eigenvalue of the differential operator.
Hypotheses H( f )(i), (i i) imply that

| f (z, x)| � c1(1 + |x |p−1) for almost all z ∈ �, all x ∈ R, some c1 > 0. (5)

Hypothesis H( f )(iv) says that we have nonuniform nonresonance at zero with respect
to the principal eigenvalue λ̂1 from the left.
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3 Constant sign solutions

In this section, using minimax methods, we establish the existence of at least two nontrivial
smooth solutions of constant sign (one positive and one negative).

Let ϕ : W 1,p(�) → R be the energy (Euler) functional for problem (1) defined by

ϕ(u) = 1

p
γ (u) −

∫
�

F(z, u(z))dz for all u ∈ W 1,p(�).

Evidently, ϕ ∈ C1(W 1,p(�)). Let μ > ||ξ ||∞ (see hypothesis H(ξ)) and consider the
following truncations-perturbations of the reaction term f (z, ·):

g+(z, x) =
{

0 if x � 0
f (z, x) + μx p−1 if 0 < x

(6)

g−(z, x) =
{
f (z, x) + μ|x |p−2x if x < 0
0 if 0 � x .

(7)

Both are Carathéodory functions. We define

G±(z, x) =
∫ x

0
g±(z, s)ds

and consider the C1-functionals ϕ̂± : W 1,p(�) → R defined by

ϕ̂±(u) = 1

p
γ (u) + μ

p
||u||pp −

∫
�

G±(z, u(z))dz for all u ∈ W 1,p(�).

Proposition 4 If hypotheses H(ξ), H(β), H( f )(i), (i i), (i i i) hold, then the functionals ϕ̂±
satisfy the C-condition.

Proof We shall present the proof for the functional ϕ̂+, the proof for ϕ̂− is similar.
So, let {un}n�1 ⊆ W 1,p(�) be a sequence such that

|ϕ̂+(un)| � M1 for some M1 > 0, all n ∈ N, (8)

(1 + ||un ||)ϕ̂+(un)
′ → 0 in W 1,p(�). (9)

From (9) we have∣∣∣∣〈A(un), h〉 +
∫

�

(ξ(z) + μ)|un |p−2unhdz +
∫

∂�

β(z)|un |p−2unhdσ −
∫

�

g+(z, un)hdz

∣∣∣∣
� εn ||h||

1 + ||un || for all h ∈ W 1,p(�), with εn → 0+. (10)

In (10) we choose h = −u−
n ∈ W 1,p(�). Then

γ (u−
n ) + μ||u−

n ||pp � εn for all n ∈ N (see (6)),

⇒ c2||u−
n ||p � εn for some c2 > 0, all n ∈ N (recall μ > ||ξ ||∞, see H(β)),

⇒ u−
n → 0 in W 1,p(�). (11)

From (10), (11) and (6), we have∣∣∣∣〈A(u+
n ), h

〉 + ∫
�

ξ(z)(u+
n )p−1hdz +

∫
∂�

β(z)(u+
n )p−1hdσ −

∫
�

f (z, u+
n )hdz

∣∣∣∣ � ε′
n ||h||

for all h ∈ W 1,p(�), with ε′
n → 0. (12)
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Claim 1 {u+
n }n�1 ⊆ W 1,p(�) is bounded.

We argue indirectly. So, suppose that the claim is not true. By passing to a subsequence

if necessary, we may assume that ||u+
n || → ∞. We set yn = u+

n

||u+
n || , n ∈ N. Then

||yn || = 1 and yn � 0 for all n ∈ N.

So, we may assume that

yn
w→ y in W 1,p(�) and yn → y in L p(�) and in L p(∂�), y � 0. (13)

From (12) we have∣∣∣∣〈A(yn), h〉 +
∫

�

ξ(z)y p−1
n hdz +

∫
∂�

β(z)y p−1
n hdσ −

∫
�

N f (u+
n )

||u+
n ||p−1

hdz

∣∣∣∣ � ε′
n

||h||
||u+

n ||p−1

for all h ∈ W 1,p(�), all n ∈ N. (14)

From (5) it is clear that{
N f (u+

n )

||u+
n ||p−1

}
n�1

⊆ L p′
(�) is bounded. (15)

In (14) we choose h = yn − y ∈ W 1,p(�), pass to the limit as n → ∞ and use (13) and
(15). Then

lim
n→∞ 〈A(yn), yn − y〉 = 0,

⇒ yn → y in W 1,p(�) (see Proposition 2), hence y � 0, ||y|| = 1. (16)

Because (15) and hypothesis H( f )(i i), at least for a subsequence we have

N f (u+
n )

||u+
n ||p−1

w→ λ̂m y
p−1 in L p′

(�) as n → ∞ (17)

(see Aizicovici et al. [1], proof of Proposition 16). Therefore, if in (14) we pass to the limit
as n → ∞ and use (16), (17), then

〈A(y), h〉 +
∫

�

ξ(z)y p−1hdz +
∫

∂�

β(z)y p−1hdσ = λ̂m

∫
�

y p−1hdz

for all h ∈ W 1,p(�),

⇒ −�p y(z) + ξ(z)y(z)p−1 = λ̂m y(z)
p−1 for almost all z ∈ �,

∂y

∂n p
+ β(z)y p−1 = 0

on ∂� (see Papageorgiou and Rădulescu [20]). (18)

From (18) and since y �= 0 [see (16)] and m � 2 [see hypothesis H( f )(i i)], it follows
that y must be nodal (that is, sign changing), which contradicts (16). This proves the claim.

From (11) and the claim it follows that {un}n�1 ⊆ W 1,p(�) is bounded and so we may
assume that

un
w→ u in W 1,p(�) and un → u in L p(�) and in L p(∂�). (19)

Evidently, {
Ng+(un)

}
n�1 ⊆ L p′

(�) is bounded (20)
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[see (5), (6), (19)]. So, if in (10) we choose h = un − u ∈ W 1,p(�), pass to the limit as
n → ∞ and use (19), (20), then

lim
n→∞ 〈A(un), un − u〉 = 0,

⇒ un → u in W 1,p(�) (see Proposition 2),

⇒ ϕ̂+ satisfies the C-condition.

Similarly for the functional ϕ̂−, using this time (7). ��
Proposition 5 If hypotheses H(ξ), H(β), H( f )(i), (i i), (i i i) hold, then the functional ϕ

satisfies the C-condition.

Proof Let {un}n�1 ⊆ W 1,p(�) be a sequence such that

|ϕ(un)| � M2 for some M2 > 0, all n ∈ N, (21)

(1 + ||un ||)ϕ′(un) → 0 in W 1,p(�)∗as n → ∞. (22)

From (22) we have∣∣∣∣〈A(un), h〉 +
∫

�

ξ(z)|un |p−2unhdz +
∫

∂�

β(z)|un |p−2unhdσ −
∫

�

f (z, un)hdz

∣∣∣∣
� εn ||h||

1 + ||un || for all h ∈ W 1,p(�), with εn → 0+ (23)

In (23) we choose h = un ∈ W 1,p(�) and obtain

− γ (un) +
∫

�

f (z, un)undz � εn for all n ∈ N. (24)

On the other hand, from (21) we have

γ (un) −
∫

�

pF(z, un)dz � pM2 for all n ∈ N. (25)

We add (24) and (25). Then∫
�

[ f (z, un)un − pF(z, un)]dz � M3 for some M3 > 0, all n ∈ N (26)

Claim 2 {un}n�1 ⊆ W 1,p(�) is bounded.

We argue again by contradiction. So, suppose that ||un || → ∞. We set yn = un||un || for all
n ∈ N. Then ||yn || = 1 and so we may assume that

yn
w→ y in W 1,p(�) and yn → y in L p(�) and in L p(∂�). (27)

From (23) we have∣∣∣∣〈A(yn), h〉 +
∫

�

ξ(z)|yn |p−2ynhdz +
∫

∂�

β(z)|yn |p−2ynhdz −
∫

�

N f (un)

||un ||p−1 hdz

∣∣∣∣
� εn

(1 + ||un ||)||un ||p−1 for all n ∈ N. (28)

From (5) it is clear that{
N f (un)

||un ||p−1

}
n�1

⊆ L p′
(�) is bounded. (29)
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So, if in (28) we choose h = yn − y ∈ W 1,p(�), pass to the limit as n → ∞ and use
(27), (29), then

lim
n→∞ 〈A(yn), yn − y〉 = 0,

⇒ yn → y in W 1,p(�) (see Proposition 2), hence ||y|| = 1. (30)

Since y �= 0 [see (30)], for D = {z ∈ � : y(z) �= 0} we have |D|N > 0, with | · |N being
the Lebesgue measure on R

N and

|un(z)| → +∞ for all z ∈ D. (31)

Then hypothesis H( f )(i i i), Fatou’s lemma and (31) imply that∫
D

[ f (z, un)un − pF(z, un)] dz → +∞ as n → ∞. (32)

Also, hypotheses H( f )(i), (i i i) imply that we can find c3 > 0 such that

− c3 � f (z, x)x − pF(z, x) for almost all z ∈ �, all x ∈ R. (33)

Then∫
�

[ f (z, un)un − pF(z, un)]dz =
∫
D
[ f (z, un)un − pF(z, un)]dz +

∫
�\D

[ f (z, un)un − pF(z, un)]dz

�
∫
D
[ f (z, un)un − pF(z, un)]dz − c3|�\D|N

(see (33) and recall that | · |N is the Lebesgue measure on R
N ),

⇒
∫

�

[ f (z, un)un − pF(z, un)]dz → +∞ as n → ∞ (see [32)]. (34)

Comparing (26) and (34), we reach a contradiction. This proves the claim.
Because of the claim, we may assume that

un
w→ u in W 1,p(�) and un → u in L p(�) and in L p(∂�). (35)

From (5) and (35) we see that

{N f (un)}n�1 ⊆ L p′
(�) is bounded. (36)

So, if in (23) we choose h = un − u ∈ W 1,p(�), pass to the limit as n → ∞ and use
(35), (36), then

lim
n→∞ 〈A(un), un − u〉 = 0,

⇒ un → u in W 1,p(�),

⇒ ϕ satisfies the C-condition.

��
Proposition 6 If hypotheses H(ξ), H(β), H( f )(iv) and (5) hold, then u = 0 is a local
minimizer of the functionals ϕ̂± and ϕ.

Proof We give the proof for the functional ϕ̂+, the proofs for ϕ̂− and ϕ are similar.
Hypothesis H( f )(iv) implies that given ε > 0, we can find δ = δ(ε) > 0 such that

F(z, x) � 1

p
(ϑ(z) + ε)|x |p for almost all z ∈ �, all |x | � δ. (37)
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If r > p, then because of (5) we can find c4 = c4(ε, r) > 0 such that

F(z, x) � c4|x |r for almost all z ∈ �, all |x | � δ (38)

From (37) and (38) it follows that we can find c5 > 0 such that

F(z, x) � 1

p
(ϑ(z) + ε)|x |p + c5|x |r for almost all z ∈ �, all x ∈ R (39)

(recall that ϑ ∈ L∞(�), see hypothesis H( f )(iv)).
So, for all u ∈ W 1,p(�), we have

ϕ̂+(u) � 1

p
γ (u) + μ

p
||u−||pp − 1

p

∫
�

ϑ(z)
(
u+)p

dz − ε

p
||u+||p − c6||u||r

for some c6 > 0 (see (39) and [6)]
� c7||u−||p + 1

p

[
γ

(
u+) −

∫
�

ϑ(z)
(
u+)p

dz − ε||u+||p
]

− c6||u||r

for some c7 > 0 (recall μ > ||ξ ||∞)

� c7||u−||p + 1

p
(c0 − ε)||u+||p − c6||u||r (see Proposition 3). (40)

Choosing ε ∈ (0, c0), from (40) we have

ϕ̂+(u) � c8||u||p − c6||u||r for some c8 > 0, all u ∈ W 1,p(�). (41)

Since r > p, from (41) we see that we can find ρ ∈ (0, 1) small such that

ϕ̂+(u) > 0 = ϕ̂+(0) for all u ∈ W 1,p(�), 0 < ||u|| � ρ,

⇒ u = 0 is a (strict) local minimizer of ϕ̂+.

Similarly for the functionals ϕ̂− and ϕ. ��
We are now ready to produce two nontrivial smooth solutions of constant sign.

Proposition 7 If hypotheses H(ξ), H(β), H( f ) hold, then problem (1) has at least two
nontrivial constant sign smooth solutions

u0 ∈ D+ and v0 ∈ −D+.

Proof Using (6) and (7) and the nonlinear regularity theory (see Lieberman [12, Theorem
2]), we can easily check that

Kϕ̂+ ⊆ C+ and Kϕ̂− ⊆ −C+. (42)

So, we may assume that u = 0 is an isolated critical point of ϕ̂± or otherwise we already
have whole sequence of distinct smooth positive and negative solutions of (1) which as we
will see in the last part of this proof, using the nonlinear strong maximum principle (see, for
example, Gasinski and Papageorgiou [7, p. 738]), belong in D+ and in −D+, respectively.
Thus we are done.

Because u = 0 is an isolated critical point of ϕ̂+ and a local minimizer of ϕ̂+ (see
Proposition 6), we can find ρ ∈ (0, 1) small such that

ϕ̂+(0) = 0 < inf
[
ϕ̂+(u) : ||u|| = ρ

] = m̂+
ρ (43)

(see Aizicovici et al. [1], proof of Proposition 29).
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Hypothesis H( f )(i i) implies that

ϕ̂+
(
t û1

) → −∞ as t → +∞ (recall m � 2) (44)

From (43), (44) and Proposition 4 we see that we can apply Theorem 1 (the mountain
pass theorem) and find u0 ∈ W 1,p(�) such that

u0 ∈ Kϕ̂+ ⊆ C+ (see [42)]and ϕ̂+(0) = 0 < m̂+
ρ � ϕ̂+(u0)(see [43)],

⇒ u0 �= 0 is a solution of (1). (45)

From Papageorgiou and Rădulescu [22] we know that u0 ∈ L∞(�). Let ρ0 = ||u0||∞.
Hypotheses H( f )(i), (iv) imply that we can find ξ̂ρ0 > 0 such that

f (z, x)x + ξ̂ρ0 |x |p � 0 for almost all z ∈ �, all |x | � ρ0. (46)

So, we have (see Papageorgiou and Rădulescu [20])

−�pu0(z) +
(
ξ(z) + ξ̂ρ0

)
u0(z)

p−1 = f (z, u0(z)) + ξ̂ρ0u0(z)
p−1 � 0 for almost all z ∈ �,

⇒ �pu0(z) �
(
||ξ ||∞ + ξ̂ρ0

)
u0(z)

p−1 for almost all z ∈ �,

⇒ u0 ∈ D+ (by the nonlinear strong maximum principle, see [7, p. 738]).

In a similar fashion, working this time with the functional ϕ̂−, we produce a negative
smooth solution v0 ∈ −D+ for problem (1). ��

4 Three solutions theorem

In this section, using Morse theoretic tools (critical groups), we establish the existence of
a third nontrivial smooth and thus prove the three solutions theorem for problem (1) under
conditions of resonance.

We start by examining the critical groups of ϕ at infinity.

Proposition 8 If hypotheses H(ξ), H(β), H( f ) hold and Kϕ is finite, then Cm(ϕ,∞) �= 0.

Proof Let λ ∈ (λ̂m, λ̂m+1)\σ̂ (p) and consider theC1-functional ψ : W 1,p(�) → R defined
by

ψ(u) = 1

p
γ (u) − λ

p
||u||pp for all u ∈ W 1,p(�).

Consider the homotopy h(t, u) = ht (u) defined by

ht (u) = (1 − t)ϕ(u) + tψ(u) for all (t, u) ∈ [0, 1] × W 1,p(�).

Claim 3 There exist η ∈ R and δ0 > 0 such that

ht (u) � η ⇒ (1 + ||u||)||(ht )′(u)||∗ � δ0 for all t ∈ [0, 1].
We argue indirectly. So, suppose that the claim is not true. Because the function (t, u) �→

ht (u) maps bounded sets into bounded sets, we can find {tn}n�1 ⊆ [0, 1] and {un}n�1 ⊆
W 1,p(�) such that

tn → t, ||un || → ∞, htn (un) → −∞ and (1 + ||un ||)(htn )′(un) → 0 in W 1,p(�)∗. (47)
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From the last convergence in (47) we have∣∣∣∣〈A(un), h〉 +
∫

�

ξ(z)|un |p−2unhdz +
∫

∂�

β(z)|un |p−2unhdσ −

(1 − tn)
∫

�

f (z, un)hdz − tn

∫
�

λ|un |p−2unhdz

∣∣∣∣ � εn ||h||
1 + ||un ||

for all h ∈ W 1,p(�) with εn → 0+. (48)

We set yn = un||un || n ∈ N. Then ||yn || = 1 for all n ∈ N and so by passing to a suitable
subsequence if necessary, we may assume that

yn
w→ y in W 1,p(�) and yn → y in L p(�) and in L p(∂�). (49)

From (48) we have∣∣∣∣〈A(yn), h〉+
∫

�

ξ(z)|yn |p−2ynhdz+
∫

∂�

β(z)|yn |p−2ynhdσ − (1 − tn)
∫

�

N f (un)

||un ||p−1 hdz

−tn

∫
�

λ|un |p−2ynhdz

∣∣∣∣ � εn ||h||
(1 + ||un ||)||un ||p−1 for all n ∈ N. (50)

From (5) we see that {
N f (un)

||un ||p−1

}
n�1

⊆ L p′
(�) is bounded. (51)

From hypothesis H( f )(i i), (51) and by passing to a subsequence if necessary, we have

N f (un)

||un ||p−1
w→ λ̂m |y|p−2y in L p′

(�) (52)

(see Aizicovici et al. [1], proof of Proposition 30).
In (50) we choose h = yn − y ∈ W 1,p(�), pass to the limit as n → ∞ and use (49), (52).

We obtain

lim
n→∞ 〈A(yn), yn − y〉 = 0,

⇒ yn → y in W 1,p(�) (see Proposition 2), hence ||y|| = 1. (53)

Therefore, if in (50) we pass to the limit as n → ∞ and use (52) and (53), then

〈A(y), h〉 +
∫

�

ξ(z)|y|p−2yhdz +
∫

∂�

β(z)|y|p−2yhdσ

=
∫

�

[(1 − t)λ̂m + tλ] |y|p−2yhdz for all h ∈ W 1,p(�),

⇒ −�p y(z) + ξ(z)|y(z)|p−2y(z) = λt |y(z)|p−2y(z) for almost all z ∈ �,

∂y

∂n p
+ β(z)|y|p−2y = 0 on ∂� (54)

with λt = (1−t)λ̂m+tλ (see Papageorgiou and Rădulescu [20]). Note that λt ∈
[
λ̂m, λ̂m+1

)
.

If λt /∈ σ̂ (p), then from (54) we infer that y = 0, a contradiction to (53).
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If λt ∈ σ̂ (p), then from (53) we see that for D = {z ∈ � : y(z) �= 0} we have |D|N > 0.
Also, we can say that

|un(z)| → +∞ for all z ∈ D,

⇒ f (z, un(z))un(z) − pF(z, un(z)) → +∞ for almost all z ∈ D,

⇒
∫
D
[ f (z, un)un − pF(z, un)]dz → +∞

(by Fatou’s lemma, see hypothesis H( f )(i i i)). (55)

Hypotheses H( f )(i), (i i) imply that we can find c9 > 0 such that

− c9 � f (z, x)x − pF(z, x) for almost all z ∈ �, all x ∈ R. (56)

We have∫
�

[ f (z, un)un − pF(z, un)]dz

=
∫
D
[ f (z, un)un − pF(z, un)]dz +

∫
�\D

[ f (z, un)un − pF(z, un)]dz

�
∫
D
[ f (z, un)un − pF(z, un)]dz + c9|�\D|N (see (56))

⇒
∫

�

[ f (z, un)un − pF(z, un)]dz → +∞ as n → ∞ (see (55)). (57)

On the other hand, from the third convergence in (47), we see that we can find n0 ∈ N

such that

γ (un) − (1 − tn)
∫

�

pF(z, un)dz − tnλ||un ||pp � −1 for all n � n0. (58)

Also, if in (48) we choose h = un ∈ W 1,p(�), then

− γ (un) + (1 − tn)
∫

�

f (z, un)undz + tλ||un ||pp � εn for all n ∈ N. (59)

By taking n0 ∈ N even bigger if necessary, we may assume that εn ∈ (0, 1) for all n � n0

(recall that εn → 0+). Adding (58) and (59), we obtain

(1 − tn)
∫

�

[ f (z, un)un − pF(z, un)]dz � 0 for all n � n0. (60)

Note that we can assume that tn ∈ [0, 1) for all n � n0. Indeed, if there is a subsequence
{tnk }k�1 of {tn}n�1 such that tnk = 1 for all k ∈ N, then t = 1 [see (47)] and from the
previous argument we have

−�p y(z) + ξ(z)|y(z)|p−2y(z) = λ|y(z)|p−2y(z) for almost all z ∈ �,

∂y

∂n p
+ β(z)|y|p−2y = 0 on ∂�,

⇒ y = 0 (since λ /∈ σ̂ (p)),

which contradicts (53).
So, tn ∈ [0, 1) for all n � n0 and from (60) we have∫

�

[ f (z, un)un − pF(z, un)]dz � 0 for all n � n0. (61)
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Comparing (57) and (61) we reach a contradiction. This proves the claim.
A careful reading of the proof of the claim, reveals that the same argument with minor

changes, shows that for every t ∈ [0, 1], ht (·) satisfies the C-condition. So, we can apply
Theorem 5.1.21 of Chang [3, p. 334] (with a = η, b ≡ +∞, see also Liang and Su [11,
Proposition 3.2]) and infer that

Ck(h0,∞) = Ck(h1,∞) for all k ∈ N0,

⇒ Ck(ϕ,∞) = Ck(ψ,∞) for all k ∈ N0. (62)

We introduce the following two sets

Cr = {u ∈ W 1,p(�) : γ (u) < λ||u||pp, ||u|| = r},
E = {u ∈ W 1,p(�) : γ (u) � λ||u||pp}.

Both are symmetric sets and Cr ∩ E = ∅. The set ∂Br = {u ∈ W 1,p(�) : ||u|| = r} is a
Banach C1-manifold and so it is locally contractible. The set Cr is an open subset of ∂Br ,
so it is locally contractible, too. Evidently, the open set W 1,p(�)\E is locally contractible.
Since λ ∈ (λ̂m, λ̂m+1)\σ̂ (p), we have

indCr = ind (W 1,p(�)\E) = m,

and recall that ind (·) denotes the Fadell–Rabinowitz cohomological index, see [6]. Moreover,
from Theorem 3.6 of Cingolani and Degiovanni [4], we know that the sets Cr and E homo-
logically link in dimension m. So, we can apply Theorem 3.2 of Cingolani and Degiovanni
[4] and infer that

Cm(ψ, 0) �= 0. (63)

But since λ ∈ (λ̂m, λ̂m+1)\σ̂ (p), we have

Kψ = {0},
⇒ Ck(ψ, 0) = Ck(ψ,∞) for all k ∈ N0

(see Motreanu et al. [16], Proposition 6.61, p. 160),

⇒ Cm(ψ,∞) �= 0 (see (63)),

⇒ Cm(ϕ,∞) �= 0 (see (62)).

��
In what follows we outline an alternative approach to showing that Cm(ϕ,∞) �= 0.
Note that the p-homogeneity of ψ implies that

ψ0 is contractible (64)

(just use the radial contraction). In a similar way, we can see that

ψ0\{0} is homotopy equivalent to ψ0 ∩ ∂BL p

1 . (65)

Here, ∂BL p

1 = {u ∈ L p(�) : ||u||p = 1}. Let ∗ ∈ ψ0\{0} and consider the following
triple of sets

{∗} ⊆ ψ0\{0} ⊆ ψ0.

For this triple we consider the corresponding “reduced” long exact sequence of singular
homology groups (see Motreanu et al. [16], Proposition 6.21, p. 146).

· · · → Hk(ψ
0, ∗)

j∗−→ Hk(ψ
0, ψ0\{0}) ∂̂∗−→ Hk−1(ψ

0\{0}, ∗) → · · · k ∈ N, (66)
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where j∗ is the homomorphism induced by the inclusion (ψ0, ∗)
j

↪→(ψ0, ψ0\{0}) and ∂̂∗ is
the composed boundary homomorphism (see Motreanu et al. [16], Proposition 6.14, p. 143).
From (64) we have

Hk(ψ
0, ∗) = 0 for all k ∈ N0 (67)

(see Motreanu et al. [16], Proposition 6.24, p. 147). Also, from the exactness of (66) we have

ker ∂̂∗ = im j∗ = 0 (see (67)),

⇒ ∂̂∗ is a homomorphism onto Hk−1(ψ
0\{0}, ∗) (see (66)),

⇒ Hk(ψ
0, ψ0\{0}) = H̃k−1(ψ

0 ∩ ∂BL p

1 ) (see (65)). (68)

Here, H̃k−1(ψ
0 ∩ ∂BL p

1 ) denotes the reduced homology group.
Since ψ0 ∩ ∂BL p

1 = {u ∈ W 1,p(�) : γ (u) � λ||u||pp, ||u||p = 1} and λ ∈
(λ̂m, λ̂m+1)\σ̂ (p) as in Perera [24], we can show that

H̃m−1(ψ
0 ∩ ∂BL p

1 ) �= 0,

⇒ Hm(ψ0, ψ0\{0}) �= 0 (see (68)),

⇒ Cm(ψ, 0) �= 0,

⇒ Cm(ψ,∞) �= 0(recall that Cm(ψ, 0) = Cm(ψ,∞) since Kψ = {0}),
⇒ Cm(ϕ,∞) �= 0 (see (62)).

We also compute the critical groups at infinity for the functionals ϕ̂±.

Proposition 9 If hypotheses H(ξ), H(β), H hold and Kϕ̂± are finite, then Ck(ϕ̂±,∞) = 0
for all k ∈ N0.

Proof We give the proof for the functional ϕ̂+, the proof for ϕ̂− is similar.
As before, let λ ∈ (λ̂m, λ̂m+1)\σ̂ (p) and consider the C1-functional ψ̂+ : W 1,p(�) → R

defined by

ψ̂+(u) = 1

p
γ (u) + μ

p
||u−||pp − λ

p
||u+||pp for all u ∈ W 1,p(�),

with μ > ||ξ ||∞ (see hypothesis H(ξ)). We introduce the homotopy ĥ+(t, u) = ĥ+
t (u)

defined by

ĥ+
t (u) = (1 − t)ϕ̂+(u) + tψ̂+(u) for all (t, u) ∈ [0, 1] × W 1,p(�).

Claim 4 There exist η̂ ∈ R and δ̂0 > 0 such that

ĥ+
t (u) � η̂ ⇒ (1 + ||u||)||(ĥ+

t )′(u)||∗ � δ̂0 for all t ∈ [0, 1].

We again argue by contradiction. So, suppose that the claim is not true. Then since (t, u) �→
ĥ+
t (u) maps bounded sets to bounded sets, we can find sequences {tn}n�1 ⊆ [0, 1] and

{un}n�1 ⊆ W 1,p(�) such that

tn → t, ||un || → ∞, ĥ+
tn (un) → −∞ and (1 + ||un ||)(ĥ+

tn )
′(un) → 0 in W 1,p(�)∗. (69)
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From the last convergence established in (69), we have

∣∣∣∣〈A(un), h〉 +
∫

�

ξ(z)|un |p−2unhdz +
∫

∂�

β(z)|un |p−2unhdσ − μ

∫
�

(u−
n )p−1hdz

−(1 − tn)
∫

�

f (z, u+
n )hdz − tn

∫
�

λ(u+
n )p−1hdz

∣∣∣∣ � εn ||h||
1 + ||un ||

for all h ∈ W 1,p(�), with εn → 0+(see (6)). (70)

In (70) we choose h = −u−
n ∈ W 1,p(�). Then

γ (u−
n ) + μ||u−

n ||pp � εn for all n ∈ N,

⇒ c10||u−
n ||p � εn for some c10 > 0, all n ∈ N (since μ > ||ξ ||∞),

⇒ u−
n → 0 in W 1,p(�). (71)

From (69) we know that ||un || → ∞. Because of (71) it follows that

||u+
n || → ∞.

Let yn = u+
n

||u+
n || , n ∈ N. Then ||yn || = 1 for all n ∈ N. So, by passing to a subsequence if

necessary, we may assume that

yn
w→ y in W 1,p(�) and yn → y in L p(�) and in L p(∂�), y � 0. (72)

From (70) and (71) we have

∣∣∣∣〈A(yn), h〉+
∫

�

ξ(z)|yn |p−2ynhdz+
∫

∂�

β(z)|yn |p−2ynhdσ −(1 − tn)
∫

�

N f (u+
n )

||u+
n ||p−1

hdz

−tn

∫
�

λy p−1
n hdz

∣∣∣∣ � ε′
n ||h|| for all h ∈ W 1,p(�) with ε′

n → 0+. (73)

It is clear from (5) that

{
N f (u+

n )

||u+
n ||p−1

}
n�1

⊆ L p′
(�) is bounded. (74)

Using (74) and hypothesis H( f )(i i), for at least a subsequence, we have

N f (u+
n )

||u+
n ||p−1

w→ λ̂m y
p−1 in L p′

(�). (75)

In (73) we choose h = yn − y ∈ W 1,p(�), pass to the limit as n → ∞ and use (72) and
(75). Then

lim
n→∞ 〈A(yn), yn − y〉 = 0,

⇒ yn → y in W 1,p(�), hence ||y|| = 1, y � 0. (76)
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Passing to the limit as n → ∞ in (73) and using (75) and (76), we obtain

〈A(y), h〉 +
∫

�

ξ(z)|y|p−2yhdz +
∫

∂�

β(z)|y|p−2yhdσ = (1 − t)
∫

�

λ̂m y
p−1hdz

+t
∫

�

λy p−1hdz for all h ∈ W 1,p(�),

⇒ −�p y(z) + ξ(z)y(z)p−1 = λt y(z)
p−1 for almost all z ∈ �,

∂y

∂n p
+ β(z)y p−1 = 0 on ∂� (see Papageorgiou and Rădulescu [20]), (77)

with λt = (1 − t)λ̂m + tλ.

We see that λt ∈
[
λ̂m, λ̂m+1

)
and sincem � 2, if λt ∈ σ̂ (p), then it must be a nonprincipal

eigenvalue and so from (77) it follows that

y = 0 or y is nodal,

both contradicting (76). If λt /∈ σ̂ (p), then y = 0 [see (77)], again a contradiction.
This proves Claim 4.
Claim 4 says that we can find η̂0 � η̂ such that

η̂0 is a regular value for all ĥ+
t , t ∈ [0, 1]. (78)

The above argument with minor changes also shows that

for all t ∈ [0, 1], ĥ+
t satisfies the C-condition.

We apply Theorem 5.1.21 of Chang [3, p. 334] (with a ≡ η̂0 and b ≡ +∞; see also Liang
and Su [11, Proposition 3.2]) and obtain

Ck(ϕ̂+,∞) = Ck(ψ̂+,∞) for all k ∈ N0. (79)

Next, we consider the homotopy h̃+(t, u) = h̃+
t (u) defined by

h̃+
t (u) = ψ̂+(u) − t

∫
�

udz for all (t, u) ∈ [0, 1] × (W 1,p(�)\{0}).

Claim 5 (h̃+
t )′(u) = 0 for all t ∈ [0, 1], all u ∈ W 1,p(�), u �= 0.

We proceed by contradiction. So, suppose that we can find t ∈ [0, 1] and u ∈
W 1,p(�), u �= 0 such that

(h̃+
t )′(u) = 0,

⇒ 〈A(u), h〉 +
∫

�

ξ(z)|u|p−2uhdz +
∫

∂�

β(z)|u|p−2uhdσ −
∫

�

μ(u−)p−1hdz

=
∫

�

λ(u+)p−1hdz + t
∫

�

hdz for all h ∈ W 1,p(�). (80)

In (80) we choose h = −u− ∈ W 1,p(�). Then

γ (u−) + μ||u−||22 = t
∫

�

(−u−)dz � 0,

⇒ c11||u−||2 � 0 for some c11 > 0 (since μ > ||ξ ||∞),

⇒ u � 0, u �= 0.
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Then equation (80) becomes

〈A(u), h〉 +
∫

�

ξ(z)u p−1hdz +
∫

∂�

β(z)u p−1hdσ =
∫

�

(λu p−1 + t)hdz

for all h ∈ W 1,p(�),

⇒ −�pu(z) + ξ(z)u(z)p−1 = λu(z)p−1 + t for almost all z ∈ �,

∂u

∂n p
+ β(z)u p−1 = 0 on ∂� (see Papageorgiou and Rădulescu [20]). (81)

As before, from (81) and the nonlinear regularity theory (see [12]), we have

u ∈ C+\{0}.
Also, we have

�pu(z) � (||ξ ||∞ + |λ|)u(z)p−1 for almost all z ∈ �,

⇒ u ∈ D+
(from the nonlinear strong maximum principle, see Gasinski and Papageorgiou [7, p. 738]).

Let v ∈ D+ and consider the function

R(v, u)(z) = |Dv(z)|p − |Du(z)|p−2(Du(z), D

(
v p

u p−1

)
(z))RN .

Using the nonlinear Picone’s identity (see, for example, Motreanu et al. [16, p. 255]), we
have

0 �
∫

�

R(v, u)dz

= ||Dv||pp −
∫

�

(−�pu)

(
v p

u p−1

)
dz −

∫
∂�

β(z)v pdσ

(using the nonlinear Green’s identity, see Gasinski and Papageorgiou [7, p. 211])

= ||Dv||pp +
∫

�

ξ(z)v pdz +
∫

∂�

β(z)v pdσ − λ||v||pp − t
∫

�

u p

v p−1 dz (see (81))

� γ (v) − λ||v||pp (since u, v ∈ D+). (82)

Let v = û1 ∈ D+. Then from (82) we have

0 � λ̂1 − λ < 0 (since ||û1||p = 1 and λ > λ̂m � λ̂2 > λ̂1; recall m � 2),

a contradiction.
This proves Claim 5.
The homotopy invariance property of the singular homology groups implies that for small

r > 0, we have

Hk((h̃
+
0 )0 ∩ Br , (h̃

+
0 )0 ∩ Br\{0}) = Hk((h̃

+
1 )0 ∩ Br , (h̃

+
1 )0 ∩ Br\{0})

for all k ∈ N0. (83)

Claim 5 implies that

Hk((h̃
+
1 )0 ∩ Br , (h̃

+
1 )0 ∩ Br\{0}) = 0 for all k ∈ N0

(see Motreanu et al.[16], Proposition 6.61, p.160). (84)
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Also, by definition we have

Hk((h̃
+
0 )0 ∩ Br , (h̃

+
0 )0 ∩ Br\{0}) = Ck(ψ̂+, 0) for all k ∈ N0 (note that h̃+

0 = ψ̂+)(85)

From (83), (84), (85) we infer that

Ck(ψ̂+, 0) = 0 for all k ∈ N0. (86)

Since λ ∈ (λ̂m, λ̂m+1)\σ̂ (p), we have

K
ψ̂+ = {0}

⇒ Ck(ψ̂+,∞) = Ck(ψ̂+, 0) for all k ∈ N0

(see Motreanu et al.[16, p. 160]),

⇒ Ck(ψ̂+,∞) = 0 for all k ∈ N0 (see (86)),

⇒ Ck(ϕ̂+, 0) = 0 for all k ∈ N0 (see (79)).

Similarly for the functional ϕ̂−, using this time the C1-functional ψ̂− : W 1,p(�) → R

defined by

ψ̂−(u) = 1

p
γ (u) + μ

p
||u+||pp − λ||u−||pp for all u ∈ W 1,p(�).

��
This proposition permits the exact computation of the critical groups of ϕ at the two

nontrivial constant sign smooth solutions u0 ∈ D1 and v0 ∈ −D+ (see Proposition 7).

Proposition 10 If hypotheses H(ξ), H(β), H( f ) hold, u0 ∈ D+ and v0 ∈ −D+ from
Proposition 7 are the only nontrivial constant sign smooth solutions of (1) and Kϕ is finite,
then Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ∈ N0.

Proof We give the proof for the solution u0 ∈ D+, the proof for v0 ∈ −D+ is similar.
From (42) and the hypothesis of the proposition, we have

Kϕ̂+ = {0, u0}.
Let η < 0 < a < m̂+

ρ [see (43)]. We consider the following triple of sets

ϕ̂
η
+ ⊆ ϕ̂a+ ⊆ W 1,p(�).

For this triple, we consider the corresponding long exact sequence of singular homology
groups (see Motreanu et al. [16, Proposition 6.14, p. 143]). We have

· · · → Hk(W
1,p(�), ϕ̂

η
+)

j∗−→ Hk(W
1,p(�), ϕ̂a+)

∂̂∗−→ Hk−1(ϕ̂
a+, ϕ̂

η
+) → · · · for all k ∈ N.

(87)
Here, j∗ is the group homomorphism induced by the inclusion

(W 1,p(�), ϕ̂
η
+)

j
↪→(W 1,p(�), ϕ̂a+)

and ∂̂∗ is the composed boundary homomorphism (see [16]). By the rank theorem, we have

rank Hk(W
1,p(�), ϕ̂a+) = rank ker ∂̂∗ + rank im ∂̂∗

= rank im j∗ + rank im ∂̂∗
(from the exactness of (87)). (88)
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From the choice of η and since Kϕ̂+ = {0, u0}, we have

Hk(W
1,p(�), ϕ̂

η
+) = Ck(ϕ̂+, u0) for all k ∈ N0. (89)

Also because a ∈ (0, m̂+
ρ ) and since Kϕ̂+ = {0, u0}, we have

Hk(W
1,p(�), ϕ̂a+) = Ck(ϕ̂+, u0) for all k ∈ N0

(see Motreanu et al.[16], Lemma 6.55, p. 157). (90)

Finally, because η < 0 < a < m̂+
ρ and since K = {0, u0}, we have

Hk−1(ϕ̂
a+, ϕ̂

η
+) = Ck−1(ϕ̂+, 0) = δk−1,0Z = δk,1Z for all k ∈ N0

(see Proposition 6). (91)

Returning to (88) and using (89), (90), (91), we see that

rank C1(ϕ̂+, u0) � 1. (92)

On the other hand, u0 ∈ D+ is a critical point of mountain pass type (see the proof of
Proposition 7). So, we have

C1(ϕ, u0) �= 0 (93)

(see Corollary 6.81, p. 168 of Motreanu et al. [16]). From (92), (93) and since in (87) the
part k � 2 is trivial [see (89), (90)], we infer that

Ck(ϕ̂+, u0) = δk,1Z for all k ∈ N0. (94)

We consider the homotopy h+(t, u) = h+
t (u) defined by

h+
t (u) = (1 − t)ϕ(u) + t ϕ̂+(u) for all (t, u) ∈ [0, 1] × W 1,p(�).

Suppose we could find {tn}n�1 ⊆ [0, 1] and {un}n�1 ⊆ W 1,p(�) such that

tn → t ∈ [0, 1], un → u0 in W 1,p(�) and (h+
tn )

′(un) = 0 for all n ∈ N. (95)

From the equality in (95), we haves

〈A(un), h〉 +
∫

�

ξ(z)|un |p−2unhdz +
∫

∂�

β(z)|un |p−2hdσ − tn

∫
�

(u−
n )p−1hdz

= (1 − tn)
∫

�

f (z, un)hdz + tn

∫
�

f (z, u+
n )hdz for all h ∈ W 1,p(�),

⇒ −�pun(z) + ξ(z)|un(z)|p−2un(z) = (1 − tn) f (z, un(z)) + tn f (z, u
+
n (z)) + tn(u

−
n )p−1

for almost all z ∈ �,
∂un
∂n p

+ β(z)|un |p−2un = 0 on ∂�, for all n ∈ N

(see Papageorgiou and Rădulescu[20]). (96)

From (96) and Papageorgiou and Rădulescu [22], we know that we can find M4 > 0 such
that

||un ||∞ � M4 for all n ∈ N.

Using Theorem 2 of Lieberman [12], we can find α ∈ (0, 1) and M5 > 0 such that

un ∈ C1,α(�) and ||un ||C1,α(�) � M5 for all n ∈ N. (97)
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Exploiting the compact embedding of C1,α(�) into C1(�), we infer from (95) and (97)
that

un → u0 ∈ D+ in C1(�) as n → ∞.

Since D+ ⊆ C1(�) is open, we can find n0 ∈ N such that

un ∈ D+ for all n � n0.

But note that ϕ|C+ = ϕ̂+|C+ [see (6)]. So, we can see that {un}n�1 ⊆ Kϕ and this
contradicts our hypothesis that the critical set Kϕ is finite. Therefore (95) cannot happen and
so we can use Theorem 5.2 of Corvellec and Hantoute [5] (homotopy invariance of critical
groups) and have

Ck(h
+
0 , u0) = Ck(h

+
1 , u0) for all k ∈ N0,

⇒ Ck(ϕ, u0) = Ck(ϕ̂+, u0) for all k ∈ N0,

⇒ Ck(ϕ, u0) = δk,1Z for all k ∈ N0 (see (94)).

Similarly for the negative solution v0 ∈ −D+ using this time the functional ϕ̂− and (7). ��
We are now ready for the complete multiplicity theorem (three solutions theorem) for

problem (1).

Theorem 11 If hypotheses H(ξ), H(β), H( f ) hold, then problem (1) has at least three
nontrivial smooth solutions

u0 ∈ D+, v0 ∈ −D+ and y0 ∈ C1(�)\{0}.
Proof From Proposition 7, we already have two nontrivial constant sign smooth solutions

u0 ∈ D+ and v0 ∈ −D+.

Suppose that Kϕ is finite. Otherwise we already have an infinity of nontrivial solutions in
addition to u0, v0 which belong in C1(�) (by the nonlinear regularity theory, see [12]) and
so we are done.

From Proposition 10, we have

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ∈ N0. (98)

From Proposition 6, we have

Ck(ϕ, 0) = δk,0Z for all k ∈ N0. (99)

According to Proposition 8, Cm(ϕ,∞) �= 0. So, there exists y0 ∈ W 1,p(�) such that

y0 ∈ Kϕ and Cm(ϕ, y0) �= 0 (see Sect. 2). (100)

Since m � 2, we infer from (98), (99), (100) that

y0 /∈ {0, u0, v0}.
Therefore y0 is the third nontrivial solution of (1) [see (100)] and by the nonlinear regularity

theory (see [12]), we have y0 ∈ C1(�). ��
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