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ABSTRACT. In this paper we deal with Robin and Neumann parametric elliptic
equations driven by a nonhomogeneous differential operator and with a reaction
that exhibits competing nonlinearities (concave-convex nonlinearities). For the
Robin problem and without employing the Ambrosetti-Rabinowitz condition,
we prove a bifurcation theorem for the positive solutions for small values of
the parameter A > 0. For the Neumann problem with a different geometry
and using the Ambrosetti-Rabinowitz condition we prove bifurcation for large
values of A > 0.

1. Introduction. Let © C RY be a bounded domain with C’2—boundary oQ2. In
this paper, we study the following nonlinear, nonhomogeneous parametric Robin
problem:
—diva(Du(z)) = f(z,u(2),\) in Q,
S (2)+ B(Ju(=) =0 on o0, (P))
au >0, 1 <p<oo.

Hence a : RN — RY is a continuous and strictly monotone map, which satisfies

certain other regularity and growth conditions, listed in hypotheses H(a) below.

These conditions are general enough, to incorporate in our setting various differ-
Ju

e

0
denotes the conormal derivative defined by a—u = (a(Du),n)grny with n(z) being
Nq

ential operators of interest, such as the p-Laplacian (1 < p < o0). Also,

the outward unit normal at z € 9. The reaction f(z,z,\) is a parametric func-
tion with A > 0 being the parameter and (z,2) — f(z,z,\) is Carathéodory (that
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is, for all z € R the mapping z — f(z,z,\) is measurable and for a.a. z € Q
the map = — f(z,x,\) is continuous). We assume that f(z,-, A) exhibits com-
peting nonlinearities, namely near the origin, it has a “concave” term ( that is,
a strictly (p — 1)- sublinear term), while near +oo, the reaction is “convex” term
(that is, z —> f(z,z,A) is (p — 1)-superlinear). A special case of our reaction, is
the following function:

flzyz,)) = f(z,\) = X%t + 2" for all 2 > 0,

with
Np
— if N
l<g<p<r<p={ N—p "P°<
400 if N <p.

This reaction is encountered in the literature in the context of equations driven by
the Laplacian (that is, p = 2) or by the p-Laplacian (1 < p < c0).

Our aim is to investigate the existence, nonexistence and multiplicity of positive
solutions as the parameter A > 0 varies. So, we prove two bifurcation type results,
describing the set of positive solutions of (P)) as the parameter A > 0 changes,
when the reaction exhibits the competing effects of concave (that is, sublinear) and
convex (that is, superlinear) nonlinearities. In the first theorem the bifurcation
occurs near zero. More precisely, under general hypotheses we show that there
exists A* > 0 such that the following properties hold:

(a) for all A € (0,\"), problem (Pj) has at least two positive solutions;
(b) for A = A\* problem (Py-) has at least one positive solution;
(c) for all A > \* problem (Py) has no positive solution.

In the second case, we assume that § = 0 (Neumann boundary condition) and
we consider the problem

—diva(Du(z)) = fo(z,u(z)) — Mu(2)P~'  in Q,

%(z) -0 on 99, (Sx)
u>0 in €.

We obtain a different geometry and we establish that the bifurcation occurs for
large values of the parameter A > 0. More precisely, under natural assumptions on
fo we show that there exists A, > 0 such that

(a) for every A > A, problem (S)) has at least two positive solutions;
(b) for A = A, problem (S),) has at least one positive solution;
(c) for every A € (0, ) problem (Sy) has no positive solution.

The first work concerning positive solutions for problems with concave and convex
nonlinearities, was that of Ambrosetti, Brezis and Cerami [2]. They studied semilin-
ear equations driven by the Dirichlet Laplacian and with a reaction of the form (1).
Their work was extended to equations driven by the Dirichlet p-Laplacian by Garcia
Azorero, Manfredi and Peral Alonso [10] and by Guo and Zhang [14]. We also refer
to the contributions of de Figueiredo, Gossez and Ubilla [7], [8] to concave-convex
type problems and general nonlinearities for the Laplacian, resp. p-Laplacian case.
Extensions to equations involving more general reactions, were obtained by Gasin-
ski and Papageorgiou [13], Hu and Papageorgiou [15] and Radulescu and Repovs
[22]. Other problems with competition phenomena, can be found in the works of
Cirstea, Ghergu and Rédulescu [4] (problems with singular terms) and of Kristaly
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and Moroganu [16] (problems with oscillating reaction). Finally we mention the re-
cent work of Papageorgiou and Radulescu [20], who studied a Robin problem driven
by the p-Laplacian and with a logistic reaction and proved multiplicity theorems
for all large values of the parameter A > 0, producing also nodal solutions.

We stress that the differential operator in (Py) is not homogeneous and this is a
source of difficulties in the analysis of the problem, since many of the methods and
techniques developed in the aforementioned papers do not work here. It appears
that our results in the present paper are the first bifurcation-type theorems for
nonhomogeneous elliptic equations.

2. Mathematical background. Let X be a Banach space and X™ its topolog-
ical dual. By (-,-) we denote the duality brackets for the pair (X*, X). Given
¢ € CY(X), we say that ¢ satisfies the Cerami condition (the C-condition), if the
following is true:

“Every sequence {un}n>1 € X such that {p(un)}n>1 C R is bounded and
(1 + [Jun|)¢ (un) = 0 in X* as n — oo,

admits a strongly convergent subsequence”.

This is a compactness-type condition on the function ¢ which compensates for
the fact that the space X need not be locally compact (being in general infinite
dimensional). It is more general than the more common Palais-Smale condition.
Nevertheless, the C-condition suffices to prove a deformation theorem and from it
derive the minimax theory of the critical values of ¢. One of the main results in
that theory, is the so-called mountain pass theorem of Ambrosetti and Rabinowitz
[3]. Here we state it in a slightly more general form.

Theorem 2.1. Let X be a Banach space, ¢ € C*(X) satisfies the C-condition, uo,
up € X with |Jug —ugl| > p >0

max{p(uo), ¢(u1)} < inflp(u) : [lu — uol| = p] =m,
and ¢ = inf max @(y(t)) with T' = {y € C([0,1], X) : v(0) = ug,y(1) = u1}. Then

Y€l 0<t<1
c>m, and c is a critical value of .

Let n € C*(0,00) and assume that

<cpand etP 7t <pt) < cp(L+tP"Y) forallt >0 (1)
with ¢1,c0 >0, 1 < p < 0.

The hypotheses on the map a(-) are the following:
H(a) : a(y) = ao(|y|)y for all y € RN, with ag(t) > 0 for all t > 0 and
(i) ap € C(0,00), t — ag(t)t is strictly increasing on (0,00), ag(t)t — 0 as

t — 0" and
!
ap ()t -1
t—0+ ag(t)
(i) [Va(y)| < 03M for some ¢z > 0, all y € RV\{0};

|yl
(iii) Mm? < (Va(y)¢, &g for all y € RM\{0}, all ¢ € RY;

|yl
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t
iv) if Go(t) = ao(s)sds for all t > 0, then pGo(t) — ag tth—{:foralltZO7
(iv) p
0
some £ > 0;
t
(v) there exists 7 € (1,p) such that t — Go(t!/7) is convex on (0, 00), lim Go()

4 t—ot+ 17T
=0 an

ap(t)t? — 7Go(t) > &P for some & > 0, all t > 0.

Remark 1. These conditions on a(-) are motivated by the regularity results of
Lieberman [17] and the nonlinear maximum principle of Pucci and Serrin [21].
According to the above conditions, the potential function Gg(-) is strictly convex
and strictly increasing. We set G(y) = Go(]y|) for all y € RY. Then the function
y — G(y) is convex and differentiable on RV\{0}. We have

Y
VG(y) = Golly; = aollyl)y = aly) for all y € RY\{0}, VG(0) =0.
So, G(-) is the primitive of the map a(-). Because G(0) = 0 and y — G(y) is
convex, from the properties of convex functions, we have
G(y) < (a(y), y)g~ for all y € RY. (2)

The next lemma summarizes the main properties of the map a(-). They follow
easily from hypotheses H(a) above.
Lemma 2.2. If hypotheses H(a) (i), (i1), (¢i1) hold, then

(a) y+—— a(y) is continuous and strictly monotone, hence mazimal monotone too;
() la(y)| < ca(1+ |y[P~") for some cy >0, ally € RY;

¢
(c) (a(y),y)r~ > ]fll\mp for all y € RV,

Lemma 2.2 together with (1) and (2), lead to the following growth estimates for
the primitive G(-).

Corollary 1. If hypotheses H(a)(i), (i1), (iii) hold, then lylP < G(y) <

C1
p(p—1)
cs(1+ |y[P) for some ¢5 >0, all y € RY.

Example 1. The following maps a(y), satisfy hypotheses H(a) above:

(a) a(y) = |y[P~2y with 1 < p < occ.

This map corresponds to the p-Laplace operator defined by
Apu = div (|DulP~2Du) for all u € WHP(Q).

(b) aly) = |y|P~%y + ply|? 2y with 1 < ¢ < p < oo and p > 0.

This map corresponds to the (p, ¢)-differential operator defined by
Apu + pAgu for all u € WhHP(Q).

Such differential operators arise in many physical applications (see Papageor-
giou and Radulescu [18], [19] and the references therein).

(c) a(y) = 1+ |y|*)*= y with 1 < p < co.
This map corresponds to the generalized p-mean curvature differential opera-
tor defined by

div [(1 + |Du|2)p2;2Du} for all u € WP(Q),
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(d) a(y) = |y|P~%y + lyl” %y with 1 < p < o0.
L+ [yl

The hypotheses on the boundary weight map ((-) are the following;:

H(B): B € Ch*(0Q) with a € (0,1) and B(z) > 0 for all z € IN.

In the analysis of problem (Py) in addition to the Sobolev space WP (Q), we will
also use the Banach space Cl(ﬁ). This is an ordered Banach space, with positive
cone - -

C, ={uecC Q) :u(z) >0forall z € Q}.
This cone has a nonempty interior given by
int C; = {u e Cy:u(z) >0 for all z € Q}.
In the Sobolev space W'?(€), we use the norm
llul| = [[lul2+ [|Dul[E]/? for all u € WP(Q).

To distinguish, we use | - | to denote the norm of RY.

If on 99 we use the (N — 1)-dimensional Hausdorff measure o(-) (the surface
measure on 0f2), then we can define the Lebesgue spaces L1(9), 1 < ¢ < co. We
know that there exists a unique continuous, linear map o : WHP(Q) — LP(09),
known as the trace map, such that vo(u) = u|aq for all u € C*(Q). In fact 7o is
compact. We have

1 1 1
imyy = W P(0) <p + i 1> and keryy = W, P ().

In the sequel, for the sake of notational simplicity, we drop the use of the trace
map 7o, with the understanding that all restrictions of elements of W**(Q) on 952,
are defined in the sense of traces.

Suppose fo : 2 x R — R is a Carathéodory function with subcritical growth in
the x € R variable, that is

|fo(z,2)| < ap(2)(1 + |z|" 1) for a.a. z € Q, all z € R,

xT
with ag € L*°(Q)4, 1 < r < p*. We set Fy(z,z) = / fo(z,s)ds and consider the
0
C*-functional ¢q : WP(Q) — R defined by

1
ool) = [ GDudz+ > [ pNapdo [ Folz iz
Q P Joa Q
for all u € WhP(Q).

The next proposition, was proved by Papageorgiou and Radulescu [20] for G(y) =
1
];\y|p for all y € RY. The proof remains valid in the present more general setting,
using Lemma 2.2, Corollary 1 and the regularity result of Lieberman [17] [p. 320].

Proposition 1. Assume that ug € WP (Q) is a local C*(Q)-minimizer of @o, that
is, there exist pg > 0 such that
wo(uo) < wo(uo + h) for all h € C*(Q) with Pllcr @y < po-
Then ug € CH(Q) for some n € (0,1) and it is also a local WP (Q)-minimizer of
o, that is, there exists p1 > 0 such that
wo(up) < @olug + h) for all h € WHP(Q) with ||h|| < p1.
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Let A: W'P(Q) — WHP(Q)* be the nonlinear map defined by

(A(u),y) = /Q(a(Du), Dy)g~dz for all u,y € WHP(Q) (3)

The following, is a particular case of a more general result due to Gasinski and
Papageorgiou [12].

Proposition 2. If A: WhP(Q) — WP (Q)* is defined by (3), then A is demicon-
tinuous and of type (S)y, that is, if u, — u in WP(Q) and
lim sup (A(uy ), un — u) <0,

n—oo
then u, — u in WHP(Q).

In the sequel, by | - |y we denote the Lebesgue measure on RN, Also, if z € R,
then we set ¥ = max{+z,0} and for u € W'P(Q), we define u*(-) = u(-)*. We
know that

ut e WHP(Q) and |u| =ut +u”, u=ut —u".

Also, if h : © x R — R is a measurable function (for example a Carathéodory
function), then we define

Nu(u)(-) = h(-,u(-)) for all u € WP(Q),

(the Nemytskii operator corresponding to the function h).

3. Bifurcation near zero for the Robin problem. In this section, we deal with
competition phenomena that give rise to bifurcation of the problem solutions, when
the parameter A > 0 is near zero. This situation includes the classical equations
with concave and convex nonlinearities.

The hypotheses on the reaction f(z,x, \) are the following;:

Hy: f:QxRx(0,00) = R is a function such that for all (z,z) € Q x [0, +00),
A+—> f(z,2,A) is nondecreasing, for all A > 0 f(z,0,\) =0 for a.a. z € Q and
(i) (z,2) — f(z,z, ) is a Carathéodory function on Q X [0, +00);
(ii) |f(z,2,0)] < ax(2)(1 42771 for a.a. z € Q, all z > 0, with ay € L®(Q),,

p<r<pY
F
(iii) if F(z, 2, \) / f(z,8,A)ds, then lim Fle2,)) = +o00 uniformly for a.a.
T—+00 xP
z €8

N
(iv) there exists ¥ = 9(\) € ((r — p) max {, 1} ,p*) such that
p

flzyz, Nz — pF(z,2,\)
9

0<v< hm inf

- uniformly for a.a. z € Q;
T—+00 T

(v) there exists 1 < u = p(A) < ¢ = g(A) < 7 (see hypothesis H(a)(v)) and
v =5(A) > p, do = do(A) € (0,1] such that

cex? < f(z,x, Nz < qF(z,2,\) < &n(z)at +e” for a.a. z € Q, all z € [0, §g],
with cg = cg(A\) >0, 7 =7(\) > 0, £, € L=(Q) 4 and [|€x]]oc — 0 as A — 07,

Remark 2. Since we are interested to find positive solutions and the above hy-
potheses concern the positive semiaxis Ry = [0, +00), without any loss of generality
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we may assume that f(z,2,A) = 0 for a.a. z € Q, all z < 0 and all A\ > 0. Note
that hypotheses Hj(i7), (¢i7) imply that

b FGa )

1 T = T uniformly for a.a. z € Q.
T—>+00 xrr—

Therefore, f(z,-,A) is (p — 1)-superlinear near +o00. However, we do not employ
the AR-condition (unilateral version). We recall (see [3]), that f(z,-, \) satisfies the
(unilateral) AR-condition, if there exist n = n(\) > p and M = M(\) > 0 such that

(a) 0<nF(z,x2,A) < f(z,z,\)x for a.a. z€Q, all x > M, @)
(b) essinfq F(-,M,\) > 0.

Integrating (4a) and using (4b), we obtain a weaker condition, namely that
cra" < F(z,z,\) for a.a. z € Q, all 2> M and some ¢; > 0. (5)

Evidently (5) implies the much weaker hypothesis H; (4i¢). In (4) we may assume
N
that n > (r — p) max{p, 1}. Then we have

f(z,z, )z —pF(z,z,\)
2
fzz, Nz —nF(z,2,\)  (n—p)F(z,z,))
i + Il
> (n—p)ey for aa. z € Q, all z > M (see (4a) and (5)).

So, we see that the AR-condition implies hypothesis Hj(iv). This weaker “su-
perlinearity” condition, incorporates in our setting (p— 1)-superlinear nonlinearities
with “slower” growth near +oo, which fail to satisfy the AR-condition (see the ex-
amples below). Finally note that hypothesis H; (v) implies the presence of a concave
nonlinearity near zero.

Example 2. The following functions satisfy hypotheses H;. For the sake of sim-
plicity, we drop the z-dependence:

filz,\) =Xzt 42" forallz >0, withl <g<p<r<p"
Ap?=t — gt if z €[0,1]

Fal,A) = P! (hm: + 1) + (/\ — 1) 7 ifl<x
p p
with ¢,v € (1,p) and n > p
_ it if z € [0, p(\)]
fS(xv)‘) - { xrfl _|_,r](>\) if /)()\) <z
with 1< ¢ <p<r<p* nA)=pN)"" —pN) "
and p(A\) — 07 as A — 07.

Note that fo(-, A) does not satisfy the AR-condition.
We introduce the following Carathéodory function

fz2,A) = f(z,2,A) + (27)P~ for all (z,2,)) € Q x R x (0, 4+00).
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Let Fi(z, 2, \) = / f(z,s,A\)ds and consider the C'-functional ¢y : WP (Q) —
0
R defined by

oatw) = [ 6wzt fullp+ o [ st Pdo [ Feu A
Q D P Joaq Q
for all u € WHP(Q).

Proposition 3. If hypotheses H(a), H(B) and Hy hold and A > 0, then the func-
tional ¢ satisfies the C'-condition.

Proof. Let {u,}n>1 € WHP(Q) be a sequence such that

|&a(un)| < My for some My >0, alln>1 (6)
(1 + [Jun|)P5 (un) — 0 in WHP(Q)* as n — oco. (7)
From (7) we have
(@A (un), RY| < < _Enllfll for all h € WhP(Q), all n > 1,
1+ ||unl

with €, — 07 as n — oo,

= ‘ /|un|p 2unhdz+/ B(z Y~ hdo—
enl| ]

fz,un,/\ hdz| <
e Anaz| < £

In (8), first we choose h = —u,, € WP(Q). Using Lemma 2.2, we have

for all n > 1. (8)

ty, |+ [|uy, | < e for all n > 1,

= wu, —0in WHP(Q) as n — ooc. 9)
From (6), (9) and hypothesis H; (i), we have
/ pG(Du))dz + B(2)(uf)Pdo — / pF(z,uf, N)dz < My (10)
19) Q

for some My >0, all n > 1.
Also, in (8) we choose h = u,; € WP(Q) and obtain

—/(G(DU:),DUI)RN(ZZ— B(z pda—i—/ fzul  Nutfdz <e,
Q
foralln >1. (11)
Adding (10) and (11), we have
/ [pG(Duyt) — (a(Dut), Duf )gn] dz +/ [f(z,ut, Nut
Q

Q
—pF(z,u}, )\)] dz < M3 for some M3 >0, alln > 1,

é/ [f(z,uf, Nu)t — pF(z,ub, N)] dz < Ms+£ foralln > 1 (12)

(see hypothesis H (a)(iv)).

By virtue of hypotheses Hi (i), (iv), we can find 41 € (0,7) and ¢g = cg(y1,A) >
0 such that

f(z,2, Nz — pF(z,2,)\) > y12° — ¢g for a.a. z € Q, all z > 0.
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We use this unilateral growth estimate in (12) and obtain
Y|t |9 < My for some My >0, all n > 1,
= {u }n>1 € LY(Q) is bounded. (13)

First assume that N # p. From hypothesis Hj(iv) it is clear that without any
loss of generality, we may assume that ¢ < r < p*. Then we can find ¢ € [0, 1) such
that

S (14)

From the interpolation inequality (see, for example, Gasinski and Papageorgiou
[11] [p. 905]), we have

il < llatllg™ st [l

< col|ut||* for some cg >0, all n > 1
(see (13) and use the Sobolev embedding theorem),
= luf|m < cwllut || for all n > 1, with c19 = ¢ > 0. (15)
By virtue of hypothesis H;(i¢) we have
flzyz, Nx < ax(z)(x +2") for a.a z € Q, all z > 0. (16)
In (8) we choose h = u,” € W'P(Q). Then

[Duf|E + [ Bz pda—/fzu Jufdz < e, for all n > 1,
00

= |[Duf[lF <en(l+ HUZHT,) for some ¢1; >0, all m > 1 (see (16) and H(f)),
< c1a(1 4+ ||uf||") for some c12 > 0, all n > 1 (see (15)),
= |[Duf|B +Huillh < eis(1+ [[ut][") for some ¢13 > 0, all n > 1 (17)

(see (13))
Since ¥ < r < p*, we know that
wr— [ully + [|Dullp
is an equivalent norm on W'?(Q) (see, for example, Gasinski and Papageorgiou
[11] [p. 227]). So, from (17) we obtain
[ [|P < cra(1 4+ ||t ]|™) for some c14 > 0, all n > 1. (18)

The hypothesis on ¥ (see Hy(iv)) and (14), imply that ¢tr < p. So, from (18) we
infer that

{uf Y1 € WHP(Q) is bounded. (19)

If N = p, then p* = oo, while from the Sobolev embedding theorem, we know
that W1P(Q) is embedded (compactly) in L*(2) for all s € [1,00). So, in the above
argument, we need to replace p* = oo by s > r large such that
s(r—p)

s—
Then the previous argument works and leads again to (19).

From (9) and (19) it follows that {u,}n,>1 € WP(Q) is bounded. So, we may
assume that

Up = u in WHP(Q) and u,, — u in L"(Q) and in LP(99). (20)

tr = < p (see (14) with p* replaced by s > r).
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In (8) we choose h = u, —u € WP(Q), pass to the limit as n — oo and use
(20). Then

nh_}r{.lo (A(up), un —u) =0,
= u, — uin WHP(Q),
= ¥, satisfies the C' — condition.
O

Proposition 4. If hypotheses H(a), H(B) and Hy hold, then there exists Ay > 0
such that for every X € (0, \y) there exists py > 0 for which we have

inf [@x(u) : [Jul] = pA] = x> 0 = (0).

Proof. Hypotheses H; (ii), (v) imply that for every A > 0, we can find ¢15 = ¢15(N\) >
0 such that

F(z,z,\) < 5/\52) (@) +eps[(@™)7 + ()] for aca. 2 € Q, allz € R, (21)

Then for u € W'P(Q), we have

1 1
or(u) = / G(Du)dz + ~||u][2 + f/ B()(u™)Pdor — / F(z,u, \)dz
Q p P Jaa Q
> i+ Ll + 1 [ st — L
p(p—1) P p Joa I
1
—crsl[ut |} — erslfut |7 — =[Ju |5 (see Corollary 1 and (21)). (22)
p
It is clear that in hypothesis H; (v) we can always assume v < p* and that g > 1
-1 -1
is small enough so that LIM > r and LIM > r. By Young’s inequality with
- _
€ > 0 (see, for example, Gasinski and Papageorgiou [11] [p. 913]), we have

- 1 € 1 (=D 1
[l = Tl Tl < 2Rl 4 2l <+,—1

[T
€ uw—1
< *||U||”+T||UHT
- 1 € 1 (wf_l)u
[l = {lul] |ul]” S;IIUII”JrjMIIUH A=l
-1
< Sl + B2l for all uw € WHP(Q) with [Ju]| < 1
I €l

(recall that p < v,p < p*). Using these bounds in (22), we obtain

Pa(u) = cagllull” — ez [([[Ex]loo + €) [[ull* + (1 + co)l|ul|"]
for some ¢4, c17,cc > 0
= [e16 = e17 ((I8xlloo + ) [Jull* 77 + (1 + co)[ul"77) ] {]ul[? (23)
for all uw € WHP(Q) with ||ul| < 1.
Let B2 (t) = (||€x]|oo + €) t*7P + (1 4 ¢ )t""P. Evidently k2 € C(0,00) and since
u < p <r we have

EMt) — +oo as t — 0 and as t — 4-o0.
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Therefore we can find ¢ty > 0 such that
A A
ke (to) - rtn>1(r)1 ke (t)a
= (k) (to) = (1 = p)([|xlloe + )t "+ (r =)+ co)ty "7,

(= w([alloe + )77
(r—p)(1+ce)

= typ= t0(>\) =

Then we have
EXM(t) — x(€) as A — 01 with y(¢) = 0T as e — 0.

1
We choose € > 0 small such that x(e) < 3 ae, Then for such an € > 0, we can

C17
find Ay = Ay (e) > 0 such that

EM(to) < 46 and to(A) <1 forall A € (0, A1) (see hypothesis H;(v))
C17

Then by virtue of (23), we have
Ga(u) > 1y > 0= px(0) for all u € WHP(Q) with |ul| = py = to(N) < 1.

Note that as a direct consequence of hypothesis H; (iii), we have:

Proposition 5. If hypotheses H(a), H(B) and Hy hold, A > 0 and u € int Cy, then
Oa(tu) = —o0 as t — oo.

We introduce the following sets:

S ={\ > 0: problem (P)) admits a positive solution},
S(A) = the set of positive solutions of (Py).

We can show that S is nonempty, as well as a useful structural property of the
solution set S(A).

Proposition 6. If hypotheses H(a), H(S) and Hy hold, then S # @ and for every
AeESTASAN) CintCy.

Proof. Let Ay > 0 be as postulated by Proposition 4 and let A € (0, A\y). Propo-
sitions 3, 4 and 5 permit the use of Theorem 2.1 (the mountain pass theorem) on
the functional ). So, we can find ug € WP () such that

@&(UQ) =0 and (ﬁ,\(()) =0< T?LA < (,5,\(1140)- (24)

From the inequality in (24) we see that uy # 0. From the inequality in (24), we
have

(A(ug), h) + [ |uolP~2ughdz + B(2)(ud )P~ hdo = / f(z,up, \hdz  (25)
Q r9) Q
for all h € W'P(Q).
In (25) we choose h = —uy € WHP(Q). Using Lemma 2.2, we have
C1 — _
EHDUO 15+ ug |15 <0,

= wug >0, UO#O.
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Therefore (25) becomes
(A(up), h) + B(z)ub hdo = / f(z,u0,\)dz for all h € WHP(Q). (26)
19}9) Q

In what follows by (-,-), we denote the duality brackets for the pair (WP (),
1 1 /
Wy ?(Q)) (recall that — + — = 1 and W7 (Q) = W;?(Q)*). From the repre-
p p

sentation theorem for the elements of the dual space W_l’p/(Q) (see, for example,
Gasinski and Papageorgiou [11] [p. 212]), we have

diva(Dug) € W7 (Q) (see Lemma 2.2).
Performing integration by parts, we have
(A(ug), h) = (—diva(Dug), h), for all h € Wy (Q) C WHP(Q).
Using this equation in (26) and recalling that h|ag = 0 for all h € WP (2), we
obtain
(—diva(Dug), h) = / f (2, ug, \)hdz for all h € WP (Q) € WP(Q),
= —diva(Dug(z)) = f(:, ug(z), A) for a.a. z € Q. (27)

y 1 1
Note that f(-,uo(-),\) € L™ (2) where — + — =1 (see hypothesis H;(ii)). Since
roor

p <7, we have W, () < W,"*(€) continuously and densely. Then Wb (Q) <
W*I’T/(Q) continuously and densely (see, for example, Gasinski and Papageorgiou
[11] [p. 141]). Then from (27) we see that we can apply the nonlinear Green’s
identity (see, for example, Gasinski and Papageorgiou [11] [p. 210]) and have

(A(uo), h) + / (diva(Dug))hdz = <3“0 h>89 (28)

Q 3na’
for all h € WHT(Q) C WhP(Q).

Here by (-,-)5q, We denote the duality brackets for the pair (W_w%”’/ (092),
W%’T(GQ)). Returning to (26) and using (28), we obtain

(—diva(Dug), h) + <gu0 , h> + B(z)ug_lhda = / f(z,u0, \)hdz
N 90 0 Q

for all h € Wh"(Q)

0 _ :
< ll , h> + B(2)ul hdo = 0 for all h € W () (see (27)). (29)
IMna oo Joa
But we know that if 7o is the trace map on W?(Q), then im (olwrr()) =
W%’T(BQ). So, from (29), it follows that
3u0
ong
From (27) and (30) it follows that ug € S(A\) and so (0, A1) C S.
From Winkert [23] we have that ug € L°(€2). Then we can apply the regularity

result of Lieberman [17] [p. 320] and infer that ug € C, ug # 0.
Hypotheses H;(ii), (v) imply that given p > 0, we can find £, > 0 such that

f(z,2,0) +&aP~! >0 for a.a. 2 € Q, all z € [0, pl. (31)

+ ﬂ(z)ug_l =0 on 09. (30)
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Let p = ||uo||co and let &, > 0 be as postulated by (31). Then

—diva(Duy(2)) + fpuo(z)p_1
= f(z,u0(2),\) + &uo(2)P~1 > 0 for a.a. z € Q (see (27) and (31)),

= diva(Dug(z)) < &ue(2)P ! ae. in Q,
= wug € int Cy (see Pucci and Serrin [21] [pp. 111, 120])

The next proposition establishes a useful property of the set S.
Proposition 7. If hypotheses H(a), H(B) and Hy hold and X € S, then (0,\] C S.

Proof. Since A € S, we can find uy € S(A) C intC;. Let n € (0,A) and consider
the following truncation-perturbation of the reaction in problem (P,):

0 ifz <0
ky(z,2) =< flz,2,n) +aP™? if 0 <z <uy(z) (32)
F(zyun(2),m) +ux(2)P~ if uy(2) < .

x
This is a Carathéodory function. We set K, (z,z) = / ky(z,s)ds and consider
0
the C'-functional ¢, : W'?(Q) — R defined by

zﬁn(u):/QG(Du)dH%HquJF%/ B(2) pda—/K 2 u)d

for all u € WHP(Q)

From Corollary 1, hypothesis H () and (32), it is clear that 1/}77 is coercive. Also,
from the Sobolev embedding theorem and the compactness of the trace map g into
LP(09), we see that 1&7, is sequentially weakly lower semicontinuous. So, from the
Weierstrass theorem we can find u,, € W(Q) such that

b (ty) = inf [$h(u) s u € leP(Q)} . (33)
Let £ € (0,00(n)] and & < minuy (see hypothesis H;(v) and recall that uy €
Q
int C). Then
. & §lcg
Uy(§) < » =Bl (00) — . — QU (see (32)).

Since ¢ < p (see hypothesis H;(v)), by taking £ € (0, 1) even smaller if necessary,
we will have

n(€) <0
= y(uy) < 0=1,(0) (see (33)), hence u, # 0.

From (33) we have
«ﬁ,’?( n) =0,=
/Iunlp 2u,7iuz,z+/ B(z)(u )P~ 1hda—/k 2, up)hdz (34)
for all h € WhP(Q).
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In (34), first we choose h = —u, € W1P(Q). Using Lemma 2.2 and (32), we

have
C1

p—1
= uy >0, u, #0.
Next, in (34), we choose h = (u,, — ux)™ € W'?(Q). Then

<A(un), (uy — u,\)+> —|—/Qu7,'fl(u77 —uy)Tdz + /8Q ﬂ(z)ufﬁl(un —uy)tdo

|| Dy [+ [fuy |15 <0,

= [ 17 + gy = ) e (32)
< /Q[f(z, Ux, A) + 1;’/{71](1177 —uy)Tdz (since f(z,ux(2),-) is nondecreasing)
= <A(U,\), (Un,U,\)+> + /Q Upfl(un —up)Tdz + . 5(2)16};71(% —uy)Tdo

= (Aluy) = Aun), (ug —ur) ™) + / (ufzil - upil)(un —uy)tdz <0
’ (see hypothesis H(3))
= [{u, > ur}|n =0, hence u,) < uy.
So, we have proved that
uy € [0,ur] = {u € WHP(Q) : 0 < u(z) < uy(z) for a.a. z € Q}, u, # 0.
Then because of (32), equation (34) becomes

(A(uy), h) + B(z)ufl_lhda = / f(z,uy,m)hdz for all h € WHP(Q).
0 Q

From this, as in the proof of Proposition 6, using the nonlinear Green’s identity,
we infer that
uy € S(n) Cint Cy, hencen € S,
= (0,\]CS.
O

Let \* = supS. We show that \* is finite by strengthening the conditions on
the reaction f(z,z,A). So, the new stronger hypotheses on f are the following:
Hy: f: QxR x(0,00) = Ris a function such that for a.a. z€ Q and all A >0
f(2,0,\) =0 and
(i) for all (x,\) € Rx (0,00), z+— f(z,x, A) is measurable, while for a.a. z € Q,
(z,\) — f(z,x,\) is continuous;
(ii) [f(z,2,0)] < ax(z)(1 +2"71) for aa. 2z € Q, all z > 0, all A > 0, with
ay € L*(02), A — ||ax]|o bounded on bounded sets in (0, 00) and p < r < p*;
v F A
(iii) if F(z,z,\) = / f(25, \)ds, then lim L&A
0

= 400 uniformly for a.a.
x—+00 xP

z € Q;
N
(iv) there exists ¥ = J(\) € ((r — p) max {, 1} ,p*> such that
b

uniformly for a.a. z € ;

ANz — pF A
O<’}/() Shmmf f(Z,SU, )x ﬂp (Z,(ﬂ, )
r—+400 xX
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(v) there exists 1 < p = pu(A) < ¢ = ¢(A) < 7 (see hypothesis H(a)(v)) and
v ="7(A) > pu, do = do(A) € (0,1) such that

cex? < f(z,z,N)x < qF(z,2,\) <&n(z)x! + 127 for aa. z € Q, all 0 < 2 < dy

with ¢g = ¢6(A) > 0, cg(A) = 400 as A = +oo, ¢ =¢(\) > 0, & € L™(Q) 4
with [[€x]]ec — 0 as A — 07;

(vi) for every p > 0, there exists £, = £,(A\) > 0 such that for a.a. z € Q,
z+— f(z,2,\) + &,2P~ ! is nondecreasing on [0, pl;

(vii) for every interval K = [zg,%] with zp > 0 and every A > X > 0, there
exists dg (zo, A) nondecreasing in A with dg(zg,\) = +00 as A — +oo and
d (20, X\, X') such that

fz, 2, A) > dg(z,\) for a.a. z€ Q, allz € K
22, A) = f(z,2,X) > dg (0, \, X) for aa. z€ Q, all z € K.

Remark 3. Suppose that f(z,z,\) = Ag(z) + h(z,2) with g(-) continuous, non-
decreasing, positive on (0,00) and h > 0, h(z,-) € C*(R) for a.a. z € Q and
Rl (z,x) > —€*2"2 for a.a. z € Q, all 2 > 0 and some £* > 0, n > p. Then hy-
potheses Hs(vi), (vii) are satisfied. Also, the examples presented after hypotheses
H,, satisfy also the new conditions.

Proposition 8. If hypotheses H(a), H(B) and Hy hold, then \* < co.
Proof. We claim that there exists A > 0 such that
f(zyz,X) > 2P~ for a.a. 2 € Q, all 2 > 0. (35)

Indeed by virtue of hypothesis Ha(v), we have f(z,z,)) > cg(A\)z?"! for a.a.
z € Qall € [0,00(A)]. The hypothesis on cg(-) implies that we can find Ay > 0
and 0 < 61 < §p(Ng) such that

f(z,2,00) > cs(Ao)2z?™! > 2P~ ! for a.a. 2 € Q, all x € [0, 4] (36)
Hypotheses Hi (i), (iv) imply that we can find M5 > 0 such that
f(z,z,00) > 2P~ for all a.a. z € Q, all 2 > Ms. (37)
Finally, from hypothesis Hy(vii), for K = [§1, M5] we have
fz, 2, A) > dg(z,\) for a.a. z € Q, all x € [6, M5], all A > 0.

Since dg (x,\) — 400 as A — +00, we can find A > )\ such that

f(z2,2) > dg (2, X) > MP™" > 2P~ for aa. 2 € Q, all z € [0y, Ms). (38)

Recalling that f(z,x,-) and ¢g(-) are nondecreasing in A > 0, from (36), (37) and
(38) we conclude that (35) is true.
Now, let A > X and assume that A € S. Then we can find uy € S(\) C int C;

(see Proposition 6). Let my = minwuy > 0. For § > 0 we set m§ = my 46 € int C,,..
9)
Also, let p = |Jua||oc and let &, > 0 be as postulated by hypothesis Hy(vi). We
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have

—diva(Dm3) 4 &,(m3)P~*
&,mb " 4 x(8) with x(6) — 07 as § — 0%
(1+&)my ™" +x(9)
Flzyma, X) + Emb " + x(6) (see (35))
Fzyma, )+ EmB 0+ [f(z,ma, N) = f(z,ma, N)] + x(6)
Flzyma, A) + EmE ™" — die (ma, A\, X) + x(8) with K = {my}
(see hypothesis Hs(vii))
flzyma, A) +§pm§71 for all § > 0 small
F(z,ux, A) + Eua(2)P~F (since my < uy(z) for all z € Q,
see hypothesis Hy(vii))
—diva(Duy(2)) + &yun(2)P~! for a.a. z € Q (since uy € S(N)),
= m$ < uy(z) for all z € Q, all § > 0 small, a contradiction.

ININCIA

IN

INIA

This means that A ¢ S and so A\* < A < oo. O

Proposition 9. If hypotheses H(a), H(S) and Hz hold and n € (0,X"), then
problem (P,)) admits at least two distinct positive solutions

ug, & € int Cy, ug < 4.

Proof. Let n,\ € (0,\*) with n < X and let uy € S(A\) C int Cy. From the proof
of Proposition 7, we know that by using a suitable truncation-perturbation of the
reaction of problem (P,) (see (32)), we can find ug € [0,ux] N S(n), which is a
minimizer of the corresponding truncated energy functional 1[)77 (see the proof of
Proposition 7).

For § > 0, let u) = up + 6 € intCy and for p = [|uy||es, let &, > 0 be as
postulated by hypothesis Ha(vi). We have

—div a(Dug(2)) + Epug ()~
—diva(Dug(2)) + &uo(2)P ™ + x(6) with x(8) — 0" as § — 0T
F(z u0(2),m) + Euo(2)P ™" + x(8) (since ug € S(n))
F(zu0(2), A) + Eouo(2)P ™" + [£(2,u0(2), 1) = f(2,u0(2), N)] + x(0)
Fzun(2),A) + Eua(2)P ™ = dic(mo, A ) + x(6)
(since up < uy, see hypothesis Hy(vi) and with K = ug(Q2), mo = inf K)
F(z,ux(2), A) + Eua(2)P~! for 6 > 0 small,
= —diva(Duy(2)) + &ux ()P ae. in Q (since uy € S(N)),
= u) < uy, for § > 0 small,
= uy —ug € int C..

IN

So, we have proved that

o € intog)[0, ual. (39)
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Recall that ug is a minimizer of the functional @EA (see the proof of Proposition
7). Note that

Dal0,us] = Palio,un (see (32))
= g is a local C*(Q) — minimizer of ¢y (see (39)),

= g is a local WP(Q) — minimizer of $y (see Proposition 1).

Next, we consider the following truncation-perturbation of the reaction in prob-
lem (P,):

o f(zuo(2),m) Fuo(z)Ph if @ < ug(z

Tl = { F(y,m) + ! i u(2) < . .

This is a Carathéodory function. Let I', (2, z) = / n(2, s)ds and consider the
0
C'-functional o, : W'P(Q) — R defined by

1 1
on(u) = / G(Du)dz + —|[ul[} + f/ B(2)(u™)Pdo = / Iy (z,u)dz
Q p P Joa Q
for all u € WHP(Q).
Note that

oy =y + én with 5,7 € R (see (40)),
= 0, satisfies the C' — condition (see Proposition 3). (41)

Moreover, Proposition 5 implies that if u € int Cy, then
oy (tu) — —o0 as t — +o0. (42)
Claim 1. We may assume that ug is a local minimizer of o).
Recall that up < uy. Then using uy, we truncate v,(z,-) as follows:

i) =

(2, ) if x <wy(z)

Tz, ur(z)) ifur(z) <z (43)

This is a Carathéodory function. We set T, (z,x) = / (2, s)ds and consider
0
the C''-functional &, : W"?(Q) — R defined by

. 1 1
walw) = [ GDwiz+ Sl [ sty - [ By
for all u € WHP(Q).

From (43), Corollary 1 and hypothesis H(/3), we see that the functional &, is co-
ercive. Also, it is sequentially weakly lower semicontinuous. So, by the Weierstrass
theorem, we can find @y € W(Q) such that

() = inf[6,(u) : u € WHP(Q)],
éé’;(’fto) = 07
= (A(iio), ) + / lio [P~ 2ii0hd= + / B(z)(ig )P~ hdo = / 5 (2 iio)hdz  (44)
Q o0 Q
for all h € WhP(Q).
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In (44), first we choose h = (ug — g) " € W P(Q). Then
<A(ﬂ0), (up — ﬁ0)+> + / |120|p_2120(u0 — ﬁ0)+d2’ +
Q

+ | BG)(ad)P (uo —do)Tdo
o9

= / [f(z,uo,n) + ug_l} (up — 1p) " dz (recall that ug < uy
Q
and see (43) and (40))

= (A(ug), (ug — ip)™) + / ub ™ (ug — @g) Tdz + B(2)ub™ (up — o) Tdo
Q 89

(since up € S(n)),
= (Auo) = AGiw). (w0 = 0) ) + [ (™ =0l 2i0) (o = o)z < 0
(see hypothesis H(3)),

= |{uo > Go}n| =0, hence ug < .
Next in (44) we choose (g — ux)*t € WP(Q). We obtain

(Alio). (10— ) )+ [ 67 o =)z [ B o — )
Q o9

= /Q[f(z,m,n) +u} (g — up)Tdz (see (43) and (40))

< /Q {f(z,w\7 A) + u’;l} (tip — ux)Tdz (see hypothesis Hy(vii))

= (A(un), (@ —ux)*) + / W g —un)Tdz 4+ | B(2)ul " (i — un)tdo
Q o9
(since uy € S(N)),
= (A(tio) — Aun), (@0 —ur)") + / (@' = uf ) (@ — un)Tdz <0
Q
(see hypothesis H(/3)),
= |{top > ur}|ny =0, hence Gy < uy.
So, we have proved that
tio € [ug,ur] = {u € WHP(Q) : ug(z) < u(z) < up(2) ae. in Q}.
If Gy # uo, then by virtue of (43) and (40), we see that
ig € S(n) Cint Oy, ug < o, ug # 1o

and so we are done, since this is the desired second positive solution of problem
(By)-
Hence, we may assume that @iy = ugp € int C. Recall that uy —ug € int Cy (see
(39)) and Gy|[0,us] = Tnljo,uy) (se€ (43)). Therefore
ug is a local C*(Q) — minimizer of o,
= g is a local W'?(Q) — minimizer of o, (see Proposition 1).

This proves the Claim.
Reasoning as above, we can show that

Koy, C [up,00) = {u € W'P(Q) : ug(z) < u(z) a.e. in Q}. (45)
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Then from (40) we see that the elements of K, are positive solutions of problem
(P;). Therefore, we may assume that K, is finite of otherwise we already have an
infinity of positive solutions for problem (P,).

The finiteness of K, and the Claim imply that we can find p € (0, 1) small such
that

0 (o) < inflory(u) : |[u— uol| = p] = m] (46)

(see Aizicovici, Papageorgiou and Staicu [1] (proof of Proposition 29)). Then (41),
(42) and (46) imply that we can use Theorem 2.1 (the mountain pass theorem). So,
we can find @ € W'P(Q) such that

i € Ko, and o, (ug) < mj) < o,(1). (47)
From (47) it follows that & # up and @ € S(n) Cint Cy, ug < 4 (see (45)). O

Next we examine what happens in the critical case A = A*. To this end, note
that hypotheses Hs(i%), (v) imply that we can find ¢15 = ¢15(A) > 0 such that

f(z,2,0) > gzt — ciga” ! for a.a. 2 € Q, all z > 0. (48)

This unilateral growth estimate on the reaction f(z,-,\) leads to the following
auxiliary Robin problem:

—diva(Du(z)) = ceu(2)?* — cigu(2)"""  in Q,
%(z) +B()u(z)P"t =0 on 09, u > 0.
8n0

(49)

For this problem we have the following existence and uniqueness result.

Proposition 10. If hypotheses H(a) and H(B) hold, the problem (/9) admits a
unique positive solution u € int C'y..

Proof. First we show the existence of a positive solution for problem (49). To this
end let &4 : WHP(Q) — R be the C'-functional defined by

1, _ 1 c r C
&4 (u) = / G(Du)dz + —[lu” [} + f/ B(2)(uh)Pdo + == |ut]]; = =t
Q p P Jaa r q
for all u € WHP(Q).

Using Corollary 1 and hypothesis H(3), we have

C1

§+(u) > m

1 C18
[1Dulfp + Zlllly + — I = o ([l 17+ ] [7)
for some c¢19 > 0 (recall ¢ < p < r).

Because g < p < r, it follows that £, is coercive. Also, it is sequentially weakly
lower semicontinuous. So, we can find @ € W'?(Q) such that

€4 (@) = infle, (u) - u € WIP(Q)]. (50)
Exploiting the fact ¢ < p < r, by choosing £* € (0,1) small, we have

£4+(€7) <0,
= &4(7) <0=2¢4(0) (see (50)), hence @ # 0.
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From (50) we have

é-fi’ (ﬁ) =0,
= (A@), B — /Q (@ thdz+ [ B @ hdo = o /Q (@)1 hdz —
—c18 / (@™)""hdz for all u € W'P(Q). (51)
Q

Let, h = —a~ € W'P(Q) in (51). Then, we see that @ > 0, @ # 0. So, (51)
becomes

(A(w),h) + [ B(2)a"~" hdo = cg / @ hdz — e / @ hdz
o Q Q

for all h € WhP(Q),
= @€ intCy is a solution of (49) (see the proof of Proposition 6).

So, we have established the existence of positive solutions for problem (49).

Next we show the uniqueness of this positive solution.

To this end, let e : L™(2) - R = RU {+o0} be the integral functional defined
by

1
[ ewainas s [ sewas ituzo, it ewin(e)
e(u) = Q D Jao

+00 otherwise

Let uj,uy € dome = {u € WH?(Q) : e(u) < oo} (the effective domain of the
functional e) and let ¢ € [0, 1]. We define

y=((1—t)uy +tus)V/7, v = ui/T7 vy = ué/T.

Using Lemma 1 of Diaz and Saa [5], we have

IDy(z)| < [(1=t)|Dvy(2)|” + t|Dva(2)T]7 for aa. z € Q,
= Go(IDy(2)) < Go (1 — B)|Dun(2)[" +tDus(2)[")
(since Gy is increasing)
< (1 =t)Go(|Dv1(2)]) + tGo(|Dv2(2)|) for a.a. z € Q
(see hypothesis H(a)(v)),
= G(Dy(z)) < (1—1)G(Duy(2)Y7) +tG(Dus(2)'/7) for a.a. z € Q,

= u— | G(Du'/7)dz is convex.
Q

1
Since p > 7 and 8 > 0 (see hypothesis H(f3)), we see that u — — / B(z)uP!"do

is a convex functional. Therefore, e is convex and also via Fatou’s lemma, we have
that e is lower semicontinuous.

We already have @ € int C; a positive solution of problem (49). Let 5 € WP ()
be another positive solution. As above, we can show that § € int C.. Then for all
h € C'(R) and for |t| small, we have

u" +th, §° +th € dome.
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Then e(-) is Gateaux differentiable at @™ and g™ in the direction h. Moreover,
via the chain rule and the nonlinear Green’s identity, we obtain

¢ (@) (h) = /Q _(ﬁ%ﬁ)mhdzz

= [ =

e )hdz for all h € WhP(Q)
Q

(recall that C*(Q) is dense in WP (£2)). The convexity of e implies the monotonicity
of ¢/. Then

0< [ —diva(Da) (uZ:?p> dz—/Q( diva(Dj)) (“;_ ,,) i

Cﬁuq —cagu ™t it —esy Tt
= / (up - yp)dz - A gT—l (up o yp)dz

uTl

— / (@™ — g4 (P gp)dz—/gcls(a’"”—z?’"‘U(ﬁ”—ﬂp)dz

IN

0 (sinceg<tT<p<r)

= =9.

|

This proves the uniqueness of the positive solution % € int C;. of problem (49).00

Proposition 11. If hypotheses H(a), H(S) and Hs hold and A € S, then @ < u
for all uw € S(N).

Proof. Let u € S(\) and consider the following Carathéodory function:

0 ifx <0
w(z,z) =< cex?t —ciga” T 42?7t if 0 <z <u(z) (52)
cou(2)Tt — crgu(2) "t F ()Pt ifu(z) < o

Let W(z,z) = / w(z,s)ds and consider the C'-functional 4 : WP(Q2) — R
0
defined by
) 1 1 N
Y(w) = [ G(Du)dz+ ~[[ul|f+ ~ [ B(z)(u")Pdo — [ W(z,u)dz
Q p D Joaa Q
for all u € WHP(Q).

From hypothesis H(8) and (52) it is clear that % is coercive. Also, it is se-
quentially weakly lower semicontinuous. Therefore, we can find @, € W?(Q) such
that

A(ty) = inf[§(u) : u € WHP(Q)]. (53)

Since ¢ < p < r, for £ € (0, minwu) (recall that u € int C) small, we have
Q

7€) <0,
= (@) <0=4(0) (see (53)), hence u, # 0.
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From (53) we have
¥ (u.) =0,
= (A(us),h) +/ |t |P U hdz + B(z) (@ )P~ hde = / w(z, Uy )hdz (54)
’ " for ;211 h € WHP(Q).

In (54) we choose first h = —u, € W'P(Q) and then h = (4, —u)™ € WHP(Q)
and as in the proof of Proposition 7, we show that

€ [0,ul], ux #0
So, (54) becomes

(A(tx), h) + B(z)a?thdo = 06/ al thdz — 018/ a " hdz
o0 Q Q
for all h € WhP(Q),

U, 1s a positive solution of the auxiliary problem (49),
U, = U € int Cy (see Proposition 10)
< wufor all u € S(A).

L

Now we can show that the critical value A* is admissible, that is A* € S.

Proposition 12. If hypotheses H(a), H(B) and Hy hold, then \* € S and so
S =(0,\].

Proof. Let {A,}n>1 € S such that A\, = (A\*)”. Then we can find u,, € S(\,) C
int C and from the proof of Proposition 7 we know that we can assume that

&, (up) <0 for all m > 1,
= /pG(DUn)dZ +/ B(z)ubdo — / PF (2, U, \p)dz < 0 (55)
Q a0 Q
for all n > 1.

Also, we have
—(A(up), upn) — B(z)ubdo +/ f(z,un, Ap)updz =0 for all n > 1. (56)
o0 Q
Adding (55) and (56), we obtain

/ [PG(Duy) — (a(Dun), Dun )] dz + / (2t At —
Q Q

— pF(2z,up, )] dz <& for all n > 1, some & > 0,
= [f (2, Un, Ap)un — PF (2, upn, Ap)] dz < 0 for all n > 1 (57)
Q
(see hypothesis H(a)(iv)).

From (57), as in the proof of Proposition 3, using hypothesis Hs(iv), we show
that {u,},>1 € WHP(Q) is bounded. So, we may assume that

Up > uy in WHP(Q) and u,, — u, in L7(Q) and in LP(0Q) as n — oo. (58)
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Since uy, € S(A) for all n > 1, we have

(A )+ [ Bz)ur~"hdo — / F(22 1 An)hdz = 0 for all h € WP(Q). (59)
o9 Q
Choosing h = u, — u, € WHP(Q) in (59), passing to the limit as n — co and
using (58), we obtain
lim (A(uy), un — us) =0,

n—oo

= U, — u, in WHP(Q). (60)

So, if in (59) we pass to the limit as n — oo and use (60), then

(A(uy), h) +/ B(z)uP" hdo = / f(2,us, A\ )hdz for all h € WHP(Q),
a0 Q
= wu, > 0 is a solution of problem (Py~).

From Proposition 11 we have @ < u, for all n > 1. Hence u < wu, and so
ux € S(A*) Cint Cy. Therefore \* € S and so S = (0, A"]. O

Summarizing the situation for problem (P ), we can state the following bifurca-
tion-type result.

Theorem 3.1. If hypotheses H(a), H(B) and Hs hold, then there exists \* > 0
such that

(a) for all A € (0,\"), problem (Py) has at least two positive solutions ug, U €
intCy, ug <u, ug # U;

(b) for X = X\* problem (Px~) has at least one positive solution u, € int Cy ;

(¢) for all X > X\* problem (Py) has no positive solution.

4. Bifurcation near infinity for the Neumann problem. In this section we
deal with the Neumann problem (that is, 8 = 0) and with a parametric reaction of
the form

f(z,2,)) = fo(z,2) — XaP~! for all (z,2) € Q x [0,00) .

Here fj is a Carathéodory function which as before exhibits competing nonlin-
earities, namely it is (p — 1)-superlinear near +o0o and admits a concave term near
zero. This time the superlinearity of f(z, ) is expressed via the AR-condition. The
presence of the term —\zP~! changes the geometry of the problem and hypothe-
ses H; and Hs do not hold anymore. In fact, we will show that in this case the
bifurcation occurs at large values of the parameter A > 0 (bifurcation near infinity).

The problem under consideration, is the following:

{ —diva(Du(z)) = fo(z,u(z)) — du(z)P~' in Q, }
(5x)

a—Z(z):Oonﬁﬁ, u>0

For the differential operator, we keep hypotheses H(a) as in Section 3. On the
nonparametric nonlinearity fo(z, ), we impose the following conditions:
Hs: fo: Q@ xR — R is a Carathéodory function such that fo(z,0) = 0 for a.a.
z € Q and
() |fo(z,2)] < a(2)(1 + 2" 1) for aa. z € Q, all 2 > 0, with a € L>(Q),,
p<r<ph
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x
(ii) if Fo(z,x) = / fo(z, s)ds, then there exist ¢19 > 0 and 7 > p such that
0

c192" < nFy(z,z) < fo(z,x)x for a.a. z € Q, all > 0;

(iii) there exists g € (1,7) (see hypothesis H(a)(v)) such that

2, 2,
0 < c99 < liminf foz,2) < lim sup folz,7)
z—0+ xd7! w0t wdTl

< €91 < oo uniformly for a.a. z € Q;

(iv) for every p > 0, there exists £, > 0 such that for a.a. z € Q, z — fo(z,z) +
£pxp_1 is nondecreasing on [0, p].

Remark 4. As in Section 3, without any loss of generality, we may assume that
fo(z,z) =0 for all (z,2) € Q x (—o00,0]. Hypotheses Hjs(ii), (iii) reveal the com-
peting nonlinearities (concave-convex nonlinearities). Observe that in this case the
superlinearity of fo(z,-) is expressed using a global version of the unilateral AR-
condition.

Example 3. The model for the nonlinearity fo(z,-), is the function
fo(z,2) = folx) =27 + 2"t forallz >0
withl <g<7<p<r<p®
As before, we introduce the following two sets

Sp = {X > 0 : problem (S)) admits a positive solution}
So(A) = the set of positive solutions of problem (S5)).

Proposition 13. Assume that hypotheses H(a) and Hs hold. Then Sy # & and
for all A >0, Sy(A) Cint Cy and for A € Sy, we have [\, +00) C Sp.

Proof. We consider the following auxiliary Neumann problem

—diva(Du(z)) + [u(2)[P"?u(z) = 1 in Q, g—z =0 on 0. (61)

/ 1 1
Let K, : LP(Q) — L? (Q) (p + == 1) be the nonlinear map defined by

p/
Kp(u)(+) = ()P~ ?u()

This is bounded (maps bounded sets to bounded sets) and continuous. Moreover,
by the Sobolev embedding theorem Kp = Kp|w1.»(q) is completely continuous (that
is, if u, 3 win WHP(Q), then K,(un) — K,(u) in L (€)). So, the map u —
V(u) = A(u) + Kp(u) is demicontinuous and of type (S), hence pseudomonotone
(see [11]). Moreover, we have

V(. > A

=V is coercive.

|[Dul[? + ||ul[? for all u € WP(£2) (see Lemma 2.2),

But a pseudomonotone coercive operator is surjective (see, for example, Gasinski
and Papageorgiou [11] [p. 336]). So, we can find @ € W'P(Q) such that

V() + K,(a) = 1. (62)
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In fact, using Lemma 2.2 and the strict monotonicity of the map x — |z|P 2z,
r € R, we see that V' is strictly monotone and so @ € W'?(9) is unique. Acting on
(62) with —a~ € WHP(Q) and using Lemma 2.2, we have

C

1 _ I
TIIDa” |7+ lla”[[; <0,

= a>0,ua#0

So, 4 > 0 is the unique solution of the auxiliary problem (61) and as before
the nonlinear regularity theory (see [17]) and the nonlinear maximum principle (see
[21]), imply @ € int C..

Ny (4)]]0o
Let 0 < m = minu and let Ay = 1+MA. We have
Q mp=1

<A(a),h>+>\o/ aP~thdz
Q
ap~1

_ _p—1 _
(A(u),h)—&-/ﬂup hdz+||Nf0(u)||oo/Qwhdz

/ hdz +/ fo(z,w)hdz for all h € WHP(Q) with h > 0 (63)
Q Q

(see (61) and recall m = mina > 0).
Q

We introduce the following truncation of fo(z,-):
R 0 ifz <0
folz,2) = folz,x)  H0<z<Z(2) (64)
fo(z,u(z)) if a(z) < z.
This is a Carathéodory function. We set Fy(z,z) = / fo(z,s)ds and consider
0
the C'-conditional Bg : WHP(Q) — R defined by

Polu) = / G(Du)dz + %Hu“ﬁ — / Fy(z,u)dz for all u € WHP(€).
Q Q

From (64) it is clear that g is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find ug € W?(Q) such that
@o(up) = inf[po(u) : u € WHP(Q)]. (65)

Using hypothesis H3(i4i) and since 1 < ¢ < p, we have that for £ € (0, min{1, m})
small

@o(§) <0 = $0(0),
= @o(up) < 0= o(0) (see (65)), hence ug # 0.

From (65) we have

@6(“0) = 07
= A(ug) + XoluolP%up = N, (ug) in WhP(Q)*. (66)

On (66) we act with —uy € W?(Q). Then
C1 — _
EHDUO [[5 =+ Aol |ug |[H <0 (see Lemma 2.2 and (64)),

= wug >0, Uo#o.
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Next on (66) we act with (ug — @)™ € W'?(Q). Then
(A(uo), (uo — ) ") + )\0/ ub ™ (ug — @) Tdz
Q

= /Qfo(z,ﬂ)(uo —u)Tdz (see (64))

< (Aw), (uo —a)") + )\0/ P~ (ug — ) Tdz (see (63))
Q
= (A(ug) — A(@), (uo — @) ") + Ao /Q(uff1 — @YY (up —u)Tdz <0,
= [{uo > u}|n =0, hence up < @.

So, we have proved that
ug € [0,@] = {u € WHP(Q) : 0 < u(z) < i(z) ae. in Q}.
Then by virtue of (64), equation (66) becomes
A(ug) + Aou ™" = Ny, (uo),
=y is a positive solution of (Py,) and so A\g € Sy # &
Moreover, as before the nonlinear regularity theory and the nonlinear maximum

principle imply that ug € int Cy. Therefore, for every A € Sy So(A) C int Cy..
Next, let A € Sp and p > A. Let uy € Sp(A) C int Cy. Then

(A(ur), h) + ”/Q W = (A, + A [ o (67)

for all h € W'P(Q) with h > 0.

Then truncating fo(z,-) at {0,ux(2)} and reasoning as above, via the direct
method and using this time (67), we obtain w, € [0,ux] N So(u), hence p € Sp.
Therefore we infer that [\, +00) C Sp. O

Remark 5. Note that in the above proof we have proved that, if A € Sy, uy) €
So(A) CintCy and p > A, then p € Sy and we can find v, € So(p) C int C4 such
that u, < wuy. In fact in the next proposition, we improve this conclusion.

Proposition 14. If hypotheses H(a) and Hs hold, A € Sy, uy € S(A) C int Cy
and p > A, then we can find u, € So(p) C int C such that uy —u, € int Cy.

Proof. From Proposition 13, we already know that we can find u,, € So(p) C int Cy.
such that u, < u,.

Let m, = minwu, > 0 and let § € (O, %) We set ul = uy — 6 € int C. Also,
Q
for p = ||ux||s, We let €, > 0 be as postulated by hypothesis H3(iv). Then
—diva(Du}) + (u + &) (ug )P~
—diva(Duy) + (u + &,)ul " — x(8) with x(8) — 0 as § — 0

= folzyun) + (p— Nub "+ €ul ™ — x(8) (since uy € So(N))
> f0(2>uu)+€p“z_1+(/~‘_)‘)mu_X(5)

(since m,, < w, < uy and use hypothesis H3(iv))
> fo(z,uy) +£puz_1 for 6 > 0 small
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= —diva(Duy) + (n+ gp)uﬁil (since wy, € So(w)),

uy < u‘; for all § > 0 small,

U

ux —u, €intCy.

Let A, = inf Sy.
Proposition 15. If hypotheses H(a) and Hs hold, then A, > 0.

Proof. Consider a sequence {\,}n,> C Sy such that A, | A\,. We can find a corre-
sponding sequence {uy, }n>1 such that u,, € Sp(A,) C int Cy for all n > 1. We claim
that {u,},>1 can be chosen to be increasing. To see this, note that since Ao < Ay,
the function uy, € Sp(A2) C int C satisfies

(A(us), h) + A1 /Q W hdz > (Alus), B + Mg /Q & hdz (68)

for all h € W'P(Q) with h >0

Considering problem (Py,) and truncating fo(z,-) at {0,u2(2)}, via the direct
method and using (68), as in the proof of Proposition 13, we obtain u; € [0, us] N
So(A1).

Then we have

(A(uy), ) + AQ/ u? " hdz
Q
= / fo(z,ul)hdz + ()\2 — )\1)/ ufflhdz (since Uy € So()\l))
Q Q

< / fo(z,u1)hdz for all h € WHP(Q) with h > 0 (recall A} > Xp)  (69)
Q
Also, we have

<A(’LL3), h> + )\2 /

W s > (ACua).b) +da [ bz (70)
Q Q

for all h € W?(Q) with h > 0.

Truncating fo(z,-) at {u1(z),uz(z)} and using the direct method and (69), (70),
we produce us € [ug,us] N Sy(A2). Continuing this way, we see that we can choose
{tn}n>1 to be increasing.

We have

(Aun), h) + An / uP " hdz = / fo(z,up)hdz for all h € WP(Q), all n > 1.
A Q

Choose h =1 € WH?(Q). Then for all n > 1 we have

)\n/uﬁ_ldzz/fo(z,un)dz,
Q Q

= )\n||un||£j > CQQHunHZ:} for some cog > 0,
(see hypothesis Hs (i) and recall p < ),

= A\, > 022||u1||2:f (recall u,, > uy, for all n > 1),

= A\ > (322||U1||Z:117 > 0.
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Proposition 16. If hypotheses H(a) and Hsz hold and A > \. then problem (S))
admits at least two positive solutions

U)\,ﬁ)\ € int C+, U 7& ).

Proof. Let Ay < A1 < A < Aa. We know that we can find uy, € Sp(A1) C int Cy
and uy, € So(A2) C int C such that uy, —uy, € int Cy (see Proposition 14). We
introduce the Carathéodory function e(z, z) defined by

folz,uxn,(2)) if x < wup,(2)
6<Za x) = fO(va) if U, (Z) S < uy, (Z) (71)
folz,un, (7)) if uy, (2) < z.
We set E(z,z) = / e(z,s)ds and consider the C'-functional ¢ : W'P(Q) — R
0
defined by
a(u) = / G(Du)dz + %Huﬂg - / E(z,u)dz for all u € WHP(Q).
Q Q
Evidently 1, is coercive (see (71)) and sequentially weakly lower semicontinuous.
So, we can find uy € WP () such that
Ya(uy) = inf[ihy (u) : w € WHP(Q)],
= P\(ur) =0,
= (A(up),h) + )\/ lux|P~2uphdz = / e(z,ux)hdz for all h € WHP(Q)(72)
Q Q
If in (72) we use h = (ux — uy,)™ € WHP(Q) and h = (uy, —ux)t € WHP(Q),

we show that uy € [ux,,ux,] = {u € WHP(Q) : uy,(2) < u(z) < uy, (2) ae. in Q}.
In fact reasoning as in the proof of Proposition 14, we obtain

Uy € inbon (g [tng s un, - (73)
From (71) and (72) we have
(A(uy), h) + )\/ uf " hdz = / fo(z,ux)hdz for all h € WHP(Q),
Q Q
= uy € So(A) CintCy.
Next, using uy,, we introduce the following truncation of fo(z,-):
] folzun,(2) ifx <uy,(2)
(z,2) = { folz, ) if uy,(2) < x. (74)
This is a Carathéodory function. Let T'(z,z) = / v(z, s)ds and consider the
0
C'-functional oy : W'P(Q) — R defined by
A
oa(u) = / G(Du)dz + —||u|[) — / ['(z,u)dz for all u € WHP(Q).
Q p Q
Hypothesis H3(i7) implies that the AR-condition (see (5)) is satisfied by ~(z, x).
It follows that
o satisfied the C' — condition. (75)

Note that
1/})\|[u>\271“1] = U>\|[u>\2,u>\1] (see (71) and (74))
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From this equality and (73), we infer that uy is a local C*(Q) minimizer of oy,
hence wuy is a local WP (Q)-minimizer of o (see Proposition 1). We can easily check
that the critical points of oy are in [uy,) = {u € W'P(Q) : uy,(2) < u(z) for a.a z €
Q}. So, we may assume that the critical points are finite or otherwise we already
have an infinity of positive solutions for problem (S ) (see (74)) and so we are done.
Then we can find p € (0, 1] small such that

ox(uy) <inf [or(u) : |[Ju —ur|| = p] :mf)‘ (76)
Hypothesis H3(ii) and (74) imply that
oa(§) = —o0 as & = +o0. (77)

Then (75), (76) and (77) permit the use of Theorem 2.1 (the mountain pass
theorem) and so we can find 4y € W?(Q) such that

oa(uy) < m”} < ox(wy), hence uy # uy,
0’3\(@,\) =0.

From the last equality and some @) > wuy,, we infer that 4, € Sp(\) C int Cy
(see (74)). O

Note that hypotheses H3(7), (#i7) imply that we can find ca3, g4 > 0 such that
fo(z, ) > cozx?™ ! — coua” ! for a.a. z € Q, all 2 > 0. (78)

This leads to the following auxiliary Neumann problem

@ =0on o, u>0
on
(@)

Reasoning as in the proof of Proposition 10, we have the following existence and
uniqueness result for problem (Q,).

—diva(Du(2)) + Mu(2)P ™1 = cogu(2)?T — caqu(2)""in Q,

Proposition 17. If hypotheses H(a) hold and XA > 0 then problem (Q,) admits a
unique positive solution uy € int C.

In fact the map A — w3 has useful monotonicity and continuity properties.

Proposition 18. If hypotheses H(a) hold, then A — u} is nonincreasing and con-
tinuous from (0,00) into C*(Q).

Proof. The monotonicity of A — u} is established as in the first part of the proof
of Proposition 15, by exploiting the uniqueness result of Proposition 17.

Next, let A\, = A > 0 and let 0 < A < A, for all n > 1. Then uy, < u§ for all
n > 1. Also, we have

A(ul )+ An(ul )P = cog(u}, )" — caa(u} )" for allm > 1. (79)

Since u}, < uj € int Cy, from Lieberman [17], we know that we can find 9 €
(0,1) and Mg > 0 such that

uy, € ch(Q), [u, N cro@) < Me for alln > 1

Exploiting the compact embedding of Cl’ﬂ(ﬁ) into C'(Q), we may assume that
uy —utin C1(Q). (80)
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So, if in (79) we pass to the limit as n — oo and we use (80), then
Au*) + Mu*)P™ = oz (u*)Pt — cog(u*)
= u" = u) (see Proposition 17).

This proves the desired continuity of A — w}. (|

Moreover, as in Proposition 11, we have:
Proposition 19. If hypotheses H(a) hold and A > 0, then uy < u for allu € Sp()).

Using these facts we can treat the critical case A = A, > 0. In what follows for
A >0, ox: WHP(Q) — R is the energy functional for problem (S) defined by

ox(u) = / G(Du)dz + éHu||£ - / Fy(z,u)dz for all u € WHP(9Q).
Q b Q

Evidently oy € CY(WhP(Q)).

Proposition 20. If hypotheses H(a) and Hj hold, then A\, € Sy (that is, S =
[Ax; 00)).

Proof. Let {\,}n>1 C Sp such that Ay | .. There exists a corresponding sequence
{tn}n>1 such that u, € Sp(A\,) for all n > 1. We claim that this sequence of
solutions can be chosen so that

o, (up) <0 for all n > 1. (81)
To see this note that

<A(u2),h>+A1/u§*1hdz
Q

> (A(un) b + Mo /

b hdz = / fo(z,u2)hdz for all h € WHP(Q) (82)
Q Q

with A > 0.

Truncating fo(z,-) at {0,u2(z)} and reasoning as in the proof of Proposition 13
via the direct method and using hypothesis Hs(#ii) and (82), we obtain u; € Sy(A1)
such that

P (ul) <0

Next note that

(A(us),h) + Ay | ud 'hdz

S~— 55—

> (A(uz), h) + A3

ub " hdz = / fo(z,uz)hdz for all h € WHP(Q) (83)
Q
with h > 0.

As above truncating fo(z,-) at {0,u3(z)} and using this time (83), we produce
uz € Sp(Az2) such that
wa(uz) < 0.
So, continuing this way, we see that we can have u, € So(A\,) n > 1 such that
(81) holds. Then it follows that

/ nG(Duy)dz + %Hunﬂg < / nFo(z,un)dz for all n > 1. (84)
Q Q
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Also, since u,, € So(\,) n > 1, we have

- / (a(Duy), Dup)pydz — Ap||un||h = —/ fo(z,up)updz for alln > 1. (85)
Q Q

Adding (84) and (85) and using hypothesis H(a)(iv), we obtain

(n—p) / G(Dun)dz + / ozt )ttn — pFo(z,un)] dz +

+An (77 — 1) ||Un||§ <0 foralln>1,
p

(n—p)cr
pp—1)
(see Corollary 1, hypothesis H3(i7) and recall A, < A, for all n > 1)
= {un}tn>1 € WHP(Q) is bounded (recall n > p).
So, we may assume that

Uy > Uy in WHP(Q) and u,, — uy in L7(Q). (86)

Dt |2+ A (Z . 1) [t [2 < 0 for all n > 1

Recall that

(A(un), h) + )\n/

uP " hdz = / fo(z,un)hdz for all h € WHP(Q), all n > 1. (87)
Q Q

If in (87) we choose h = u, —u, € WP(Q), pass to the limit as n — co and use
(86), then
lim (A(up),un —us) =0,

n— oo
= up — u, in WHP(Q) as n — oo (see Proposition 2 and (86)).  (88)

Passing to the limit as n — oo in (87) and using (88), we obtain
(A(uy), h) + /\*/ uP " hdz = / fo(z,u,)hdz for all h € WHP(Q). (89)
Q Q

From Proposition 19, we have
uy, < uy, foraln>1,
= u), < u, (see Proposition 18 and (88)). (90)
From (89) and (90) it follows that u. € Sp(A«), hence A, € Sp. O

Summarizing, for problem (S)) we have the following bifurcation-type result.

Theorem 4.1. If hypotheses H(a) and Hs hold, then exists A\, > 0 such that
(a) for every X > A, problem (S)) has at least two positive solutions

U)\,ﬁ)\ € int C+, U 7& fL)\;

(b) for A = Ay problem (Sy,) has at least one positive solution u, € int Cy;
(c) for every A € (0, \.) problem (S)) has no positive solution.

Remark 6. This bifurcation-type theorem leaves open two interesting questions:
(a) Is it possible in hypothesis H3(i7) to replace the global AR-condition by the
usual local one (see (5)) or even better by the more general “superlinearity”
condition used in Section 3?7 The difficulties can be traced in Proposition
15, which shows that A, > 0. It is not clear how this can be proved in the
aforementioned two more general settings.
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(b) Can we have Theorem 4.1 for the Robin problem (that is, for 8 # 0, 5 > 0)?
Again the difficulty is in Proposition 15. The proof of that proposition fails

since we can not control the boundary term B(z)ultdo.
a0
Next, we carry the study of problem (S)) (A > A,) a little further and produce a
smallest positive solution wy € int C; and show that the map A — w) is strictly
decreasing from (0, 00) into C*(Q) and |[wy|| — 0 as A — +oo.

Proposition 21. If hypotheses H(a) and Hs hold and A > A, then problem (S))
admits a smallest positive solution Wy € int C.

Proof. As in Filippakis, Kristaly and Papageorgiou [9], exploiting the monotonicity
of A (see Lemma 2.2), we show that Sp()\) is downward directed (that is, if uq,ugs €
So(N)), then we can find u € So(\) such that w < uy, u < up. Therefore, since we
are looking for the smallest positive solution, without any loss of generality, we may
assume that

uy(2) < u(z) < eg5 for some co5 > 0, all u € Sp(N), all z €  (see Proposition 19)

Then from Dunford and Schwartz [3] [p. 336], we know that we can find {u, },,>1
C So(A) such that

inf So(A) = :Lgfl Up-
We have
A(uy) + )\uﬁ_l = Ny¢(up) and v} < u, < cgs foralln > 1, (91)
= {uptn>1 C Wl’p(Q) is bounded.
Thus we may assume that
Up > by in WHP(Q) and u,, — Wy in L7(Q). (92)
On (91) we act with u, — ) € WHP(Q), pass to the limit as n — oo and use
(92). Then
lim (A(up), up — W) =0,

n—oo

U, — Wy in WHP(Q) (see Proposition 2),

A(hy) + M5 = Np(iy), uy < by < eas (see (91)),
iy € S(A) and @y = inf Sp(\.)

4y

We examine the map A\ —— w).

Proposition 22. If hypotheses H(a) and Hs hold then A\ — w)y is strictly de-
creasing from [\, 00) into C1(Q), that is, if A« < A < 1, then Wy — b, € int C.

Proof. Note that
(A(iy), h) +u/ W hdz > (A(iy), h) + )\/ WP hdz =
Q Q
= / fo(z,x)hdz for all h € WHP(Q) with h > 0. (93)
Q

We consider the problem (S,) and truncate the reaction fo(z,-) at {0,wx(2)}.
Then reasoning as in the proof of Proposition 13, via the direct method and using
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(93), we produce u, € [0,Wwx] N Sp(p), hence w, < u, < wy. Moreover, from

Proposition 14, we have wy — W, € int C5. g

Proposition 23. If hypotheses H(a) and Hs hold, then wy — 0 in WP(Q) as
AT 4o0.

Proof. Let {A\n}n>1 € (As, 00) such that A\, T 4+o00. Let wy, € So(A,) C int Cy be
the smallest positive solution of (Sy,) n > 1. From Proposition 21, we know that
{Wx, }n>1 is (strictly) decreasing. We have

A(ty, ) + Mg0f 1 = Ny, (), r, < by for all n > 1, (94)

a < / fo(z, 0z, )y, dz < c26
p—1 Q
for some cg > 0, all » > 1 (see Lemma 2.2),
= {wx, }n>1 € WHP(Q) is bounded. (95)
From (94) and (95) is follows that
{A(y,) = Ny (x, ) }nz1 = {0} Huzt € WHP(Q)* s bounded.
So, for every h € WHP(Q) we have

An / W}~ hdz
Q

In (96) we choose h — 1y, . Then

|| Dby,

§+ )‘n||w>\n

< carl]|h|| for some ca7 > 0, all n > 1. (96)

Anllx, |5 < carl[ia, || < cog for some cog > 0 all n > 1 (see (95)),
= ||wa,llp = 0 as n — oo (recall A, 1 00). (97)
Recall that
C1
p—1
We conclude that @y, — 0 in WP(Q). O

[[Dvy,, |15+ An|lx, [[5 < / Jo(z, Wy, )Wa, dz — 0 as n — oo (see (97)).
Q

Remark 7. An interesting open question is whether A —— 0, is continuous from
[As, +00) into C*(Q).
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