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Faculty of Applied Mathematics, AGH University of Science and Technology

30-059 Kraków, Poland
Department of Mathematics, University of Craiova

200585 Craiova, Romania
Institute of Mathematics ’Simion Stoilow’ of the Romanian Academy

P.O. Box 1-764, 014700 Bucharest, Romania

(Communicated by Juncheng Wei)

Abstract. In this paper we study a class of singular systems with double-

phase energy. The main feature is that the associated Euler equation is driven

by the Baouendi-Grushin operator with variable coefficient. In such a way, we
continue the analysis introduced in [6] to the case of lack of compactness corre-

sponding to the whole Euclidean space. After establishing a related compact-

ness property, we establish the existence of solutions for the Baouendi-Grushin
singular system.

1. Introduction. In this paper we study the following singular double-phase sys-
tem{
−∆G(x,y)u+ |u|q(z)−2u+ |u|p(z)−2u = a1(z)u−γ1(z) − b(z)α(z)|v|β(z)|u|α(z)−2u,
−∆G(x,y)v + |v|q(z)−2v + |v|p(z)−2v = a2(z)v−γ2(z) − b(z)β(z)|u|α(z)|v|β(z)−2v,

(1)
with z = (x, y) ∈ RN , a1, a2, b, p, q, α, β ∈ C(RN ,R) and γ1, γ2 : RN → (0, 1) are
continuous functions such that γ1 < γ2. Throughout this paper, we denote by
−∆G(x,y) the Baouendi-Grushin operator with variable coefficient.

The novelty of our work is the fact that we combine several different phenomena
in one problem. To be more precise, problem (1) includes the following features:

(1) the associated energy is double-phase functional with variable growth;
(2) the reaction contains a singular term;
(3) the domain is the whole space RN .
To the best of our knowledge, this is the first work which combines all these

phenomena in one problem. First, we are going to prove a compactness result for the
new needed function spaces related to problem (1). Precisely, we will extend some
qualitative properties for the differential operator introduced recently by Bahrouni,
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4283

http://dx.doi.org/10.3934/dcds.2021036


4284 ANOUAR BAHROUNI AND VICENŢIU D. RĂDULESCU

Rădulescu and Repovš [6] to the whole space RN . In the final part of this paper, by
monotonicity arguments, we will prove that problem (1) has at least one solution.

We first recall the definition of the Baouendi-Grushin operator with variable
growth. Consider the Euclidean space RN (N ≥ 2) and let n,m be nonnegative
integers such that N = n+m. This means that RN = Rn×Rm and so z ∈ RN can
be written as z = (x, y) with x ∈ Rn and y ∈ Rm. In this paper, G : RN → (1,∞) is
supposed to be a continuous function and ∆G(x,y) stands for the Baouendi-Grushin
operator with variable coefficient, which is defined by

∆G(x,y)u = div
(
∇G(x,y)u

)
=

n∑
i=1

(
|∇x|G(x,y)−2uxi

)
xi

+ |x|γ
m∑
i=1

(
|∇y|G(x,y)−2uyi

)
yi
,

where

∇G(x,y)u = A(x)

 |∇x|G(x,y)−2 ∇xu

|x|γ |∇y|G(x,y)−2 ∇yu


and

A(x) =

[
In 0n,m

0m,n |x|γIm

]
∈MN×N (R),

with In being the identity matrix of size n × n, On,m is the zero matrix of size
n×m and MN×N stands for the class of N ×N -matrices with real-valued entries.
From the representation above it is clear that ∆G(x,y) is degenerate along the m-

dimensional subspace M := {0} × Rm of RN .
The differential operator ∆G(x,y) generalizes the degenerate operator

∂2

∂x2
+ x2r ∂

2

∂y2
(r ∈ N)

introduced by Baouendi [9] and Grushin [17]. The Baouendi–Grushin operator can
be viewed as the Tricomi operator for transonic flow restricted to subsonic regions.
On the other hand, a second-order differential operator T in divergence form on the
plane, can be written as an operator whose principal part is a Baouendi-Grushin-
type operator, provided that the principal part of T is nonnegative and its quadratic
form does not vanish at any point, see Franchi & Tesi [16].

Also, the double-phase operator presented in system (1) is strongly related to the
Caffarelli-Kohn-Nirenberg inequality. It is well known that this type of inequality is
needed in several ways in the study of partial differential equations. We refer to the
works of Adimurthi, Chaudhuri & Ramaswamy [2], Baroni, Colombo & Mingione
[8], Colasuonno & Pucci [14], Colombo & Mingione [15] for relevant applications
of the Caffarelli-Kohn-Nirenberg inequality. For recent contributions to the study
of double-phase problems we refer to Ambrosio & Rădulescu [3], Beck & Mingione
[10], Papageorgiou, Rădulescu & Repovš [22, 23, 24, 25], and Zhang & Rădulescu
[30].

Let Ω ⊂ RN be an open set. The following Caffarelli-Kohn-Nirenberg inequality
[11] establishes that for given p ∈ (1, N) and real numbers a, b and q such that

−∞ < a <
N − p
p

, a ≤ b ≤ a+ 1, q =
Np

N − p(1 + a− b)
,
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there exists a positive constant Ca,b such that for all u ∈ C1
c (Ω)(∫

Ω

|x|−bq|u|q dx
)p/q

≤ Ca,b
∫

Ω

|x|−ap|∇u|p dx .

This inequality was extensively studied, see for example Abdellaoui & Peral
[1], Adimurthi, Chaudhuri & Ramaswamy [2], Bahrouni, Rădulescu & Repovš
[5], Bahrouni, Rădulescu & Repovš [6], and the references therein. In particu-
lar, Bahrouni, Rădulescu & Repovš [6] proved a new version of a Caffarelli-Kohn-
Nirenberg inequality with variable exponent for the Baouendi-Grushin operator ∆G.
More precisely, the following weighted inequality has been proved.

Theorem 1.1. Assume that G is a function of class C1 and that G(x, y) ∈ (2, N)
for all (x, y) ∈ Ω. Then there exists a positive constant β such that for all u ∈ C1

c (Ω)∫
Ω

(1 + |x|γ) |u|G(x,y) dx dy

≤ β
∫

Ω

(
|∇xu|G(x,y) + |x|γ |∇yu|G(x,y)

)
dx dy

+ β

∫
Ω

|u|G(x,y)−1
(
1 + u2

)
(|∇xG(x, y)|+ |x|γ |∇yG(x, y)|) dx dy.

Using the above theorem, Bahrouni, Rădulescu & Repovš [6] introduced a new
Bouendi-Grushin-type operator and a suitable functions space (see section 3).

Contributions related with the content of this paper and dealing with certain
types of double-phase problems are due to Cencelj, Rădulescu & Repovš [12] (prob-
lems with variable growth), Colasuonno & Squassina [13], and Liu & Dai [19]
(problems with a differential operator which exhibits unbalanced growth). We also
mention the recent works on (p, q)−equations (equations driven by the sum of a
p−Laplacian and of a q−Laplacian) with singular terms of Papageorgiou, Rădulescu
& Repovš [21] and Papageorgiou, Vetro & Vetro [26].

The paper is organized as follows. In Section 2 we present the basic properties
of variable Lebesgue space and state the main tools which will be used later. New
properties concerning the Baouendi-Grushin operator will be discussed in Section 3
and in the last section we state and prove our main result concerning the existence
of a weak solution to problem (1).

2. Terminology and the abstract setting. In this section we recall some nec-
essary definitions and properties of of variable exponent spaces. We refer to the
papers of Bahrouni & Repovš [4], Hájek, Montesinos Santalućıa, Vanderwerff &
Zizler [18], Musielak [20], Rădulescu [27, 28], Rădulescu & Repovš [29] and the
references therein.

Consider the set

C+(Ω) =

{
p ∈ C(Ω)

∣∣∣∣ p(x) > 1 for all x ∈ Ω

}
and define for any p ∈ C+(Ω)

p+ := sup
x∈Ω

p(x) and p− := inf
x∈Ω

p(x).

Then 1 < p− ≤ p+ < ∞ for each p ∈ C+(Ω). The variable exponent Lebesgue
space Lp(·)(Ω) is defined by



4286 ANOUAR BAHROUNI AND VICENŢIU D. RĂDULESCU

Lp(·)(Ω) =

{
u : Ω→ R

∣∣∣∣ u is measurable and

∫
Ω

|u(x)|p(x) dx <∞
}

equipped with the Luxemburg norm

‖u‖p(·),Ω = inf

{
µ > 0

∣∣∣∣ ∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.

If Ω = RN , we denote ‖u‖p(·),Ω = ‖u‖p(·).
It is known that Lp(·)(Ω) is a reflexive Banach space.
Let Lq(x)(Ω) denote the conjugate space of Lp(x)(Ω), where 1/p(x) + 1/q(x) = 1.

If u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) then the following Hölder-type inequality holds:∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p(x)|v|q(x) .

Moreover, for p1 ≤ p2 in Ω, then there exists the continuous embedding

Lp2(·)(Ω) ↪→ Lp1(·)(Ω). (2)

The following two propositions will be useful in the sequel.

Proposition 1. Let

ρ1(u) =

∫
Ω

|u|p(x) dx for all u ∈ Lp(·)(Ω).

Then the following holds:

(i) ‖u‖p(·),Ω < 1 (resp.,= 1;> 1) if and only if ρ1(u) < 1 (resp.,= 1;> 1);

(ii) ‖u‖p(·),Ω > 1 implies ‖u‖p
−

p(·),Ω ≤ ρ1(u) ≤ ‖u‖p
+

p(·),Ω;

(iii) ‖u‖p(·),Ω < 1 implies ‖u‖p
+

p(·),Ω ≤ ρ1(u) ≤ ‖u‖p
−

p(·),Ω.

Proposition 2. Let

ρ1(u) =

∫
Ω

|u|p(x) dx for all u ∈ Lp(·)(Ω).

If u, un ∈ Lp(·)(Ω) and n ∈ N, then the following statements are equivalent:

(i) lim
n→+∞

‖un − u‖p(·),Ω = 0;

(ii) lim
n→+∞

ρ1(un − u) = 0;

(iii) un(x)→ u(x) in Ω and lim
n→+∞

ρ1(un) = ρ1(u).

3. Compactness results related to double-phase operator in RN . In this
section we recall and prove new results concerning the Baouendi-Grushin operator
in RN .

We will start by recalling some results proved in [6]. Based on Theorem 1.1, we
denote by W the closure of C1

c (Ω) with respect to the norm

‖u‖1 = ‖∇xu‖G(·,·) +
∥∥∥|x| γ

G(·,·) ∇yu
∥∥∥
G(·,·)

+
∥∥∥u (|∇xG(x, y)|+ |x|γ |∇yG(x, y)|)

1
G(x,y)+1

∥∥∥
G(·,·)+1

+
∥∥∥u (|∇xG(x, y)|+ |x|γ |∇yG(x, y)|)

1
G(x,y)−1

∥∥∥
G(·,·)−1

.
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Note that the norm ‖ · ‖1 on W is equivalent to

‖u‖W

= inf

{
µ ≥ 0

∣∣∣∣ ρ(uµ
)
≤ 1

}
= inf

{
µ ≥ 0

∣∣∣∣ ∫
Ω

1

G(x, y)

[∣∣∣∣∇x(uµ
)∣∣∣∣G(x,y)

+ |x|γ
∣∣∣∣∇y (uµ

)∣∣∣∣G(x,y)
]
dx dy

+

∫
Ω

A(x, y)


∣∣∣uµ ∣∣∣G(x,y)+1

G(x, y) + 1
+

∣∣∣uµ ∣∣∣G(x,y)−1

G(x, y)− 1

 dx dy ≤ 1

 ,

(3)

with

A(x, y) = |∇xG(x, y)|+ |x|γ |∇yG(x, y)| for all (x, y) ∈ Ω.

The following compactness property was proved by Bahrouni, Rădulescu & Re-
povš [6].

Lemma 3.1. Let Ω ⊂ RN , be a bounded domain with smooth boundary ∂Ω. We
suppose that the domain Ω intersects the degeneracy set [x = 0], that is,

Ω ∩ {(0, y) : y ∈ Rm} 6= ∅.

Assume that G is a function of class C1 and that G(x, y) ∈ (2, N) for all (x, y) ∈ Ω.

Furthermore, suppose that s ∈ (1, G−) and 0 < γ < N(G−−s)
s . Then W is compactly

embedded in Ls(Ω).

Now, we will try to extend the above Lemma to the whole space RN . First, we
give the hypotheses on continuous functions K, p, q : RN → R.

(K) K ∈ L∞(RN ), K(x) > 0 for all x ∈ RN and if (An) ⊂ RN is a sequence of
Borel sets such that the Lebesgue measure |An| ≤ R, for all n ∈ N and some R > 0,
then

lim
n→+∞

∫
An_Bcr(0)

K(x)dx = 0.

(PQ) p, q ∈ C+(RN ), q+ < G− and G(x) + 1 ≤ p+ <∞, for all x ∈ RN .

In order to treat problem (1), let us consider the space:

X = {u : RN → R, u is measeurable and∫
RN

(|∇xu|G(x,y) + |x|γ |∇yu|G(x,y))dxdy +

∫
RN
|u|q(z)dz

+

∫
RN
|u|p(z)dz < +∞}

endowed with the norm

‖u‖X = ‖∇xu‖G(·,·) +
∥∥∥|x| γ

G(·,·) ∇yu
∥∥∥
G(·,·)

+ ‖u‖q(·) + ‖u‖p(·) , ∀u ∈ X.

Lemma 3.2. Assume that assumptions of Lemma 3.1 are fulfilled. Moreover, sup-
pose that (K), (PQ) are satisfied. Then X is compactly embedded in Ls(Ω).
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Proof. Let (un) be an arbitrary bounded sequence in X. Then, using Proposition
1 and (2), we get

ρW(un) = =

∫
Ω

1

G(x, y)

[
|∇x(un)|G(x,y)

+ |x|γ |∇y(un)|G(x,y)
]
dx dy

+

∫
Ω

A(x, y)

[
|un|G(x,y)+1

G(x, y) + 1
+
|un|G(x,y)−1

G(x, y)− 1

]
dx dy

≤ C(‖∇xun‖G
+

G(·,·) + ‖∇xun‖G
−

G(·,·) +

∥∥∥∥|x| γ
G(·,·) ∇yun

∥∥∥∥G+

G(·,·)
+

∥∥∥∥|x| γ
G(·,·) ∇yun

∥∥∥∥G−
G(·,·)

+ ‖un‖G
−−1

G(·,·)−1,Ω + ‖un‖G
+−1

G(·,·)−1,Ω + ‖un‖G
−+1

G(·,·)+1,Ω + ‖un‖G
++1

G(·,·)+1,Ω)

≤ C(‖un‖G
+

X + ‖un‖G
−

X + ‖un‖G
−−1

p(·),Ω + ‖un‖G
+−1

p(·),Ω + ‖un‖G
−+1

p(·),Ω + ‖un‖G
++1

p(·),Ω )

≤ C(‖un‖G
+

X + ‖un‖G
−

X + ‖un‖G
−−1

X + ‖un‖G
+−1

X + ‖un‖G
−+1

X + ‖un‖G
++1

X )

which implies that (un|Ω) is bounded in W. Thus, in light of Lemma 3.1, we
conclude the proof of our lemma.

Note that the norm ‖ · ‖X on X is equivalent to

‖u‖ = inf

{
µ ≥ 0

∣∣∣∣ ρ(uµ
)
≤ 1

}
= inf

{
µ ≥ 0

∣∣∣∣ ∫
RN

[∣∣∣∣∇x(uµ
)∣∣∣∣G(x,y)

+ |x|γ
∣∣∣∣∇y (uµ

)∣∣∣∣G(x,y)
]
dx dy

+

∫
RN

[∣∣∣∣uµ
∣∣∣∣q(x,y)

+

∣∣∣∣uµ
∣∣∣∣p(x,y)

]
dx dy ≤ 1

}
.

(4)

From now on we denote the duality pairing between X and its dual space X∗ by
〈·, ·〉X . The following lemma will be helpful in later treatments.

Lemma 3.3. Suppose that conditions of Lemma 3.2 are satisfied. Let u ∈ X, then
the following holds:

(i) For u 6= 0 we have: ‖u‖ = a if and only if ρ(ua ) = 1;

(ii) ‖u‖ < 1 implies ‖u‖
p+

4
1

p+−1

≤ ρ(u) ≤ 4‖u‖q− ;

(iii) ‖u‖ > 1 implies ‖u‖q− ≤ ρ(u).

Proof. (i) For every fixed u ∈ X, the mapping λ 7→ ρ(λu) is a continuous, convex,
even function, which is strictly increasing in [0,+∞). Thus, by the definition of ρ
and the equivalent norm given in (4), we have

‖u‖ = a ⇐⇒ ρ
(u
a

)
= 1.

(ii) Let u ∈ X be such that ‖u‖ < 1, then

‖∇xu‖G(·,·) < 1,
∥∥∥|x| γ

G(x,y) ∇yu
∥∥∥
G(·,·)

< 1,

‖u‖q(·) < 1, ‖u‖p(·) < 1.

So, by Proposition 1, we get the desired result.
(iii) Let u ∈ X be such that ‖u‖ > 1. By (i), we obtain

ρ

(
u

‖u‖

)
=

∫
RN

[∣∣∣∣∇x( u

‖u‖

)∣∣∣∣G(x,y)

+ |x|γ
∣∣∣∣∇y ( u

‖u‖

)∣∣∣∣G(x,y)
]
dx dy
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+

∫
RN

[∣∣∣∣ u‖u‖
∣∣∣∣q(x,y)

+

∣∣∣∣ u‖u‖
∣∣∣∣p(x,y)

]
dx dy = 1.

Then, by the mean value theorem, there exist (x1, y1), (x2, y2), (x3, y3) ∈ RN de-
pending on u,G such that

1 =
1

‖u‖G(x1,y1)

∫
RN

[
|∇xu|G(x,y)

+ |x|γ |∇yu|G(x,y)
]
dx dy

+
1

‖u‖q(x2,y2)

∫
Ω

|u|q(x,y)
dx dy +

1

‖u‖p(x3,y3)

∫
Ω

|u|p(x,y)
dx dy.

Since ‖u‖ > 1, it follows that

1 ≤ 1

‖u‖q−
[∫

Ω

[
|∇xu|G(x,y)

+ |x|γ |∇yu|G(x,y)
]
dx dy

]
+

1

‖u‖q−
[∫

RN

[
|u|q(x,y)

+ |u|p(x,y)
]
dx dy

]
.

This finishes the proof.

Now, we are ready to prove our compact embedding result in whole space RN .
Let us define, for every s(·) ∈ C+(RN ), the following Lebesgue space

L
s(·)
K (RN ) =

{
u : RN → R, u is measurable and

∫
RN

K(z)|u|s(z)dz < +∞
}
.

Proposition 3. Assume that G is a function of class C1 and that G(x, y) ∈ (2, N)
for all (x, y) ∈ RN . Let (K) and (PQ) be satisfied. Furthermore, suppose that s(·) ∈
(q+, G−) and 0 < γ < N(G−−s+)

s+ . Then X is compactly embedded in L
s(·)
K (RN ).

Proof. Fix s(·) ∈ (q+, G−) and ε > 0. Using condition (PQ), we conclude that

lim
t→0

|t|s(z)

|t|q(z)
= lim
t→+∞

|t|s(z)

|t|p(z)
= 0 uniformly for z ∈ RN .

Thus, there exists 0 < t0 < t1 and a positive constant C > 0 such that

K(z)|t|s(z) ≤ εC(|t|q(z) + |t|p(z)) + χ[t0,t1](z)K(z)|t|p(z), ∀t ∈ R and z ∈ RN .
Set

A(u) =

∫
RN
|u|p(z)dz +

∫
RN
|u|q(z)dz

and
R = {z ∈ RN , t0 < |u(z)| < t1}.

Therefore ∫
Bcr(0)

K(z)|u|s(z)dz ≤ εCA(u) +

∫
Bcr(0)

χ[t0,t1](z)K(z)|u|p(z)dz

≤ εCA(u) + (tp
−

1 + tp
+

1 )

∫
Bcr(0)_R

K(z)dz. (5)

Let (un) ∈ X be a sequence such that un ⇀ u in X. It is easy to se that (A(un))n
is bounded in R. Denoting Rn = {x ∈ RN , t0 < |un(x)| < t1}, it follows that
supn∈N |An| < +∞. Hence, from (K) and (5), there exists a positive radius r > 0
such that∫

Bcr(0)

K(z)|un|s(z)dz ≤ εCA(un) +

∫
Bcr(0)

χ[t0,t1](z)K(z)|un|p(z)dz
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≤ εCA(un) + (tp
−

1 + tp
+

1 )

∫
Bcr(0)_Rn

K(z)dz

≤ (C
′
+ tp

−

1 + tp
+

1 )ε, ∀n ∈ N. (6)

Now, since s(·) ∈ (q+, G−) and K ∈ L∞(RN ), we deduce, that

lim
n→+∞

∫
Br(0)

K(x)|un|s(z)dz =

∫
Br(0)

K(x)|u|s(z)dz. (7)

Here we used Lemma 3.2. Combining (6) and (7), we conclude for ε > 0 small
enough, that

lim
n→+∞

∫
RN

K(z)|un|s(z)dz =

∫
RN

K(z)|u|s(z)dz.

Consequently, using Proposition 1, we infer that

un → u in L
s(·)
K (RN ), ∀s(·) ∈ (q+, G−).

This ends the proof.

Now, we prove the compactness result related to the nonlinear term defined in
problem (1).

Proposition 4. Assume that G is a function of class C1 and that G(x, y) ∈ (2, N)
for all (x, y) ∈ RN . Let (K) and (PQ) be satisfied. Furthermore, suppose that

s(·), r(·) ∈ (q+, G−) and 0 < γ < min(N(G−−s+)
s+ , N(G−−r+)

r+ ).

Let f : RN × R→ R be a continuous function such that

lim
t→0

f(z, t)

ts(z)−1
= lim
t→+∞

f(z, t)

tr(z)−1
= 0, for z ∈ RN uniformly. (8)

If (un)n is a sequence such that un ⇀ u in X, then

lim
n→+∞

∫
RN

K(z)F (z, un)dz =

∫
RN

K(z)F (z, u)dz.

Proof. By Proposition 3, there exists a subsequence un → u a.e in RN . It follows
that

K(z)F (z, un(z))→ K(z)F (z, u(z)) a.e in RN . (9)

Due to (8), we obtain

K(z)F (z, u(z)) ≤ εC(K(z)|t|r(z) +K(z)|t|s(z)) +K(z)|t|s(z), ∀ z ∈ RN . (10)

By Proposition 3, un → u in L
r(·)
K (RN ) and un → u in L

s(·)
K (RN ). Thus, there

exist f1, f2, f3 ∈ L1(RN ) such that

K(z)F (z, u(z)) ≤ f1(z) + f2(z) + f3(z), ∀ z ∈ RN . (11)

Here we used inequality (10). Then using (9), (11) and the Lebesgue dominated
convergence theorem, we deduce that

lim
n→+∞

∫
RN

K(z)F (z, un)dz =

∫
RN

K(z)F (z, u)dz.

The proof is now complete.
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4. A singular system driven by ∆G. In this section, we work under conditions
introduced in Proposition 3. Using the previous abstract results, we investigate the
existence of solutions for the singular system (1).

The hypotheses on functions a1, a2, b1 and b2 are the following:

(H1) a1

K ∈ L
∞(RN ) and a1 ∈ L

t1(z)

t1(z)+γ1(z)−1 (RN ) where t1(·) ∈ C+(RN ) and t1(·) ∈
(q+, G−). Moreover, we assume that there are R0 > 0 and x0 ∈ RN such that

a1(x) > 0, ∀x ∈ B(x0, R0).

(H2) a2

K ∈ L
∞(RN ) and a2 ∈ L

t2(z)

t2(z)+γ2(z)−1 (RN ) where t2(·) ∈ C+(RN ) and t2(·) ∈
(q+, G−).
(H3) α, β ∈ C+(RN ) such that α+ β ∈ (q+, G−).
(H4) b ≥ 0 and b

K ∈ L
∞(RN ).

We say that (u, v) ∈ X ×X is a weak solution of problem (1) if∫
RN

[
|∇xu|G(x,y)−2∇xu∇xφ+ |x|γ |∇yu|G(x,y)−2∇yu∇yφ

]
dx dy

+

∫
RN

[
|∇xv|G(x,y)−2∇xv∇xψ + |x|γ |∇yv|G(x,y)−2∇yv∇yψ

]
dx dy

+

∫
RN
|u|q(z)−2

uφ dz +

∫
RN
|u|p(z)−2

uφ dz

+

∫
RN
|v|q(z)−2

uψ dz +

∫
RN
|v|p(z)−2

vψ dz

=

∫
RN

a1(z)u−γ1(z)φdx dy +

∫
RN

a2(z)v−γ2(z)ψ dz

−
∫
RN

b(z)α(z)|u|α(z)−2u|v|β(z)φdz −
∫
RN

b(z)β(z)|u|α(z)|v|β(z)−2vψ dz.

is satisfied for all φ, ψ ∈ X \ {0}.
We associate to the problem (1), the singular functional I : X × X → R, as

follows:

I(u, v) =

∫
RN

1

G(x, y)

[
|∇xu|G(x,y)

+ |x|γ |∇yu|G(x,y)
]
dx dy

+

∫
RN

1

G(x, y)

[
|∇xv|G(x,y)

+ |x|γ |∇yv|G(x,y)
]
dx dy

+

∫
RN

|u|q(z)

q(z)
dz +

∫
RN

|u|p(z)

p(z)
dz +

∫
RN

|v|q(z)

q(z)
dz +

∫
RN

|v|p(z)

p(z)
dz

−
∫
RN

a1(z)u1−γ1(z)

1− γ1(z)
dz −

∫
RN

a2(z)v1−γ2(z)

1− γ2(z)
dz −

∫
RN

b(z)|u|α(z)|v|β(z) dz,

for all (u, v) ∈ X ×X.
Now, we are ready to state our main result.

Theorem 4.1. Suppose that conditions of Proposition 3 are fulfilled. Moreover,
we assume that (H1) − (H4) are satisfied. Then there exists m > 0, such that if
0 < γ < m, problem (1) admits at least one nonnegative weak solution.

We give some useful remarks.
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Remark 1. (i) Under conditions of Theorem 4.1, we have

I(u, v) ∈ R for all (u, v) ∈ X ×X.

Indeed, it is sufficient to prove that

∫
RN

b(z)|u|α(z)|v|β(z) dz < +∞, ∀(u, v) ∈

X ×X. For (u, v) ∈ X ×X, using Young’s inequality and condition (H4) , we get

b(z)|u|α(z)|v|β(z) ≤ α(z)b(z)

α(z) + β(z)
|u|α(z)+β(z) +

β(z)b(z)

α(z) + β(z)
|v|α(z)+β(z)

≤ C(K(z)|u|α(z)+β(z) +K(z)|v|α(z)+β(z)), ∀z ∈ RN . (12)

Set f(z, t) = |t|α(z)+β(z) for z ∈ RN and t ∈ R. In light of (H3),
there exist r(·), s(·) ∈ (q+, G−) such that

lim
t→0

f(z, t)

|t|s(z)
= lim
t→+∞

f(z, t)

|t|r(z)
= 0.

Let γ ∈ R such that

0 < γ < min(
N(G− − s+)

s+
,
N(G− − r+)

r+
) = m1. (13)

Hence, by (10) and Proposition 3, we prove that
∫
RN K(z)|u|α(z)+β(z) dz < +∞. It

follows, by (12), that ∫
RN

b(z)|u|α(z)|v|β(z) dz < +∞.

(ii) It is important to mention that the energy functional I is well defined (by (i))
but not differentiable due to the singular term.
(iii) Lemma 3.3 still holds true if we replace X by X ×X.

Lemma 4.2. Suppose that assumptions of Theorem 4.1 are fulfilled. Then the
functional I is coercive.

Proof. Let (u, v) ∈ X×X such that ‖(u, v)‖ > 1. Then, in view of Hölder inequality
and Lemma 3.3, we infer that

I(u, v) ≥ C(

∫
RN

[
|∇xu|G(x,y)

+ |x|γ |∇yu|G(x,y)
]
dx dy

+

∫
RN

[
|∇xv|G(x,y)

+ |x|γ |∇yv|G(x,y)
]
dx dy

+

∫
RN
|u|q(z) dz +

∫
RN
|u|p(z) dz +

∫
RN
|v|q(z) dz +

∫
RN
|v|p(z) dz

−
∫
RN

a1(z)u1−γ1(z)

1− γ1(z)
dz −

∫
RN

a2(z)v1−γ2(z)

1− γ2(z)
dz)

≥ C(‖u, v‖q
−
− ‖(u, v)‖1−γ

−
1 − ‖(u, v)‖1−γ

+
1 − ‖(u, v)‖1−γ

−
2 − ‖(u, v)‖1−γ

+
2 ).

Since 1− γ+
1 , 1− γ

+
2 < q−, it follows that I is coercive. This ends the proof.

Lemma 4.3. Under conditions of Theorem 4.1, If (un, vn) ⇀ (u, v) weakly in
X ×X, then there exist m2 > 0 and a subsequence of (un, vn) satisfies

lim
n→+∞

∫
RN

b(z)|un|α(z)|vn|β(z) dz =

∫
RN

b(z)|u|α(z)|v|β(z) dz, (14)

lim
n→+∞

∫
RN

a1(z)|un|1−γ1(z)dz =

∫
RN
|u|1−γ1(z)dz, (15)
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and

lim
n→+∞

∫
RN

a1(z)|vn|1−γ1(z)dz =

∫
RN
|v|1−γ1(z)dz, (16)

where 0 < γ < m2.

Proof. By the same argument used in (12), we have

b(z)|un|α(z)|vn|β(z) ≤ C(K(z)|un|α(z)+β(z) +K(z)|vn|α(z)+β(z)),∀z ∈ RN .
Therefore, by the same method used in the proof of Proposition 4, we show that
there exists m

′

1 ∈ R such that if 0 < γ < m
′

1 and (14) still holds true.
Invoking Hölder’s inequality, we obtain∫

RN
a1(z)|un − u|1−γ1(z)dz ≤∫

RN
(a1(z)K

t1(z)+γ1(z)−1

t1(z)
(z)

)(K
1−γ1(z)

t1(z) (z)|un − u|1−γ1(z))dz ≤

C‖a1(z)K
t1(z)+γ1(z)−1

t1(z)
(z)‖ t1(z)

t1(z)+γ1(z)−1

‖K
1−γ1(z)

t1(z) (z)|un − u|1−γ1(z)‖ t1(z)

1−γ1(z)

, (17)

with 0 < γ < m
′

2 for some positive m
′

2. Thus, combining (17), Propositions 1

and Proposition 3, we prove (15) for 0 < γ < min(m
′

1,m
′

1). By the same idea, we
conclude assertion (16). This finishes the proof.

We consider the following minimization problem

m = inf
(u,v)∈X×X

I(u, v).

Lemma 4.4. Suppose that hypotheses of Theorem 4.1 are satisfied. Then there
exists m3 > 0 such that if 0 < γ < m3, the functional I reaches its global minimizer
in X ×X, that is, there exists (u, v) ∈ X ×X \ {(0, 0)} such that I(u, v) = m and
u, v ≥ 0 in RN .

Proof. In light of Lemma 4.2, we deduce that −∞ < m. Thus, there is a minimizing
sequence (un, vn) ∈ X ×X such that

I(un, vn)→ m as n→ +∞. (18)

It follows, again by Lemma 4.2, that (un, vn) is bounded in X × X. This fact
combined with Proposition 3 implies, up to a subsequence, that un → u a.e. in RN
and vn → v a.e. in RN . Hence, by Fatou’s lemma, we obtain∫

RN

1

G(x, y)

[
|∇xu|G(x,y)

+ |x|γ |∇yu|G(x,y)
]
dx dy (19)

+

∫
RN

1

G(x, y)

[
|∇xv|G(x,y)

+ |x|γ |∇yv|G(x,y)
]
dx dy

+

∫
RN

|u|q(z)

q(z)
dz +

∫
RN

|u|p(z)

p(z)
dz +

∫
RN

|v|q(z)

q(z)
dz +

∫
RN

|v|p(z)

p(z)
dz

≤ lim inf
n→+∞

(

∫
RN

1

G(x, y)

[
|∇xun|G(x,y)

+ |x|γ |∇yun|G(x,y)
]
dx dy

+

∫
RN

1

G(x, y)

[
|∇xvn|G(x,y)

+ |x|γ |∇yvn|G(x,y)
]
dx dy

+

∫
RN

|un|q(z)

q(z)
dz +

∫
RN

|un|p(z)

p(z)
dz +

∫
RN

|vn|q(z)

q(z)
dz +

∫
RN

|vn|p(z)

p(z)
dz).
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Consequently, using (19) and Lemma 4.3, we conclude that

I(u, v) ≤ lim inf
n→+∞

I(un, vn). (20)

Then, by (18) and (20), we prove that I(u, v) = m. It remains to show that
(u, v) ∈ X×X \{(0, 0)}. Indeed: Let ϕ ∈ C∞0 (RN ) such that B(x0,

R0

2 ) ⊂ supp(ϕ),

ϕ = 1 for all x ∈ B(x0,
R0

2 ) and 0 ≤ ϕ ≤ 1 in RN . It then follows that for t ∈ (0, 1),

I(tϕ, tψ) ≤ tG
−

(

∫
RN

1

G(x, y)

[
|∇xϕ|G(x,y)

+ |x|γ |∇yϕ|G(x,y)
]
dx dy

+

∫
RN

1

G(x, y)

[
|∇xψ|G(x,y)

+ |x|γ |∇yψ|G(x,y)
]
dx dy)

+ tq
−
∫
RN

|ϕ|q(z)

q(z)
dz + tp

−
∫
RN

|ϕ|p(z)

p(z)
dz + tq

−
∫
RN

|ψ|q(z)

q(z)
dz

+ tp
−
∫
RN

|ψ|p(z)

p(z)
dz

− t1−γ
−
1

∫
RN

a1(z)ϕ1−γ1(z)

1− γ1(z)
dz − t1−γ

−
2

∫
RN

a2(z)ψ1−γ2(z)

1− γ2(z)
dz

− tα
++β+

∫
RN

b(z)|ϕ|α(z)|ψ|β(z) dz < 0 for t small enough,

which implies that (u, v) 6= (0, 0). Moreover, it is easy to see that (|un|, |vn|) is also
a minimizing sequence of I. Then, u and v are nonnegative functions. This ends
the proof.

4.1. Proof of Theorem 4.1 completed. We need to prove that (u, v) defined in
Lemma 4.4 is a weak solution of problem (1). Let φ, ψ ∈ X and t > 0 and choose
0 < γ < m = min(m1,m2,m3). Invoking lemma 4.4 we have

0 ≤ I[(u, v) + t(φ, ψ)]− I(u, v),

⇒0 ≤
∫
RN

1

G(x, y)

[
|∇xu+ t∇xφ|G(x,y) − |∇xu|G(x,y)

]
dx dy

+

∫
RN

1

G(x, y)

[
|x|γ |∇yu+ t∇yφ|G(x,y) − |x|γ |∇yu|G(x,y)

]
dx dy

+

∫
RN

1

G(x, y)

[
|∇xv + t∇xψ|G(x,y) − |∇xv|G(x,y)

]
dx dy

+

∫
RN

[
|x|γ |∇yv + t∇yv|G(x,y) − |x|γ |∇yv|G(x,y)

]
dx dy

+

∫
RN

|u+ tφ|q(z) − |u|q(z)

q(z)
dz +

∫
RN

|u+ tφ|p(z) − |u|p(z)

p(z)
dz

+

∫
RN

|v + tψ|q(z) − |v|q(z)

q(z)
dz +

∫
RN

|v + tψ|p(z) − |v|p(z)

p(z)
dz

−
∫
RN

a1(z)
[
|u+ tφ|1−γ1(z) − u1−γ1(z)

]
1− γ1(z)

dz

−
∫
RN

a2(z)
[
|v + tψ|1−γ2(z) − v1−γ2(z)

]
1− γ2(z)

dz
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−
∫
RN

b(z)
[
|u+ tφ|α(z)|v + tψ|β(z) − |u|α(z)|v|β(z)

]
dz.

We divide by t > 0 and then let t→ 0+. We obtain

0 ≤
∫
RN

[
|∇xu|G(x,y)−2∇xu∇xφ+ |x|γ |∇yu|G(x,y)−2∇yu∇yφ

]
dx dy

+

∫
RN

[
|∇xv|G(x,y)−2∇xv∇xψ + |x|γ |∇yv|G(x,y)−2∇yv∇yψ

]
dx dy

+

∫
RN
|u|q(z)−2

uφ dx dy +

∫
RN
|u|p(z)−2

uφ dz

+

∫
RN
|v|q(z)−2

vψ dz +

∫
RN
|v|p(z)−2

vψ dz

−
∫
RN

a1(z)u−γ1(z)φdz −
∫
RN

a2(z)v−γ2(z)ψ dz

−
∫
RN

b(z)α(z)|u|α(z)−2u|v|β(z)φdz −
∫
RN

b(z)β(z)|u|α(z)|v|β(z)−2vψ dz.

Since (φ, ψ) ∈ X ×X is arbitrary, the equality must hold and so (u, v) is a nonneg-
ative weak solution of problem (1). The proof is now complete.
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[7] A. Bahrouni, V. D. Rădulescu and P. Winkert, Double-phase problems with variable growth

and convection for the Baouendi-Grushin operator, Z. Angew. Math. Phys., 71 (2020), Paper

No. 183, 15 pp.
[8] P. Baroni, M. Colombo and G. Mingione, Nonautonomous functionals, borderline cases and

related function classes, Algebra i Analiz , 27 (2015), 6–50; reprinted in St. Petersburg Math.
J., 27 (2016), 347–379.
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indefinite potential term, Anal. Math. Phys. 9 (2019), 2237–2262.

[22] N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, Double-phase problems with reaction
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for a class of double phase problems, Z. Angew. Math. Phys., 71 (2020), Paper No. 15, 15 pp.
[26] N. S. Papageorgiou, C. Vetro and F. Vetro, Positive solutions for singular (p, 2)-equations, Z.

Angew. Math. Phys., 70 (2019), Paper No. 72, 10 pp.
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